PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 100T, 1938

1201

METHODS FOR PARTITION OF TARGET SYSTEMS
IN QUALITATIVE REASONING

Kiyokazu Sakane, Masaru Ohki, Jun Sawamotol, Yuichi Fujii

Research Center
Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F, 1-4-28, Mita
Minato-ku, Tokyo 108 Japan

ABSTRACT

This paper proposes two methods for partition of
térget systems in qualitative reasoning and
discusses their effect on the efficiency of execution.
One of the problems of qualitative reasoning is that
it cannot deal with large target systems, We propose
two methods of partition to solve this problem: (1}
partition of variables according to the independence
of each component, and (2) partition of a system by
the field of applicable rules. Then we formulate the
computational complexities of two reasoning
processes (propagation and prediction) for two types
of gqualitative simulators (qualitative modeling type
and gualitative process theory type). We estimate
the effect of the partition methods from the viewpoint
of computational complexity. Finally, we describe
the conditions under which the methods reduce
computational complexity.

1 INTRODUCTION

Recently, there have been many reports on
research related to qualitative reasoning [deKleer
84],[Forbus 84], and [Nishida 87]. However, we
found some problems in them. One of the biggest
problems is that gualitative reasoning canmot deal
with large target systems, becanse large CPU time
and a large memory are needed to simulate the
behavior of such systems. The reason is that almost
all currently available gqualitative simulators agquire
the system behavior as a whole., A few researches are
related to partition of a system by time-scale
[Kuipers 87, Tanaka 88]. They notices only the
difference of time-scale of behavior among variables

1} Current Address:
Computer Works, Mitsubishi Electric Corporation
326, Kamimachiya, Kamakura, Kanagawa 247 Japan

to structure a complex system hierarchically, When
we consider a large target system that consists of
many parts or subsystems, we divide it into some
subsystems using heuristies about the structure or
properties of the system. We consider the behaviors
of all subsystems and integrate them to infer the
behavior of a whole system. In this case, the method
of partition by time-seale is not sufficient. Partition
methods corresponding to suech heuristics are
NECEssary. '

Assume a ftarget system which consists of many
parts that have close interactions between internal
components and only weak interactions with
external components. We predict the behavior of
each subsystem independently, ignoring external
circumstances other than the input state. Because
we have heuristics in which each subsystem can be
treated as a functional like component that responds
to the input state. Assume another target system,
each of whose components is designed and operated
according to the rules of a different physical field (for
example, electronie circuit, thermodynamics,
electrostatics, and guantum mechanics) to satisfy a
different function. If we know this, we only need to
congider the behavior of each subsystem noticing
rules in the specified physical field to infer the
behavior of the whole system. Because there is little
interaction between the rules of the different
physical fields, _

According to the above heuristics, we propose two
methods for partition of target systems:

(1) A method that partitions the variables
according to the independence of each component.

(2) A method that partitions a system into
subsystems by restricting the field of applicable
rules,

These two methods reduce the number of
variables and/or rules to be considered

1202

simultaneously and modularize each subsystem
functionally. Therefore both methods have the
following advantages,

(1) Computational complexity is reduced,

(2) These methods give good support in compiling
simulated results of each modularized subsystem,

Here, we focus on the reduction of computational
complexity. The effect of the two partition methods
with this viewpoint changes aceording to the type of
target system and siraulator. It is very important to
clarify some conditions for their application,

Section 2 explaing the partition methods. Section
3 formulates the computational complexity of two
reasoning processes (propagation and prediction) for
two types of qualitative simulators (the gualitative
modeling (QM) type such as [Euipers 84], QSIM
[Kuipers 851, and ENVISION [deKleer 84], and
gualitative process theory {(Q@PT) type such as
GIZMO [Forbus 84], QPE [Forbus 88], and Qupras
[Ohki 88]). Section 4 estimates the effect of partition
methods with computational complexity. From this
diseussion, section 5 summarizes the conditions
under which the partition methods improve the
efficiency of qualitative reasoning. Section 6 shows
an example of application of the partition method.

