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ABSTRACT

Load-dispatching strategies for a parallel
inference machine prototype are described, and
their performance is evaluated by simulation based
on the loosely-coupled cluster model, using the G-
gueens benchmark, The sender-initiate concept is
applied to the bunch layer of a parallel inference
machine prototype. The strategy in which the
cluster with- maximum ready goals dispatches a goal
to the cluster with minimum ready goals brings the
lowest load-dispatching rate limit. Stable
performance during real program execution is not
expected in this strategy, because it covers too
narrow load-dispatching rate region . A strategy in
which the goal dispatch target cluster is determined
at random, but conditionally aborted based on
dynamic loads at the dispatching cluster and the
target cluster, brings the second lowest load-
dispatching rate limit and is expected to have high
performance and stability, More than T0% average
utilization is achieved when the lead-dispatching
rate is higher than 5%. It is confirmed that 0.54 of
the maximum performance of a parallel inference
machine prototype can be achieved by applying this
load-dispatching strategy.

1 INTRODUCTION

The Fifth Generation Computer Project has
developed knowledge and information processing
systems based on a predicate logic programming
language [Fuchi and Furukawa 87], [Nakashima
and Nakajima 87], [Taki 86]. The hardware of these
systems has been dubbed an "Inference Machine™, In
the project’s initial stage, sequential architectural
inference machines were developed, and various
parallel architectural concepts were designed and
evaluated [Tto et al. 88], [Kumon et al. B8], [Onai et
al. 85]. The project is now in the intermediate stage.
A parallel inference machine (PIM) prototype
composed of about 100 processing-elements is being

designed for the target language EL1[Goto and
Uchida 886).

The main research areas of PIM are parallel
processing overhead and processing-element
utilization. The same ideas can be applied to
inference processing itself as have been developed
for sequential inference machines, Both processing-
element utilization and parallel processing
overhead depend on load granularity. Generally, the,
finer the granularity, the larger the utilization, so if
fine load granularity is designed, it will be easy to
get high processing-element utilization, but difficult
te reduce parallel processing overhead. Utilization
depends on the load-balancing feature of parallel
systems as well as the granularity. Parallel logic
programming languapges such as KL1 have a
suspend/resume processes feature for concurrent
process control [Ueda BE). This feature causes much
parallel processing overhead. Therefore, the PIM
prototype load granularity is of coarse design, Load-
balancing feature research is important for
improving processing-element utilization.

Several load-balancing methods have been
developed [Sakai et al. 88)], [Hiraki et al. 86], in
which load dispatch targets are determined
dynamiecally by selecting the processing-element
with minimum load. Once the processing-element
with minimum load is determined, all processing-
elements prepare to dispatch loads to it. If there is a
time delay between load status detection and
modification, load coneentration on one processing-
element oceurs and the load concentration degrades
the performance of the PIM prototype [Sugie et al.
88].

In this paper, load-balancing features of the PIM
prototype, especially the load-dispatching strategies
based on the sender-initiate concept are
investigated, Several strategies which are
distinguished by load dizpatch eonditions and
targets are assessed from the peint of view of
granularity limit .
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2 CONCEPT OF SYSTEM ORGANIZATION
AND LOAD BALANCING OF A PIM PROTO-
TYPE

Parallel architecture may be used for improving
processing ability. Te improve this ability
efficiently, program localization of closely related
sequences must be considered whenever possible,

KL1, the PIM prototype target language, has a
suspend/resume processes feature, This feature
makes it possible to express concurrent process
control flow explicitly in programs, but is a burden
on inference machine processing ability. Therefore,
occurrences of suspension/resumption have to be
reduced at program execution time. In some cases,
simple depth-first process activation scheduling can
reduce the occurrence of suspension/resumption.
That is to say, when a process is activated, the cause
of process suspension is eliminated by past process
activation. Even in the case of parallel architecture,
this sort of scheduling implementation is important,
since process suspension/resumption would be too
great a parallel processing overhead,

- A hierarchieal structure, as is shown in Fig. 1, is
useful to. reduce ocCuUrrences of
suspension/resumption, namely, paralle]l processing
overhead for the PIM prototype. Hardware/software
investment in PIM prototype components should
have the following priority order: processing-
element (bottom-layer component) — cluster of
tightly-coupled processing-elements (2nd-layer
component) = bunch of loosely-coupled clusters
(3rd-layer component) = integration of bunches (top
layer), where a cluster is a group of small elements
and a bunch is a group of large elements,

The alternative iz a uniform nenhierarchical
configuration. An unequal-length network such asa
mesh or hypercube can implement a uniform
configuration with 100 processing-elements. In this

——

cluster of PEs
bunch of clusters
integration of bunches

PE ; Processing Element

Fig. 1 Hierarchical structure for PIM

case the only way to reduce suspension/resumption
overhead using program localization is to make a
group of neighboring processing-elements. To
achieve high processing-element uwtilization, this
group of neighboring elements must be dynamically
modified to avoid assigning too high a capacity for
too little work. This would be too great an overhead
burden,

Current technology makes it possible to
construct a PIM prototype with 2-layer hierarchy
[Goto and Uchida 86]. The bunch of loosely-coupled
clusters is the top layer. It consists of about 10
clusters coupled loosely through some sort of equal-
length network such as a crossbar. The cluster
consists of about 10 processing-elements coupled
tightly through shared storage and caches.

