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ABSTRACT

In this paper, a new hybrid knowledge
representation system called Sphinx is presented. It
consists of two major reasoners for terminological
and assertional reasoning. The former is based on
classification and uses a frame-based description
language while the latter is a theorem prover based
on Horn logic and uses an extended logic program-
ming language. Besides a new hybrid reasoning
scheme, a new knowledge base maintenance
mechanism based on the negation as failure infer-
ence rule is also presented, so that Sphinx can sup-
port incremental assertions and retractions. In
addition, Sphinx provides explanation capability to
help the vser in developing and debugging his/her
knowledge bases.

1 INTRODUCTION

As a number of intelligent systems have been
developed, it is recognized that most of them
require various kinds of knowledge and reasoning,
However, one uniform knowledge representation
formalism cannot serve all representational needs
required in far-flung domains. Therefore, it is
naturally required that a system allows several
types of knowledge to exist simultaneously and
supports adequate and effective reasoning for each
type of knowledge.

Recently, a new approach called HAybrid
knowledge representation scheme has been studied
to mest. this requirement. In typical hybrid sys-
tems, two or more fundamentally different types of
representational formalism and reasoning are pro-
vided in such & way that each component acts a
complementary one to one another and each rea-
soner makes an inference in accordance with other
reasoners, Each compnent has own inference
mechanism and language. In usual, an appropriate
tThis research is supported partially by the Minisiry of Sci-
ence and Technology in Korea as a national project for next
generation computer systems , under contact No. M04050.

set of inferences over sentences and complex terms
is supported by most of hybrid systems.

With this approach, the overall semantics for
the hybrid representation formalism becomes clear
and the interaction between different kinds of
knowledge can be well understood and maintained.
Examples of hybrid knowledge representation sys-
tems are KRYPTON (Brachman et al. 1983), KL-
TWO (Vilain 1984), BACK (von Luck et al. 1987),
and Loom {Mac Gregor and Bates 1987). .

In this paper, a new hybrid knowledge
representation system called Sphinx iz presented,
Sphinx is based on a restricted theorem prover
which reasons over a subset of the first-order logic
in a simple and efficient way. Like other hybrid
systems, the theorem prover is augmented with a
special-purpose reasoner for terminological reason-
ing,

Sphinx also consists of two major subcom-
ponents each of which is termed TBox and ABox,
respectively, following to KRYPTON. The TBox is
for terminological reasoning and based on frames,
while the ABox for assertional reasoning is a
theorem prover based on Horn logic. Viewed
from a different angle, Sphinx is a tightly-coupled
integration of logic programming lechnique and
classification-based reasoning (Schmolze and Israel
1983). In fact, the assertional subcomponent of
Sphinx can be regarded as a kind of an executor
for logic programs.

Interfacing between two components is accom-
plished by unifying terms in the TBox and predi-
cates in the ABox as in other hybrid systems.
Therefore, terminological knowledge and analytical
inferences reflecting the structural relations in the
TBox are available in the assertional reasoner,

Being allowed to express ABox queries for
knowledge base (KB) in the first-order sentence,
more expressiveness at least in inspecting a KB is
possible, even though the KB is maintained in a
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simple and limited form. The query laguage also
permits the constitwent (wh-) questions as well as
yes-no questions.

Sphinx adopts Nagation As Failure (NAF) rule
(Clark 1978) for inferring negative information. It
offers elegant and simple inference algorithms in
proving a query and revising KB. In particular, i
also supports a kind of nonmonotonic reasoning
which simplifies the revision of KB greatly.

Although the ABox is basically a theorem
prover, incremental assertions and retractions of
factual knowledge are permitted in Sphinx. When a
fact is acquired or deleted, Sphinx preserve con-
sistency by revising its KB itself. Since Sphinx
records only premises and  infers logical conse-
quences whenever they are to be proved, an addi-
tion of a new fact does not cause any contradic-
tion.

When a fact is retracted, which is equivalent
to an addition of its negation owing to the NAF
rule, dependency-directed backtracking is per-
formed. As the logical consequences of a premise
is not recorded but inferred, they are not inferred
any longer if the premise is retracted.