2 METHODS FOR PARTITION OF A
TARGET SYSTEM

This section explains the two partition methods of
target systems.

(1) Method for partition of variables according to the
independence of each subsystem

If a target system consists of loosely connected
parts, the whole system can be partitioned into
subsystems corresponding to the parts. First, the
parts which satisfy following condition are searched.
That is, there are close internal interactions between
physical variables in the same part, and there is no
relationship between variables in different parts
except for a small number of inputs and outputs.
Such parts are collected as subsystems of the whole
systemn. AJl variables belonging to only & part are
assigned o the subsystem as internal variables,
Each external variable, that is, an output from one
part and/or an input to the other, is shared by both of
these subsystems as a common variable,

The behavicr of each subsystem is simulated as
response to the input states. Bach subsystem
communicates its simulated results to others
through common variables. Because the number of

variables are reduced that a simulater has to deal
with simultaneously, the problem we posed is solved.

(2) Method for partition of o system by the field of
applicable rules

If there are some restrictions on the fields of
dominant rules for each part, the whole system can
be partitioned into subsystems. Each subsystem
consists of the parts whose flelds of dominant rules
are identical. Because the kind of ohjects to apply a
field of rules is restricted, the kind of objects in each
subsystem should also be restricted. The simplified
model is constructed ignoring rules of other fields,
Because the rules of other fields have little effect on
the behavior of the subsystem, a simulator acquires
it with this simplified model to get a good
approximate solution. Because the number of rulss
to be considered simultaneously are reduced, the
problem we posed is solved.

However, these partitions are not usually
effective. Sections 3 and 4 estimate the actual effect
with the computational complexity when the above
two methods are applied to the currently available
gualitative simulators.

3 FORMULATING THE COMPUTATIONAL
COMPLEXITY OF CURRENT SIMULATORS

This section formulates the computational
complexity of the current simulators., Current
gualitative simulators are roughly classified in two
types: @Mtype and QPTiype. In hoth type of
simulators, qualitative behavior is simulated by two
processes, propagation and prediction, in turn, We
formulate approzimately the computational
complexity of the propagation and prediction process
of QM-type and QPT-type simulators according to the
algorithms of [Kuipers 84] and Qupras [Ohlki 88]
whose reasoning processes we know well. This
discussion holds generally with many qualitative
simulators,

3.1 Formulating the Computational Complexity
of QM-type Simulators

In @M-type simulators, variables and constraints
which express system dynamics are given and fized.
In computational complexity estimation, we use
notations as shown in Table 1.

(1) Propagation Process

G-type simulators use all constraints in a model
in the propagation process. The simulator

Table 1 Notation in the Reasoning Process by
QM-type Simulator
Whole Partitioned

muodel madel
MNumber of subsystems 1 W
For each subsystem:
Size of & database N MW +d
Mumber of constraints it} MW
Number of variables changing with time Ny MW

d: number of common variables in each subsystem

ep: eost of solving a constraint .

¢y: cost of predicting the next qualitative state of a variable

en: eost of checking the consistency of a eolleetion of candidutes
efall I'(zp)

Tiz): candidates of gualitative valiie of z; at the next time

¥: average namber of candidates in I'(z;)

propagates values of determined wvariables to
undetermined variables through constraints. The
gsimulator iterates this procedure until all variables
in a model are determined. In the worst case, all M
constraints are referred N times, until all N
variables are determined. At least they are referred
once. We introduce a new parameter H, which is the
degree of iteration to refer each constraint. The
computational complexity of the propagation process
is expressed as:

CPy = cg-M-NE
(2) Prediction Process

where 0<H<1 11

In prediction process, for each variable changing
with time, 3, candidates of qualitative value at next
qualitative time, ['z;), is generated. T'(z;) is acquired
by finding the most neighboring limit points of the
current value in the quantity space of z;, Then, every
collection of all changing variables in the next states
iz checked for consistency. The cost of predietion is
represented as:

CDy = ey-Ng + ep- ¥V [2]

3.2 Formulating the Computational Complexity
of QPT-type Simulators

(1) Knowledge Representation and Generation of
Instance Rules

Qupras is similar to GIZMO (see APPENDIX).
Basic representations of Qupras are objects and
rules, In Qupras, physical variables are expressed as
attributes of class objects. Constraints among objects
are expressed as relations of template rules. Each
class object and template rule has conditions that

1203

have to be satisfied for them to be active. Each
template rule has a list of objects that have to be
active before the rule is.applicable, Instances for
each class object and values for some attributes are
given in the initial states.

At the beginning of the reasoning process, the
simulator instantiates each template rule. The
simulator generates instance rules for every
collection of instance objects that satisfies the
specification of the objects in the template rule {see
Fig. 1). We use the simple model shown in Table 2.

Template rule R || Class object A

Objecta Instance ohjects
m € Class A OBJ aj, == OB am
o5 cumes
- Class object B
a T s
Equations, Ineqations ol
OBJ by, =, OBJ b
A4
Relations
trainks
L instantiate OBJ x & OBJy
T e — - .
I Instance rule Kq I_ I Instance rule Kpp
Objects | Objects |
|El]a1 [DBJh1| {0BJ am [OBJ by |
Comditions , Conditions
Relations Relations

M’ : Number of instance rules generated
M= pP1xpP1 =mxn

Fig. 1 Generation Process of Instance Rules from
Template Rules

The number of instance rules generated for all
template rule is: '

M= 5-K?2
{2) Propagation Process

(31

In the Qupras propagation process, the following
procedure, exactly like forward chaining of

1204

production rules, is iterated until no new active

process or object is found.
For eachinstance rule,

if all objects in the rule are active and all
applied conditions satisfy constraint propagation
laws,

then the simulator solves all constraints in
relations using constraint propagation laws.,

We classify all instance rules into two groups:

(G1) The antecedent of the rule in this group is not
satisfied until a propagation process ends; the
simulator only checks the antecedent at each
iteration of referring the rule,

{G2) The antecadent of the rule in this group is
satisfied; the simulator checks the antecedent and
propagates qualitative wvalues through the
constraints in the consequent.

Although a large number of instance rules are
generated for each general template rule, only a few
of them actually become active. Using the notation
shown in Table 2, we formulate the total
computational complexity in the propagation process
as follows:

CPz = c3S K2R + e Fp [4]

{8) Prediction Process

Because the guantity space is not declared
explicitly in Qupras, the limit points of each variable
are expressed in the applied conditions of rules and
objects.

For each wariable changing with ftime, z;, the
simulator finds the neighboring points of the current
value from applied conditions of rules that contain
objlzg). Iz is selected from the neighboring points
using state transition laws,

When we use the simple medel shown in Table 2,
the number of the instance rules which contain obj(z)
is X ¥I. Then the I'(%) acquired for all z; are checked
for consistency, By the same token, we obtain the
following computational eomplexity in the prediction
process as well:

CDg = Nges K1+ cp ¥z 6]

4 EFFECT OF PARTITION METHODS ON
THE COMPUTATIONAL EFFICIENCY OF
QUALITATIVE SIMULATORS

This section estimates the effects on the
computational efficiency of qualitative simulators by
the partition methods. Seection 4.3 investigates the
meanings of some formulae,

Table 2 Notation in the Reasoning Process by QPT-type Simulator

Partition of Partition by
Whole model instance ohjects applicable rules
Number of subaystems 1 Lid W
For each subsystem:)
Number of templats rules S=Idir 8 S" = (LW + el
Number of class ohjects J J JW e
Number of applicable template rules for each object 1 I VD
Mumber of instances in each chject class K KW+t K
Number of instance rules in the propagation process
In group Gy Ep~5K2 EpW~S-(K/W+f)2 Ep'/W~3"K2
In group Gz Fp Fp'/W Fp"/W
Number of iterations of referring rules R ;4 il
Number of variables changing with time Ng MgW Ny W

r: number of oljects referrved in each template rale; r=2
o number of commen class objects belonging to some subsysteams