In the PIM prototype configuration, parallel
processing overhead and processing-element
utilization are much more significant in the bunch
layer than in the cluster layer, because about 10
processing-elements are coupled tightly through
shared storage and caches in the cluster layer.
Inside the cluster, load balancing is achieved by
frequent communication between processing-
elements, and the occurrence of
suspension/resumption can be reduced by process
activation scheduling using & common ready process
queue stored in the shared storage. In the bunch
layer, clusters communicate by sending/receiving
messages. Communication between clusters should
be restricted since such esmmunication causes an
overhead burden,

There are two basic coneepts of dynamic load
balancing, receiver-initiate and sender-initiate. In
the former case, loads are dispatched to processing-
elements when requested because of idling. In the
latter case, load dispatch is determined only by the
dispatcher’s situation, regardless of whether the
target processing-elements have loads or not. If a
small number of processing-elements are installed
in a PIM, receiver-initiate methed is more efficient,
becanse there iz no wasted communication.
However, this method is not appropriate for a PIM
with a large number of processing-elements,
becanse too much throughput is needed for the
channels broadeasting load reguests. The sender-
initiate method is appropriate in this case.

It is difficult to extend the cluster size to much
more than 10 processing-elements. For example, a
PIM bunch layer with 1000 processing-elements
would be composed of about 100 clusters. Therefore,
the receiver-initiate method could not be applied to
the bunch layer. For future large scale design of a
PIM, the sender-initiate method will be used for the



bunch layer load balancing of the PIM prototype.

3 LOAD-DISPATCHING STRATEGY

In the PIM prototype, bunch layer load balancing
is controlled by determining whether goal dispatch
occurs and determining dispateh target eluster by a
strategy, every time a goal reduction creates new
goals.

In the bunch layer of the PIM prototype, load
dispatch waste needs to be avoided so as to reduce
occurrences of suspension/resumption. There are
two useful ideas to avoid load dispateh waste,
namely, to anticipate the clusters which may need
load dispatch (idea A) and to stop load dispatch
under bad conditions {idea B). The following four
load-dispatching strategies are examined,

strategy A : The cluster to which goals are
dispatched is determined at random.
strategy B : The cluster to which goals are
dizpatehed is determined by selecting the
cluster with minimum ready goals,
strategy C : The cluster to which goals are
dispatched is determined at random and
then this goal dispatch iz aborted on the
condition that the dispatch target cluster
has more ready goals than the dispatching
cluster,
strategy D : The cluster with maximum
ready goals dispatches a goal to the cluster
with minimum ready goals.
Strategy B is a realization of idea A, strategy Cis a
realization of idea B and strategy D is a realization
of both idea A and B. Strategy A is classified as
“blind”. It iz examined to evaluate the performance
of strategies B,C and D which are classified as
“informed”,

Goal dispatch should be aborted if the
dispatching cluster has insufficient ready goals. The
goal dispatch under this condition may make the
dispatching cluster idle. Such a bad goal dispatch
can be avoided by aborting goal dispatch when the
dispatching cluster has fewer ready goals than some
threshold, Strategy B’ and strategy O, strategies in
which this idea, strategy B, and strategy C are
combined are also examined.

At KLl program execution time, the initial
query is assigned to one cluster and created new
goals are dispatched to the other clusters. Therefore,
utilization of clusters can be improved by
dispatching more goals in the initial stage of
program execution than in the medium and final
stage. Strategy B" and strategy C”, strategies in
which this idea, strategy B, and strategy C are
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combined are also examined.

4 SIMULATION

To achieve dynamic load balancing, load-
dispatching strategies in the bunch laver of the PIM

‘prototype are examined by simulation,

4.1 Simulator

Simulation is made on the PIM-RE hardware
simulator [Sugie et al. B5] using an interpreter for
KL1,

Fig. 2 shows the hardware simulator
organization, It is composed of 16 single board
microcomputers {abbreviated as SBC) using
MCEB000, local storage, shared storage and Micro
VAX I, which works as a supervisor,

Az for bunch layer simulation of the PIM
prototype, the eluster of processing-elements is
simulated by SBC and the network through which
the clusters are connected is simulated by the
shared storage, As the purpose of this simulation iz
bunch-layer simulation, detailed structure and
operation inside the cluster is not simulated. During
simulation, SBC works as a single processing-
element with high performance.