Instead of rccording all the dependency rela-
tions between propositions, Sphinx uses the termi-
nological KB in the TBox which shows the depen-
dency relations between terms which are applied to
all the extensions of terms. Consequently, by
referring to dependency relations between terms,
Sphink can finds out which premises have
influences on the deduction of a given fact and at
least one of these premises is negated if we want to
retract that fact. .

Besides maintenance capability, Sphinx also
provides a capability to explain its deduction steps.
It helps user to develop, debug, and understand his
knowledge base,

Sphinx is implemented on Sun-3/160* 4.2 BSD
UNIXF workstation wsing Quintus PROLOGY. To
demonstrate its usefulness, a sample system called
SDNKB is developed for describing the status
information about nodes and network configuration
of our domestic computer network called SDN
(System Development Network) in Korea (Chon et
al. 1984). In this paper, most of examples are
taken from SDNEB.

# UNIX is a trademark of Bell Laboratories.

* Sun is a trademark of Sun Microsystems, Incorporated.

i Quintus PROLOG is a trademark of Quintus Computer
Systems, Incorporated.

2 TERMINOLOGICAL REASONING IN SPHINX

Definitions in the terminoclogical component
(TBox) serve to define the terms which consist of
the vocabulary to represent knowledge in the world
being modelled. Like other hybrid systems, terms
in the TBox correspond to predicates in the ABox.

Like KL-TWO and KRYPTON, two major
categories are used to classify terms in Sphinx:
Concept and Role. A Concept is a representation of
the unary predicate or relation representing the
object in the world, while a Role represents the
relationship between Concepts.

Sphinx also distinguishes between primifive
and defined terms. A term is primitive if no
definition can be given for it. Terms for natural
kinds such as animal, bird, chair, and etc. are typi-
cal examples of primitive terms. Fig. 1 shows TBox
operations to create the primitive terms.

{1). defConcept{Concept ).
(2) defConcept(C,,C,).
(3) defRole(Role, Domain Range).

FIGURE 1. TBox operations lor primitive terms

The first and second operations are uwsed to
declare primitive Concepis. In  particular, the
second operation denotes the primitive specializa-
tion between two primitive Concepts.

The third operation creates a primitive Role
with declarations of domain and range of the Role,
respectively. The semantics of this operation can
be defined as follows:

vx. ¥y. (Role(x,y) — (Domain(x) p, Range(y)))

As is easily seen, domain and range state necessary
conditions about a Role and, as a result, they func-
tion as integrity constraints.

On the other hand, defined terms are terms to
which a set of necessary and sufficient conditions
is given. Fig. 2 shows five different operations and
their semantics to define complex terms out of
primitive or defined ones.

The first operation defines a conjunction of
Concepts given in the list. For example, a
unix_workstation can be defined as a conjunction
of workstation and unix_machine:

defConcept{unix_workstation, [workstation, unix_machine]).



(1) defConcept(C.[Cy, - - - ,C,]).
vr, (C@ay—=Cx)n -+ ANC,)
(2) defConcept(C,C,.R,C,).
vx. (Cl) — Cylx) A ¥y (R{x.p) — C00)))
(3) defConcept([C,, - - - ,C |.C), where n > 2.
vx. (C;(x) = C(x)) A vx. (C{x) = ~C,(x)),
where 2 <i. j <nhnand i j
(4) defConcept(C,[C,, - - - ,C, ],
[R, : RC,, - - - ,R, : RC,]).
Vr, (Cla) = (CylxdA - - AC DA
Wy (Ry(xoyy) ARG ) A
Wy (Rylx.yy) A RC,(yo)) A

Yy, (R, (xy,) ARC, ()
where C; and RC ;are Concents,
(5) defRole(R,[R,.R,]).
vx. Vy. (R(x.p) ++3z. (R,(x,2) A Ry(z.p)))

FIGURE 2, Operations to define complex terms

The second operation is to specialize a Con-
cept by restricting its Role value. Concepts appear-
ing for value restriction are called Valuwe-Resirictive
Concept (VRC)s. For example, when we want to
define a 'X.25_network’ as a network whose proto-
col is "X.25°, it is expressed as follows:

defConcepr("X.25_network '.nmrk,p.rqmm!, ‘X.25°).