£ number of common instance ohjects belonging to some subsystems

I): rumber of different felds of physical rules

¢y: cosk of checking the activities of ohjects in a rule and verifying whether all conditions in a rule are satiafied

¢q; cost of solving constraints in relations of & rule
objfz}; instance object that has z; &s an attribute

ey eost of searching the nelghboring points of eurrent value of z; in conditions of & rule plas

acguiring Diz) by fltering the neighboring peints

4.1 Effect of Partition Methods for QM-iype
Simulators

Because connections between variables and
constraints are given and fixed statically in a domain
model of QM-type simulators, the partition of
variables partitions constraints to be applied to the
variables, vice versa. Therefore, 2 whole model is
partitioned into same set of subsystems by the two
partition methods,

(1) Propagation Process

Consider an equally partitioned model as shown
in Table 1 and assume inequality [6]. We obtain the
computational complexity of the propagation process
using the partition method from the eguation [1] as
follows: .

d =4 NW [6]
CPy' = co-M-NYWH [7]
Assumption [6] means that each subsystem has
far fewer inputs and outputs than its internal
wariables. As H becomes greater, the effeet of the
partition method for the reduction of computational
complexity becomes more effective.

(2) Prediction Process

Similarly, we estimate the computational
complexity of the prediction process as follows:
© CDy' = e (Ng/W)-W + g [YN2W]W [8]
Because the right-side of formula [8] is equal to
that of [2], the computational complexity of the

prediction process cannot be reduced by partition
methods alone.

4.2 Effect of Partition Methods for QPT-type
Simulators

A domain model for QPT-type simulators is
partitioned into different sets of subsystems by the
two partition methods. We define two kinds of
equally partitioned models as shown in Table 2, The
Instances of each class ohject are distributed among
subsystems evenly by the method of partition of
variables. It does not restrict the field of applicable
rules in each subsystem. The partition by rules
restricts the field of applicable rules in each
subsystem. This restriction also restricts the class
objects in each subsystem and reduces the number of
template rules applicable to a class object. However
instance objects are not partitioned,

1205

4.2.1 Partition of Instance Objects

(1) Propagation Process

 Consider the first equally partitioned model in
Table 2, and assume two inequalities, [9] and [10].
We obtain formula [11]. '

f< E/W (91
R<R [10]
CPg' = cg-B3K*R/W + cqFy [11]

The meaning of assumption [9] is equal to that of
[6], Assumption [10] means that the iteration
number are nof increased by application of the
partition method.

The first term in the right-side of [11] is the sum
of the cost of checking activities of all chjects and the
cost of verifying the truth of applied eonditions
throughout a propagation process. This term is
reduced 1/W times due to the reduction of the number
of instance rules generated®. The second term shows
the cost of solving constraints in all active rules. It
does not decrease if the number of total active rules,
Fp', is not reduced. -

{2) Prediction Process

‘We alzo estimate the cost of the predietion process

under assumption [9] as follows:
CDg' = Ng-cg-E-I'W + co ¥z [12]

The first term in the right-side of [12] is the cost of
eollecting I'(zi) from the applied conditions of the
rules which contain obj(zy). This term is reduced 1/'W
times due to the reduction of the number of instance
rules containing obj(z;). However we have the second
term not reduced by this partition method, if the
number of changing variables Ng does not decrease.,

2) The first term in the right side of [11] is proportional to
the number of instance rules gemerated. The number of
instance rules generated for each subsystem iz approcimately
S(I/W)* under the assumption [8]. The total aumber of
instance rules generated is WS- (E/W)® (=5-K%W). That is,
it is redeced 1/W times by applying the partition methad.
Therefore, the term is reduced LW times by the partition
method.