In the hardware simulator, the event-driven
method is employed to eliminate the idling time
during simulation. The simulator does not have a
TOD [Time of Day Clock), which uniformly manages
time over the whole system, but it does have a
software timer in each cluster simulated by SBC.
The timer count renews by adding a certain value

Micro
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Fig.2 Hardware block diagram of a simulator
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every time a transaction of any oné of several
functions is executed. When messages are sent to
other elusters, network delay time is added to the
timer count, and this valoe iz attached to the sent
mesgage to indicate the arrival time. The cluster

which receives the message controls the timer count-

by comparing this arrival time and its own timer
count when it accepts the message. During

simulation, all data measurements and some’

operations such'as queue controls are based on the
cluster software {imer,

4.2 Conditions

The simulation assumes the following:
(1) 16 clusters are coupled through a collizion free,
equal-length network with sufficiently large
throughput.
{2) The cluster has a sufficiently large input/output
buffer and waiting time, due to the input/output
buffer overflow not being taken into account.
{3) The cluster’s sending and recelving message
overhead is 10 % of reductions in case of 4 clusters
and the 4-Queens benchmark (adjusted by using
parameters).
{4) OR-clauses are tried sequentially at head
unification time.
(5) A new goal is dispatehed to elusters when AND-
fork ocours in the clause body.
{6) Built-in predicates are not dispatched to other
elusters,

4.3 RHesulis

The relationship between utilization and
granularity in the PIM prototype composed of 16
clusters is measured and the above-mentioned load-
dispatching strategies are evaluated from the point
of view of granularity limit .

Fig. 3 shows the normalized processing time of
stratepy AB,C and D as a function of the load-
dispatching rate for 6-Queens benchmark. The
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Fig.3 Processing time as ¢ function of dispotching rate

nermalized processing time is defined as the ratio of
the processing time for plural clusters to the
processing time for a single cluster. The load-
dispatching rate is defined as the ratio of all goals
dispatched to other clusters, to all reduced goals.
Granularity is expressed by this rate, namely, as a
reciprocal of the load-dispatching rate. The load-
dispatching rate is varied by changing the
simulation parameter which controls load dispatch
probability. Paralle] processing overhead dominates
the processing time in the high load-dispatching
rate region, and utilization dominates the
processing time in the low load-dispatching rate
region,

The normalized processing time is expressed by

normalized processing time =

{number of clusters) X (average utilization)

+ {1 + {parallel proceszing overhead)}, « -+ (1)
Figures 4 and 5 show the parallel processing
overhead and the average utilization, as a function
of the load-dispatching rate.

Fig. 4 shows that the parallel processing
overhead is expressed by two straight lines with
different gradients, namely, with a high gradient in
the low load-dispatching rate region and with low
gradient in the high load-dispatching rate region,
An optimization is introduced into the KL1
interpreter on the simulator which can reduce the
communication between clusters by storing values
in a cluster which are instantiated in other clusters
and sent to the eluster through messages. Onee such
values are stored in the. cluster, no more
communication is needed to get them. When load-
dispatching rate is low, so few variables are shared
between clusters that the above-mentioned
optimization is not effective and parallel processing
overhead is expressed by a line with a higher
gradient than that in the high load-dispatching rate
region, .

In Fig. 4, dots which express data measured in
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strategy I} deviate from the straight line. This is due
to the simulation mechanism. In the simulator,
strategy D iz implemented by dispatching a goal to
the dispatching cluster itself to abort goal dispatch,
on the condition that the dispatching cluster does
not have maximum ready goals. This method can
abort goal dispatch to other clusters, but cannot
eliminate overhead of sending and receiving
messages. This causes a large overhead in spite of
the low final load-dispatching rate. Such an
overhead can be removed by determining goal
dispatch before preparing the message and not
sending the message under inappropriate
conditions. In Fig. 4, the parallel processing
overhead in strategy C is larger than those in
strategy A and B. This iz also due to the
implementation of aborting goal dispatch on the
simulator.

Fig. 4 suggests that the load-dispatching rate
should be limited to 5 % if the permissible parallel
processing overhead is designed to be within 0.3.

It should be noted that strategy C has higher
performance than strategy B. This indicates that
strategy C can eliminate more load dispatch waste
than strategy B. Strategy D has the highest
performance, but the load-dispatching rate is low,
Using strategy D, each cluster checks load
distribution at reduwetion intervals and dispatch a
goal on the condition that it has maximum ready
goals. Therefore, goals cannot be dispatched at a
higher rate than once per 16 reductions. On the
contrary, plural clusters have a chance to dispatch
goals at the sarme time in other strategies,

Figures 6 and 7 show average utilization, as a
function of load-dispatching rate in strategies B, B,”
C' and C". These figures show that all four strategies
improve performance, B' and ' more than B" and
C*

Simulation was also carried out using other
sample programs, such as BUP (Bottom-Up Parser)
or kernel benchmark. The results using these
benchmark programs are quantitatively different
but gqualitatively the same. Queens program can
distinguish suspension/resumption features in the
plural ¢luster case sinee it causes only one
suspension/resumption if it is executed on one
processing-element.