The third one means that a Coneept C is par-
titioned into C,, * * -+ ,C,. This kind of definition
is very useful in checking the coherency of
knowledge being acquired. According to these
definitions, there cannot be a common subsumee
of disjoint Coneepis. In assertional aspect, no indi-
vidual can be an instance of disjoint Concepts
simultaneously. For example, a gender is parti-
tioned into male, female, and neutral:

defConcept([male, female, neutral [ gender).

The fourth operation is a combination of pre-
vious operations to define a more complex Con-
cept at once. The second argument is a list of
superConcepts and the third argument is a list of
Role restrictions.

Finally, the last operation defines a chained
Role which is a relational composition of Roles.
For example, the grandchild Role can be defined
as the chain of two child Roles. How a chained
Role affects the assertional reasoning will be shown
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in the next section.

The most basic relation between terms is a
subsumption relation (Brachman and Levesque
1984) since most of reasoning in the TBox is based
on classification. To classify a term means to place
it on its proper location in the TBox network, so
that it is below all more general terms than it and it
is above all terms which specialize it (Brachman
and Schmolze 1985). The set of direct subsumers
of a term is called the most specific generalization
(MSG) and the set of direct subsumees is called
the most general specialization (MGS).

To classily a term, we must determine its
MSG and MGS by examining subsumption rela-
tions between other lerms when it is added newly
to the TBox. Subsumption relation is defined as
follows: '

Definition 1: Subsumption
Concept C, subsumes C, if and only if
every extension of C, is an extension of
C) Les:

F vx (Cylx) — Cy(x))

As Brachman and Levesque pointed out
{Brachman and Levesque 1984), there cannot be
an efficient algorithm for subsumption even for a
very restricted frame-based description langnage.
As a result, we must select term-forming opera-
tions carefully and precisely to hold the efficiency
as KRYPTON did or sacrifice the completeness of
the subsumption algorithm as NIKL did. Sphinx
follows the second way for more expressiveness
power which turns out to be more useful in prac-
tice.

Besides term-forming operations, there are a
set of operations in'the TBox for queries inguiring
the structural and analytic nature of the TBox net-
work., Mebel suggested a set of useful and funda-
mental queries for a terminological reasoner in
(Nebel 1987). They are queries for subsumption,
classi fication,  dis jointness, incoherence, and
property possesion. Most of them are defined in
Sphinx as various TBox queries. Fig. 3 shows fun-
damental TBox queries designed for this purpose.

An important chracteristic of this kind of
TBox queries is that they may be used as construe-
tive queries as well as simple yes/no queries, since
the TBox language itself is a logic programming
langnage. That is, if a guery contains variables,
correct answers for these variables are substituted,
provided it is proved successfully.
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(1) subsume(T,,T,)

(2) findConcept(X,[C,, -+ ,C,].
[R,:RC,, * * * ,R,:RC,])

(3) find_MSG(T,MSG)

(@) find_MGS(T,MGS)

(5) disjoint(T,, T,)

FIGURE 3. Queries to inspect KB in the TBox

The first operation is to see if a subsumption
relation between two terms, T, and T,, holds. For
example, consider  mailing list_service  and
mail_transfer defined as follows:

defConcept{mailing_Hsi_service, nevwork_service,
frangfer_object,mailing_list).

defConceptmail_transfer, nenvork_service,
transfer_obfect, mail).

From these defimitions, we can conclude that
sitbsume(mail_rransfer.mailing_list_service) holds if
mail subsumes mailing_list.

The second operation, findConcept, is the
most complex and general query. It inguires if X is
the conjunction of a set of the given Concepts as
the second argument and has a set of pairs of
Roles and VRCs., It is very useful operation in
classification-based reasoning since it finds out
MSG salisfying those constraints. In addition, it
reflects another fundamental terminological reason-
ing called the property inheritance as some VRCs
may be inherited from superConcepts.

The third and fourth operations are primitive
operations for classification-based reasoning. If a
new term is introduced to the TBox, a facility
called the elassifier invokes these two operations to
find out the proper location of the given term in
the TBox network.