1206

4.2.2 Restriction of Applicable Template Rules
for Each Class Object

(1) Propagation Process

Consider the second equally partitioned model in
Table 2, and assume inequalities, [13] and [14], just
like [9] and [10]. We derive the following relations,

e<JW [13]
R"=R [14]
CPg" = cgS-K*R"D + cqFy" [15]

In this partition, the first term is reduced /D
times in the same way as the first equally partitioned
model, but again, the second term does not decrease.

(2) Prediction Process

We also estimate the cost of the prediction process
as follows:

CDg" = Nycsg-E-I'D + cg-¥Mz [18]

Again, there is a term not reduced by part:tuun
method alone.

4.3 Investigation of the Meanings of Some
Formulae

4.3.1 Assumptions for Obtaining the
Computational Complexity to Be Reduced

Assumption [10] that requires the iteration
number not to be increased, derives the sufficient
condition that a domain model should nnt have
feedback loops.

Consider an example of 8 model shown in Fig. 2a.
A whole model is partitioned into two subsystems by
our partition method. A feedback loop between the
two subsystems is generated by the partition (see
Fig. 2b). There are some dependency among
variables in the above two models. Assume that the
simulator refers constraints to propagate wariable
walues in the sequential manner,

In the simulation as a whele (Fig. 2a), the
simulator determines the values of x and y in order
in the first step, and use the y value to determine the
rest of the variable values in the next step. However,
the partition (Fig. 2b) causes a redundant
computation. Because subsystem A determines the x
value and wastes time in frying to determine
variable values other than x in subsystem A without
input value y in the first step, then subsystem B
obtains the ¥ value, finally subsystem A determines

A whole system Subsystem A

_ix determined :|,.|. x determined |

® lassasrmisrsssgeraccrssessasan n AmssaamEsasasEeemaas pERsET e Ean]

. ! [[———————
.+ 8] Sifge ===t

i Z ey ! |y Other variables : la--
: ?mdﬂtﬂmﬂﬂd : N R RERR AR LR :
3 ata!.owmt il i
E T TeT rrrrrsemssann; .k Eﬂwst’B‘mB :
: r+ e T g |
] L T 18
X * i yisdetermined [~
Y Other variables G| ly: ataloweost
----- -+ :dependency among variables

- - :orderof the propagation process

Fig. 2b Propagation fora
System Partitioned into
Subsystems with a
Feedback Loop

Fig. 2a Propagation

for a Whole System

without Feedback
Loop

the rest of the variables from the v walue in the
second step of propagation.

This iz caused by the feedback loop in the
structure. The same conditions are derived from
assumption [13].

4.3.2 Terms Unreduced by the Partition Methods
in the Propagation Process

The existence of terms not reduced by our
methods in the propagation process requires the
expression of rules to be more general.

Let us assume an appropriate size domain model
(ses Fig. 3) to estimate the effect of the ratio of the

Fig.3 An Example of a Domain Model to be

Partitioned
I=10,d=10r=2 R'=1, ag=a4

S=IJdir=50,K=10—560, W=1->5
a=TFp5KE%:01—05

a: ratio of the number of active rules to
the total instance rules

gecond term in the formula [11]. Thatis, the costs, cg
and cg are equal. Both the cost of verifying a
constraint and the cost of solving a constraint are

much larger the cost of checking activities of objects
in a rule. Because they need a massive search in the
list of propagation laws or heavy computation like
the SUP-INF method [Robert 77].

We introduce a new parameter, u, which is the
ratio of the number of active instance rules to the
total instance rules. We plot the computational
complexities of the propagation process in Fig. 4,

CPg' ([%eg-105)

Computational complexity in propagation process

0 10 0 40
Number of instance ohjects of object class K

20

Fig.4 Evaluation of the Computational
Complexity of the Propagation Process of
the Model Shown in Fig. 3

moving a and W as parameters. From this result, we
conelude: (1) The reduction of computational
complexity becomes greater, as a hecomes smaller,
In this appropriate model, if a is less than 10 %, then
the computational complexity, CP3', is nearly
inversely proportional to the number of partiticns,
W. (2) The magnitude of computational complexity
reduction increases sharply with the increase of K. If
the number of active instance rules for an instance
object is not changed by the increase of instance
ohjects, then an increase in K causes o to decrease.
Therefore, the reduction of CPe' is more accelerated,