5 DISCUSSION

In the PIM prototype bunch layer, load
granularity must be kept coarse to reduce
occurrences of suspension/resumption. Therefore,
the load-dispatching strategies should be evaluated
on the basis of how low the load-dispatching rate can
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be, keeping sufficiently high utilization. Table-I
shows the load-dispatching rate limits, defined as
the load-dispatching rate which gives 70 %
utilization in each load-dispatching strategy.
Strategy D has the lowest load-dispatching rate
limit. However, this strategy covers too narrow a
load-dispatching rate region, which should be wide
to realize high and stable performance. In strategy
D, too low a load-dispatching rate causes high
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performance degradation.

Except for strategy D, strategiezs B' and C’ have
the lowest load-dispatching rate limits and can
achieve approximately the same performanece as
each other. Strategy C’ is expected to have more
stable performance than strategy B' during real
program execution, since the performance difference
between strategies C and C' is smaller than between
strategies B and ‘B'. The difference between
strategies B and B® and between strategies C and C'
is that strategies B' and €' abort poal dispateh if the
dispatching cluster has fewer ready goals than the
threshold. In strategies B' and ', performance
depends on threshold and an optimum threshold for
each application program exists. Figures 6 and 7
show that strategy C' has less threshold dependency
than strategy B', and that strategy C" has more
stable performance than strategy B'.

The performance of the PIM prototype is
estimated, on the basiz of simulaiion results, Table-I
shows that the load-dispatching rate can be reduced
to 5 9%. Fig. 4 shows that parallel processing
overhead becomes 0.8 when the load-dispatching
rate is B %. Substituting 16, 0.7 and 0.3 for number
of clusters, average utilization and parallel
processing overhead, respectively, equation (1) gives
normalized processing time as 8.8, which is more
than half of the maximum performance. Assuming
that the cluster performance equals 1 MLips, the
performance of the PIM prototype is 8.6 Mlips.

Bo far, load-dispatching strategies have been
being discussed from the point of view of granularity
limit. To assess load-dispatching strategy, it is
assumed that the PIM prototype has sufficient
ability for inter-cluster communieation processing.
Thizs asswmption may differ from the real design.
The granularity limit may also be assessed from the
point of view of inter-cluster communication
processing ability. In the PIM prototype, a cluster
controller is introduced into the cluster for inter-

cluster communication processing, The cluster

controller is of approximately the same processing
ability as the processing-element.

Suppose that a cluster controller and eight
processing-elements are installed in the cluster,
that the cluster controller has the same processing
ability as the processing-element and that inter-
cluster communication processing costs twiee as
high as reduction, then the load-dispatching rate
limit should be less than 0.0625 (=1/2x8). In this
paper, an automated dynamie load-dispatching
method is used and the simulation results show that
a satisfactory load-dispatching rate limit was
achieved. If inter-cluster communication processing

dominates the load-dispatehing rate limit, measures
to assist the load-balancing method are necessary,
Task division techniques using program
chargeteristies and monitoring load distribution
globally are useful. A big task may be divided into
several sub-tasks. These sub-tasks are assigned into
gsub-bunches composed of less than 16 clusters,
Inside the sub-bunch, the load-dispatching
strategies can reduce the load-dispatching rate limit
so0 low that the cluster controller ean handle inter-
cluster communication.

The bunch size is fixed in this simulation,
However, average utilization Is a function of bunch
size, too. In the future, bunch size influence should
be investigated to predict PIM behavior in case of
too high-cost inter-cluster communication
processing or large scale PIM with moere than 18
clusters,

The subjects of this paper are new load-
dispatehing strategies on the dynamiec load
balancing of the PIM prototype. They are applicable
to parallel systems in which the context switch is a
relatively heavy burden to normal processing, '

6 CONCLUSION

Several load-dispatching strategies bazed on the
sender-initiate concept were developed and
evaluated in the bunch layer of the PIM prototype.
The lowest load-dispatching rate limit was achieved
when the goal dispatch target was determined at
random and then this goal dispatch was aborted if
the dispatch target cluster had more ready goals
than the dispatching cluster or the dizpatching
cluster had fewer ready goals than the threshold. It
was confirmed that more than half of the PIM
prototype maximum performance can be achieved
by applying this load-dispatching strategy. This
strategy is expected to realize stable performance in
the wide load-dispatching rate region.
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