The dis joint operation finds out if two given
terms are mutually exclusive. The disjointness
between terms are established when a set of terms
partitions a term or is defined by refering to dis-
joint terms. Checking out the disjointness between
terms helps to maintain the consistency of the
TBox network.

3 ASSERTIONAL REASONING IN SPHINX

The assertional component of hybrid systems
usually performs recording and reasoning about
extensions of the terminological knowledge
represented in the TBox. Although first-order logic

is the most appropriate tool for assertional reason-
ing and has powerful expressiveness, the full first-
order theorem prover is prone to time-consuming
search and its expressiveness is too powerful com-
pared to that of the terminological reasoner.,

What one really wants from the assertional
component of hybrid systems may be summarized
as follows. They are also the design aims of the
assertional component of Sphinx.

1. It can reason over forrnulas consisting of
the extensions of the TBox terms.,

2. It can prove quantified formulas with vari-
ables.

3. It can prove and answer a given query with
correct answer substitution,

4, It should be possible to add a fact in any
order and retract it at any time with con-

sistency.

These aims are realized partially by restricting
the ABox such that only Horn clauses are
represented explicitly and no explicit negation is
allowed. Since there iz no function in the ABox
and the MAF rule is adopted, we can prove a
query and revise KB in a simple and efficient way.

3.1 Knowledge Represented In The ABox

Three kinds of knowledge are stored and
manipulated in the ABox, while these - are
represented in two different forms; facts and rules.
The. first one is a set of propositions asserted by
the user. We call them ABox facts or premises
and they denole instances of terms in the TBox.
Following are some examples of ABox facts.

unii_wurkstaﬁon({:asun).
system_V_machine(cygnus).
mailing list(neuron).
os(casun,’Sun UNIX 4.27).
moderator(ailist,skhan).

Like other hybrid systems, predicate symbols
appearing in the ABox are related to terms in the
TBox. That is, 1-place predicate symbols and 2-
place predicate symbols correspond to Concepts
and Roles, respectively.

The hybrid reasoning of Sphinx can be accom-
plished in principle by unilying predicate symbols
with terms. In this way, terminological knowledge



in the TBox is available in assertional reasoning
and thus the meanings of sentences in the asser-
tional component can be affected by it. Moreover,
some logical consequences of KB which are not
inferred by a resolution-based reasoner alome with
ABox facts can be deduced by comsidering TBox
information.

Although an assertion for a2 Concept is accom-
plished completely only if it is consistent with a
KB, assertions corresponding to extensions of
Roles may require additional deductions due to
their definitions or usages. First, as a Role instance
must satisfy the domain and range contraints, it
must be confirmed that individuals appearing as
arguments are instances of Concepts corresponding
to the domain and range when it is introduced.

Second, when a Role is used in specializing a
Concept or it is referred in defining another
chained Role, its instances may induce inferences
of new instances of VRC or derivations of chained
instances, '

For example, assume that the current KB con-
tains the following facts:

unix_machine(aroma).
os(aroma,’Sun UINIX 4.27),

then it must be provable that "Sun UNIX 4.2' is an
instance of unix_os if unix_machine is defined as a
computer whose of is a unix_os, However, there
is no way to prove it in the ABox alone as this
inference is  possible from the definition of
unix_machine.

For this, KRYPTON extends the unification
procedure of its theorem prover to reflect termino-
logical knowledge (Brachman et al. 1985). Other
systems like KL-TWO (Vilain 1985) and BACK
(Mebel and von Luck 1987), make additional infer-
ences whenever a new assertion for a Role is
acquired and record the justifications for the infer-
ence if necessary.

In Sphinx, an additional axiom is added to the
ABox to infer those facts when a term is defined.
The additional axiom is the second type of
knowledge stored in the ABox. When a Role is
used to define a specialized Concept and its value
is restricted to some Concept or when a Role is
defined as a chain of Roles, a deduction rule called
the ABox rule is inserted to the ABox.

For example, we can infer unix_os{aroma)
from the above facts, provided the following rule is
added to the ABox:
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univ_os(X) :— os(Y,X) & unix_machine(Y).

Although the ABox rule is written in Prolog-
style, it is not proved by Prolog but by the ABox
reasomer, i.e., a query evaluation procedure. It is
because subgoals of a rule may be proved by both
the ABox and TBox as other top-level queries.