As the range of objects to which a template rule is
applicable hecomes wider, the ratio of instance rules
which is active, q, becomes smaller, That is, the
partition method has a strong effect. The same

1207

condition is needed for partition by rules to be
efficient,

4.3.3 Terms Unreduced by the Partition Methods
in the Prediction Process

MNote that the term, cg- Y™z, in equations [81,[12],
and [18] is not reduced by partition methods., Even if
ce iz much smaller than costs ¢y and ¢g, this term
increases sharply according to the increase of Ng.
Unless Nz is reduced, system partition alone cannot
reduce compuiational complexity in the prediction
process. Because the propagation process is
performed for each candidate of state which is not
filtered out in the consistency check, the total cost of
simulation may diverge exponentially without Ng
decreasing.

5 CRITERIA TO APPLY OUR METHODS

This section summarizes the eriteria to apply the
methods proposed in section 2 with the propagation
process and prediction process.

5.1 Criteria to Apply the Method in the
Propagation Process

If all of the following three conditions are
satisfied, our methods of partition are applicable to
the system and reduce the computational complexity,

(1) Use of @QPT-type simulators

The reduction of computational complexity is not
g0 remarked in QM-type simulators. Because the
numbers of constraints and variables used for
gimulation are fixed, the reduction of computational
complexity is due to only the reduction of iteration
number to refer each constraint, NH. In addition, H
in equation [7] for @M-type simulators is usually
much less than 1.0,

The methods are useful for QPT-type simulators,
because the first terms in equations [11] and [15] ave
reduced to /W and 1/D times, respectively. The
reduction of computational complexity is caused
mainly by the reduction of the number of total
instance rules generated. Therefore, we mainly
investigats QPT-type simulators.

(2) Application to large systems without feedback
loops consisting of relatively independent subsystems

Assumptions, [9] and [10], are required to reduce

the computational complexity of the propagation
process to the degree expressed as [11]. Assumption

1208

[9]is the condition that each subsystem has far fewer
inputs and outputs than its internal variables, For
large target systems consisting of relatively
independent subsystems, this condition is satisfied
usually, Assumption [10] requires the target system
to have no feedback loop, as discussed in section
4,3.1, This condition is not very difficult to fulfill in
many artifacts, because dataflow in them is usually
planned to flow in one direction,

(3) Expression of rules in a general form

As discussed in section 4.3.2, the expression of
rules must be more general for the effect of our
methods with the reduction of computational
complexity in the propagation process to be more
powerful, '

5.2 Criteria te Apply the Method in the
Prediction Process '

As investigated in 4.3.3, although assumptions
[9] and [13] assumed to derive [12] and [16] are easily
satisfied, the existence of terms not reduced by our
partition methods is critical. Some knowledge about
the order of changing is needed to decrease Nz,

Fortunately, the partition methods have also
advantages with acquiring this kind of knowledge.
When the simulator simulates the system behavior
as a whole, only the knowledge with the order of
changing among variables is available. However, it
is very rare in practice that sufficient knowledge is
given to specify a variable to be changed first. When
the system is partitioned into subsystems by the
partition method, the knowledge with the order of
variable changes among subsystems is also
available’. This knowledge is likely to be known,
even if the orders of changing among variables are
not known, For example, (a) variables in subsystem
A are known to change faster than variables in
subsystem B, (b) subsystem A is known to be able to
follow up subsystem B, and so on.

If this knowledge is given, candidates of variables
to change are reduced and the computational

3) The partition method by time-scale [Kuipers BT,
[Tanaka 88] partitions the target system using the
krowledge with the order of changing among veriables, Our
partition method uses the order of variable change among
subsystems. These two kinds of knowledge are
approximately independent. Therefore the availability of
these two kinds of knowledge changes with the properties of
the target system.

complexity in the prediction process is very much
reduced,

6 AN EXAMPLE OF THE APPLICATION OF
THE PARTITION METHOD IN
QUALITATIVE REASONING

Here we show that the computational complexity
of prediction process can be reduced by the partition
method using an example system (Fig, 5). The

-l Sl

ip
Alternating Rectifier
-gurrent generator :
bsystem-A Bubsystem-BE
v : abscissa of conductor C v : terminal voltage
C': projection of C on axis y of eapacitor
u : veloeity of ¢ : capacitor charge
a ; aeceleration of ¢ ip: capacitor current
e : pufput terminal woltage ip: resistance current
1.Current generator 2. Reetifier

e = Mz+(y)Xb (a)e = v(Diode: on) {(b) e < v Diode: off

=u M:jc dg = g

u=a in=e=v ip= —ig

a = Mgy} ig = Mg+(e) ip = Mg+{e)
v = Mz+(g) a>0

d :qualitative derivative of avariable
Mg+ Mg—: [unctional relations of menctonic increase and
decTease

Fig.5 Example of a Target System where the
Partition Method Is Effective

system consists of two subsystems, an alternating
current generator (subsystem A) and a rectifier
(zubsystem B). As above mentioned, the partition
method is equally effective to the QM-type simulatar
and QPT-type simulator on the computational
complexity of the prediction process. We construct a
model of this system for a QM-type simulator to
make the representation simple.

We have following heuristics: subsystem A is not
affected by subsystem B; subsystem B follows up the

changes of states in subsystem A, and variables in
subsystem B depend on the input e determined by
subsystem A. Using this knowledge, the variables
and constraints are partitioned into two subsystems
by our partition method. The behavior of the whole
system is simulated as follows. First, the behavior of
subsystem A is simulated over an appropriate time
interval independently (see Fig. 6a). Then the
behavior of input e simulated in step 1 is given to
subsystem B. The response behavior of subsystem B
is simulated for each state of input e independently
(sea Fig. 6b). '

(a) Behavior of thie alternating current generator

—
S Py U (REFEAT)
Gnut‘put.e
{b) Behavior of the rectifier (rosponse to input e)
-]] o~ -~
mP‘I:E'E, \'\ "-",q ,-’! - M
~h . 1
el \‘-\\ 1 i rfl.."']. |'F._
12 3 4 ™5 & 78 910
N R @ N @, @ 11
'\vf
R o
H ., - HEPEAT) ™,
3 n
’{.-’ \‘\\ ;’_, t:\
0 Lt L 1 i it L i
A
12% 4 i 6 ___.I:8 910
+ BN 11
Discontinuous jump

Fig. 6 Simulated Behavior of an Alternating
Current Generator and a Rectifier System

In this example, candidates of the next state
generated in the prediction process are reduced,
because the behavior of each subsystem is separately
simulated ignoring the order of changes among
variables in the different subsystems. For example,
in the simulation as a whole, qualitative state at
qualitative time interval, t=(t2,t3), has 8 variables
changing with time. 6 out of the 8 variables have
multiple candidates of next qualitative values, The

1209

state has 96 candidates of the combinations of next
gualitative state, In the simulation of subsystem B
using the partition method, the same state has only 4
variables changing with time and candidates of next
states are reduced to 8.

The total cost of propagation process throughout
the simulation is reduced due to the decrease of
candidates of next states generated. However the
computational complexity of each propagation
process in QM-type simulator cannot be reduced.