The last type of knowledge in the ABox is also
the deduction rule which is asserted by the user,
not the system. It is useful to represent a general
relation among several objects or a relation which
15 more natural to be represented by a rule rather
than a Concept or Role. For ecxample, a
file_trans ferable relation between two hosts may
be defined simply as follows:

file_trans ferable (X .Y) :—
uncp_based (X,Y) or fip_based (X ,¥).

This rule denotes that a host can transfer its files
to another host when they use the uucp protocol or
ftp protocol. Of course, the predicate symbal
file_trans ferable should not appear as a term in
the TBox. )

The equality between individuals in the ABox
is handled by a similar method in the RUP system.
Sphinx constrocts a congruence class for each
equality relation and any predicate satisfied by an_
element in one congruence class must be satisfied
by other members in that congruence class. When
an equality relation Is asserted, two congruence
classes for each individual referred by it are

merged into one.

1.2 Knowledge-Level Operations in the ABox

Enowledge-level (EL) operations defined in
the ABox are ask and rell operations. The ask(Q)
operation asks if a query Q can be proved from
current KB involving the TBox network and the
ABox KB. It also returns the correct answer sub-
stitution if the query is provable. On the other
hand, the rell(K) operation is used to assert a new
knowledge to KB when a positive fact is asserted
or to retract existing knowledge when a negative
one is asserted.

Below, the formal definitions of ask and tell
operations are piven as Definition 2. In this
definition, the following notations are used.
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Notation 1:

KB : A current KB in Sphinx

KB™ : KB after applying ask or tell operation
KB | o: ais deducible from KB

KB ¢ o : ais not deducible from KB!

Definition 2: ask and rell
1. ask(w):
If thers exists a substitution #, such that
KB |- wf, where w iz a well-formed for-
mula, then returns {yes,f}, '
Otherwise, returns {no}
2. tell{a):
(i) When o is a positive literal, returns
KBY =KB U{a}if KB | o
(i) When ¢ is a negative literal, say
not (), and
if KB |- returns KB such that
KB* CKB and KB X &
if KB | &, returns KB® such that
KB™ = KB
(iii) When e is a role, refurns
KB =KB U {o} if it is not con-
tained in the current ABox.

In this definition, ask operation returns a pair
of a truth valee and an answer substitution. This
means that the ABox query evaluation procedure
does not only prove a query but also returns an
answer if it is satisfied. Instantiation for quantified
queries is performed by either the ABox through
the answer substituon or the TBox reasoner
through classification and inheritance.

The formula used in the ask operation is writ-
ten in the ABox query language. It is a pure first-
order language involving equality. It also permits
explicit quantifiers and logical connectives for
representational expressiveness. In this respect, it
is a kind of extended logic programming language
similar to that presented in (Lloyd and Topor
1984). Followings is the informal syntax uwsed to
express the ABox query. More formal definitions
can be seen in (Han et al. 1987).

P & O - Conjunction of P and

P or @ - Disjunction of P and O

not(P) - Negation of P

forall(X P} - Universal quantification
some (X ,P) - Existential quantification

¢ <=2 d - constant ¢ is equal to constant 4

Following are some examples of the ask opera-
tions.

7. ask(csnet_gateway(sorak) & protocol(sorak,P)).

P = mmdfl
f* Is sorak a CSNET pateway and what is its
protocol? *f

?- ask(some(X,(unix_machine(X) &
not{workstation(3))))).

X =3zel
f* Is there a UNIX machine which is not a
workstation? *f

" The second KL operation, rell(K), is used to
assert a new knowledge expressed as K to a KB.
Because of the MAF rule, the addition of a new
fact can prevent a theorem that previously held
from proving. In particular, when a positive literal
L is asserted, ~L can be no longer proved. Hence
occurrences of inconsistencies raised by the co-
existence of a positive fact and its negation simul-
taneously in a KB will not happen in Sphinx.

On the contrary, if K is a negative literal, say
~L , it plays a role of retracting a set of knowledge
stored in the ABox since ~L holds if L must not
be inferred. It invokes the truth maintenance
module in Sphinx for consistency maintenance.
More details on effects of asserting or retracting
knowledge will be considered and explained in Sec-
tion 4. Following are some examples of the tell
operalions.

?- tell(unix_workstation(cosmos)).
?- tell{not({ms_dos_machine{cygnus))).
- tell(csd <=> cskaist).

The ask and fell operations can be connecled
through a couple of connectives: "," for conjunc-
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tion and ;" for disjunction.

3.3 Query Evaluation Procedure (QEP)

_In Sphinx, a query is not proved by the SLD-
resolution alone but by a kind of the theory resolu-
tion (Stickel 1985) with the TBox theory, i.e., the
terminological definitions. In addition, in order to
prove a negated or universally guantified formula,
elements in the current domain are examined as
need. For this, the following assumption is made:



Assumption:

There is no function in Sphinx. This means
that the Herbrand Universe of the ABox is a
finite zet of the constants appearing currently
in the ABox. It is constructed incrementally as
a new conslant is introduced to the ABox.

With this assumption, it is possible to prove a
universally quantified formula with respect to the
domain, i.e., the formula is proved if it is satisfied
for all members in the current domain.

For the negative information, the so-called
MNegation As Failure rule is used in Sphinx as other
logic programming languages. With the above
assumption, we can remove the safe restriction of
the NAF rule {Lloyd 1984). As the domain is
finite, we can discover which individual satisfies a
negative goal when the goal contains variables.

The basic unit in the query evaluation is a
literal except the universal quantified formula. Let
w be a given query. This query is transformed into
conjunctions or disjunctions of the basic units by a
similar method to the meta-interpreter technique
(Sterling and Shapiro 1986). With this transforma-
tion, subgoals to be proved are classified into three
categories: positive literal, nepative literal, and
universally quantified formula.

After transforming the query, the guery
evalnation procedure (QFEF) is executed. QEP
selects positive subgoals preferentially so that the
arpuments of the negative subgoal can be instan-
tialed as many as possible. By this strategy. we can
reduce the overhead of proving the negative literal
on the basis of the model. In QEP, we use the fol-
lowing notations:

Motation 2:
+ KB in the ABox
ABox

KBW“ : KB in the TBox
KB : Whole KB in Sphinx
I(C) : A Concept corresponding to a
predicate symbol C
C, < C, : C, is subsumed by C,
D : A set of individuals appeared in the
ABox (Domain)
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Frocedure QEP

Let G; be the current subgoal selected.

1. If there is an ABox fact in KB with which
G, is unified using a substitution 13 then return
{yes,f}.

2. If there i8 an ABox ruole such  as
Head :— Body, where Head is unified with G,
using a mgu &, then prove Body® by QEP,

3. If G; is a universally quantified formula, say
forall(X ,F,), prove F{i/X} for each member i
e D, If it is successful for all members, return
{yes, I}, where # is the answer substitution for
other free variables in Fi'

4. If G; is a ground posilive literal, then do the
followings:

4.1 If G; has a form of P(a), i.e., a ground 1-
place predicate:

4.1.1 Determine if there is a fact P(b} in
the KB where @ and b are
members of the same congruence
class. Then, return {yes,{}}.

4.1.2 If there exists a Concept C such that
C(iy holds for some § € I and |
<=> g and [{C) < T(P). Return
{yes,{}} if successful,

4.1.3 Otherwise, obtain the definition -{Lf
I'(P) and transform it into a query
involving a. Prove this query by
QEP and return {yes {}} if suc-
ceeded. :

42 If G; has the form of @ ==> b, return
{yes,{}} f @ and & are in the same
congruence class. Otherwise, return {no’}.

43 If G; has the form of R(a.,b), ie., an
instantiated 2-place predicate, then prove if
there exists a R'(a.b) such that T{R') is
subsumed by I'(R). Or, test if R(a’,b') can
be proved for some @', &' € D such that a
<=> g and B' <=> b. Return {yes,{}} if

- successful, otherwise {no}.
5. If G, is a positive literal with variables, prove it
by the following steps:

3.1 If G, has a form of P(X), prove if there
exists { €1 and C such that C(i) is prov-
able and I{C) =< I{P). If successful,
{yes,{i/X}} is returned.