7 CONCLUSION

This paper proposed two methods for the partition
of target systems of qualitative reasoning: (1)
partition of variables according to the independence
of each subsystem, and (2) partition of a system by
the field of applicable rules. They are based on
heuristics about the structure and properties of the
system, These methods are efficient for enhancing
the computational efficiency of qualitative reasoning
under the following conditions,

(1) Conditions for application to the propagation
Process

(a) Use of QPT-type simulators

{b) Application to large systems without feedback
loops consisting of relatively independent
subsystems

(e} Expression of rules in a general form

(2) Conditions for application to the prediction process

(a) Use of the order of variable changes among
subsystems

Consequently, it iz clear that our methods of
partition are good supports in simulating the
qualitative behavior of large target systems,

There are still remaining problems. One of them
is that our methods cannot deal with systems with
feedback loops. To eliminate this problem, the
simulator must control the order of propagation
among subsystems utilizing some methods, for
example; (1) least commitment method, and (2)
method where the propagation process of each
subsystem should be triggered by the determination
of input variables.

In future study, our methods must be useful for
compiling the simulated results of each subsystem.
‘Each subsystem is functionally modularized, because
the two methods partition a system into relatively
independent subsystems. The simulated results are

1210

compiled as a function that responds to input states
and generates output values to other modules,

ACENOWLEDGMENT

We would like to thank to researchers of the Fifth
Research Laboratory at ICOT for their valuable
comments and discussions, Our thanks must also go
to Dr. K, Fuchi, Director of the ICOT Research
Center, who gave us the opportunity to conduet this
research in the Fifth Generation Computer System
Project.

REFERENCES

[deKleer 84] Johan de Eleer & John Seely Brown,
Qualitative physics based on confluence, Artificial
Intelligence 24, pp.7-83 (1984)

[Forbus 84] Kenneth D. Forbus, Qualitative Process
Theory, Artificial Intelligence 24, pp.85-168 (1984)

(Forbus 86] Kenneth D. Forbus, The Qualitative
Process Engine, Ilinois Univ. UTUCDCS-R-86-1288
(Dec. 1986)

[Kuipers 84) Benjamin Kuipers, Commonsense
reasoning about causality: Deriving behavior from
structure, Artificial Intelligence24, pp.169-203
(1984)

[Kuipers 85] Benjaﬁmin Kuipers, Qualitative
Simulation of Mechanisms, MIT LCS TM-274 (1985)

[Euipers 87] Benjamin Euipers, Abstraction by
Time-seale in Qualitative -Simulation, Proceedings
AMAAT-8T, pp.621-625 (1987)

[Mighida 87] Tovoalki Nishida, Qualitative Analysis
of Discontinuous Changes in Simple Pulse Circuits,
Journal of Japanese Society for Artificial
Intelligence, Vol.2, No.4, pp.501-510 (in Japanese)
(198T)

[Ohlei 88] Masgaru Ohki, Towards Qualitative
Physics, ICOT-TR-221 (1988)

[Robert 77] Robert E. Shestak, On the SUP-INF
Method for Proving Presburger Formulas, Journal of
the Association for Computing Machinery, Vol.24,
No.d, pp.529-543 (Oct. 1977)

[Tanaka 88] Hiroshi Tanaka, Temporal-hierarchical
GQualitative Reasoning and its Application to

Medicine, Proceedings of Logic programming
Conference "88, pp.11-17 (1988)

APPENDIX Differences Between Qupras and
the Simulators Based on QPT

Qupras is similar to the simulators based on
gualitative process theory (GPT), GIZMO and QPE .

All of them aim to solve high-level physical
problems. There are some differences of the
knowledge representation between them: (a) In
Qupras, static relations and dynamic physical laws
among ohjects are described in the unified form of
template rule, "physics”. (b) Quantity space is not
described explicitly in Qupras. (c) Qupras handles
physical variables guantitatively as well as

gqualitatively.

Table 3 compares the terminology of knowledge
representation between Qupras and the simulators
based on QPT.

Table3 The Comparison between Qupras and
QPT with the Terminology of Knowledge
Representation

Qupras QPT
Rules to express statie Physics Individual view
relations among objects
Rules to express dynamie Physics Physical process
changes of objects ’
Objects to exist before the Objects Individuals
rule is applicable
Conditiphg for the rule Conditions Precnditions &
to be active QuantityConditions

Constraints(functional) Relations Relations
Constralnte(derivative) Relations Influences