5.2 If G; has a form of R(X.Y), prove if
R{a,b) is deducible from KB for some a,
b € D. If successful, {yes,{a/X, b/¥Y}} is
returned.
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6. If G, is a ground negative literal, say not(P(a)),
prove if KB |- P(a). If so, {no} is returned,
otherwise return {yes,{}}.

7. If G; is a negative literal and contains variables,
say not(P(X)) or not(P(X,Y)), find i,fj € D
such that P{i/X,j/Y} fails. If there are such ele-
ments, return {yes, {i/X}} or {yes,{i/X,j/¥}}
for cach case,

QEP is very simple because that functions and
recursive definitions are not allowed in the KB, We
can avoid the recursive definition in the KB as we
prohibit the cyclic definition of terms in the TBox
and rules in the ABox.

4 TRUTH MAINTENANCE

In order for a knowledge representation sys-
tem not to be just a mechanised reasoner, it
should be able to maintain the represented
knowledge, ie., it ought to be possible to add and
retract knowledge at any time and in any order.
However, maintenance of the represented
knowledge essentially requires the inclusion of a
nonmonotonic  .reasoning capability into a
knowledge representation system,

One approach to handle this problem is to
construct the problem solver with a truth mainte-
nance system like TMS {Doyle 1978), RUP (McAl-
lester 1982}, and ATMS (de Eleer 1986). However,
TMS-like truth maintenance systems can be hardly
used in a system requring a large KB since a great
amount of space would be needed to maintain
almost all deductive consequences.

We may resolve this problem by building a
theorem prover being able to re-form its theory to
reflect effects of addition or retraction of
knowledge. Furthermore, it is quite unreasonable
to record deducible facts even though they are
inferrable from the current set of user-asserted
facts as logic is used as the foundation of the
assertional component in the hybrid systems,

Truth maintenance in Sphinx is performed by
the re-formation of the ABox. To be effective,
however, only literals - positive and negative facts -
are allowed to be added to or retracted from the
ABox. Among these [lacts, Sphinx distinguishes
user-asserted facts called premises from deduced
facts, i.e., logical consequences of premises.

In general, when a fact i3 asserted, it may
cause an inconsistency with existing KB. In
Sphinx, however, an addition of a positive fact is
regarded as a denial of its complementary negative

fact. Since a negative fact holds if ils complemen-
tary fact is not proved, it is no longer proved if its
complementary fact is added to the ABox. There-
fore, there is no possibility that a fact and its nega-
tion can exist simultaneously. In addition, addi-
tions of negative literals are equivalent to retrac-
tions of their positive complements because of the
NAF rule. Hence we can consider the truth
maintenance procedure of Sphinx only in two
phaszes. The first phase is the addition of a new
positive fact and the second one is the retraction
of an existing fact.

We can categorized the situation when a fact
F is added to the ABox into 4 cases according to
QEP:

(1) It exists explicitly in the ABox (a premise).
{2} It is proved by the definition of the predicate
of F

(3) Ttis proved by a subsumption relation.
(4) Tt is proved by a deduction rule in the ABox.

Of course, when F is asserted, it is neglected
in the first case because it already exists. However,
facts in the second class are not recorded as prem-
ises, even though they are asserted by the user.
This kind of facts is called the de fined facts. For
example, unix_workstation(casun) can be inferred
from two  premises as  follows  since
unix_workstation is defined as a conjunction of
workstation and unix_machine .,

workstation{casumn).
unix_machine(casun),

In this case, as unix_workstation (casun) and a con-
junction of the two premises are equivalent, it is
unnecessary to record it explicitly even if it is
asserted by the user. Furthermore, an incon-
sistency may occur when one of them is retracted,
if all the premises are recorded.

The third and fourth type of facts are called
the deducible facts. The third type of facts means
implicit facts inferred by subsumplion relations
while the fourth type is inferred from premises and
deduction rules. The deducible fact is not
recorded explicitly in the ABox unless it is asserted
by the user, so that it can be denied automatically
if one of its supporting premises is denied.

Even though a fact is deducible from a KB, it
is recorded explicilly if the user asserts it. In this
case, a deducible fact becomes a premise. Once a
fact i3 asserted by the user, it is negated by only



the user. Therefore, unless a fact is a defined fact,
it is not retracted even if premises which justified
its proof previously are negated.

' With these notions, incremental additions of
the ABox facls can be performed very easily. Pro-
cedure TELL POSITIVE_LITERAIL shows the
whole procedure.

Procedure TELL_POSITIVE_LITERAL
If the argument o of a fell{n) operation is a
positive literal, the following procedure is exe-

cuted. .
1. If o already exsts in the ABox as a prem-
ise, return.

2, If o can be proved by the definition of a
term corresponding to the predicate symbol
of o, return.

3. Otherwise, add o to the ABox and retract
premises which become defined facts by in-
troducing .

Although TELL_POSITIVE_LITERAL pur-
sues the minimization of the space required to
store the assertional knowledge, some redundan-
cies according to an order of assertions may arise.
For example, premises may become deflined facts
as a certain fact is asserted and, as a result, those
premises must be removed from the ABox as
shown in Step 3. Such premises are found out by
tracing dependency links between a term and other
terms whose definitions are based on the former in
the TBox.

Owing to the NAF rule, when an argument of
a tell operation is a negative literal, it is interpreted
as a retraction of its complemedtary positive literal.
In order for a knowledge representation system to
preserve consistency, the logical consequences of a
fact must be also retracted when a fact is retracted.
In Sphinx, the retraction of knowledge can be
examined in two respects.

If a fact to be retracted is a premise, it is
necessary to retract the fact itself without con-
siderations on logical consequences as they are not
recorded umnless the user asserted them. However,
this is not enough. There may be premises which
hold for subterms of the term for which the given
premise satisfies. If such occasion arises, those
premises must be also retracted when a premise is
retracted. This procedure is applied to all sub-
terms in turn.

Similarly, a retraction of a nonexisting deduci-
ble fact or a defined fact causes retractions of
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- premises which justify the fact to he retracted.

Therefore, it is important to find out which prem-
ises are related to a given premise. These premises
are called the jusrification of a fact and there are a
set of justifications for a fact. The justification of a
fact is determined on the basis of the terminologi-
cal definition of the term for which a fact is instan-
tiated.

Consequently, the following procedure is
applied when a fact is retracted from the ABox.
More detail description can be found in (Han et al.
1987). The time required to determine the
justification of a given fact is proportional to the
time to prove it within a constant factor.

Procedore TELL_NEGATIVE_LITERAL
If an argument of the rell operation is a nega-
tive literal, say ~c, the following procedure is
performed.
1. If e is not proved, return.

2. If wis a premise, do the followings and re-
turm:

2.1. Retract o

2.2, Retract premises holding for terms
which are subterms of a term [or
which ¢ satisfies.

3. Il o does ‘not exist but holds, find the
justification of o

4. Deny each element of the justification by
asking the user which premise in that ele-
ment be denied.

When an intellipent system makes a decision,
it must be able to explain how the decision is
made. In Sphinx, as the justification for a deduc-
tion is determined not only by the ABox facts and
rules but also by the TBox structure, the explana-
tion is generated by considering all of them. The
explanation facility of Sphinx shows how a given
query can or cannot be proved by presenting infer-
ence steps one by one.

Hybrid systems can provide appropriate
representational formalisms and reasoning schemes
for multiple types of knowledge. In compensation
for sacrificing the expressiveness of the first-order
logic to some extent, more computational efficiency
can be obtained by augmenting special purpose
reasoners with the conventional theorem prover.
Hybrid KR systems can provide well-defined and
more precise semantics to the intelligent systems
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since semantics of KL operations and the interac-
tion among multiple reasoners are defined pre-
cisely. _

Sphinx is also a kind of the hybrid system
consisting of two major components. We proposed
an efficient combination of a logic programming
language with a frame-based description language
so as to perform the hybrid reasoning. We found
out that logic programming is very useful and
efficient in the representation and reasoning of
assertional knowledge in the hybrid systems partic-
ularly.

Sphinx is an evolving KR system. Various
enhancements are investigated in several aspects
including extensions of the TBox operations for
more expressive power, augmentations of more
specialized reasoners, and extensions of the ABox
language to be able to represent and express more
complex sentences.
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