PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 1COT, 1988

CARMEL-2:

A SECOND GENERATION

VLSI ARCHITECTURE FOR FLAT CONCURRENT PROLOG

Arie Harsat and Ran Ginosar

Drepartment of Elecirical Engineering
Technion - Israel Institute of Technology
Mt. Carmel, Haifa 32000, Israel

ABSTRACT

CARMEL-2 is a high performance VLSI uniproces-
sor, tuned for Flar Concurrent Prolog (FCP). CARMEL-2
has 13-fold speedup owver its predecessor, CARMEL-1,
and it achieves 2,400 ELIPS execoting append. This
tremendous execution rate was gained as a result of an
optimized design, based on an extensive architecture-
oriented execution analysis of FCP, and the lessons
learned with CARMEL-1. CARMEL-2 is a RISC proces-
sor in its character and performance. The instruction set
includes only 29 carefully selected instructions. The 10
special insructions, the prudent implementaton of all
otheér instructions, the unique dual-memory system archi-
tecture and pipeline scheme, as well as sophisticated
mechanisms such as intelligent dereference, distinguish
CARMEL-2 as a RISC processor for FCP.

1 INTRODUCTION

This paper presents the architecture of CARMEL-2, a
high performance VLSI processor for Flat Concurrent
Prolpg (FCP) (Shapiro 1986). FCP, like other parallel
logie programming languages such as Parlog (Clark and
Gregory 1986) and GHC (Ueda 1985), was designed for
parallel and distributed computers. We have selected the
former as the language for our parallel logic programming
computer CARMEL {(Computer ARchitecture for Mul-
tiprocessing Execution of Logic programs). In this paper
we describe the uniprocessor component of that parallel
architecture.

We have employed a structured methodology to
cbtain the optimal design of CARMEL-2 (Harsat and
Ginosar 1987). This methodology extends the well known
RISC concept (Katevenis 1984, Gimarc and Milutinovic
1987), by adding new concepts, more appropriate for logic
programming languages like Prolog and FCP. Essentially,
the methodology consists of the following steps: First, a
representative benchmark is analyzed to discover its exe-
cution bottlenecks. A nmovel intermediate language is
defined to focus the analysis at the desired architectural
level, Second, an architecture is designed to accelerate
executon efficiently. Third, the result is analyzed, and the
architecture is tuned and improved. This last step may be
applied repeatedly until converging to a satisfactory final

design.

CARMEL-1 (Ginosar and Harsat 1987) was based on
the analysis of an experimental early software prototype of
FCP. As such, that architecture unavoidably suffered from
the disadvantages and inefficiencies of the original
software environment. CARMEL-2 processor, presented
in this paper, is the second generation. Its architecture was
improved based on the lessons learned with CARMEL-1.
Furthermore, novel compilation techniques of FCP were
employed. CARMEL-2 is estimated to operate 13 times
faster than CARMEL-1. It achieves 2.4 MLIPS exccuting
append. This remendous exceution rate was gained as a
result of an optimized design. The paper presents the
architecture of CARMEL-2 and some design decisions.

In Section 2 we discuss the main characteristics of
FCP and the findings of FCP execution analysis. The sys-
tem architecture is described in Section 3. Data types are
discussed in Secton 4. Section 5 presents the instruction
ser, The pipeline is discussed in Section 6. The data path is
the subject of Section 7. Performance is estimated and
compared with some related works in Section 8. Section 9
concludes the paper.

2 FCP AND ITS EXECUTION ANALYSIS

FCP is translatcd into a program for the sequential
FCP abstract machine (FAM) (Shapiro 1987). Novel
compilation techniques, employing decision trees, are
applied (Kliger 1987). FAM is different from the well
known Warren Abstract Machine (WAM) (Warren 1983),
mainly in being multiprocessing oriented: a process is
created in FAM for every new goal, and multiple
processes may be active concurrently. Unlike WAM, no
environment stack is maintained and there is no backirack-
ing in FCP. In addition, FCP introduces a synchronization
mechanism of read-only shared variables; a process
suspends when trying to unify an unbound read-only veri-
able.

The FAM architecture includes 16 special purpose
registers, and several data structures for process- and
memory-management. Data memory is dynamically allo-
cated within a single heap structure. The structre of
CARMEL-2 reflects this organization to a certain extent.



An architectire-oriented execution analysis of FCP is
presented in (Harsat and Ginosar 1987). The resulis
described here affect the architecture of CARMEL-2, ag
explaingd throughout the rest of this paper. The analysis
reveals that most of the time is spent performing very few
operations. Dereference operations take 22% of the wotal
execution time. Various pointer manipulations account for
almost 20% of the time. Type identification consumes
over 15%. Call and remurn overhead of system predicates
{called guards), takes about 9% of the time. We have
found that FCP programs demonstrate a characteristic
behavior, independent of parameters like the type of com-
putation, the sz of the program, run-tmeé memory
requirements, and others. In addition, garbage collection
{which is a system service rather than a FCP inherent
activity), does not affect significantly the characteristic
behavior.

Further findings, not presented in (Harsat and Gino-
sar 1987), show that while the dereference operation is fre-
quently used, the reference chains are short: the average
length is about 1.0, while 99% are less than three-element
long. There is no single dominating argument type in FCP.
We have also mepsured the typical (maximal) memory
requirements for each of the different system data strue-
tures, in order to be able to size our memory efficiently.

FCP, as a non-procedural language, supports no user
subroutines. Subroutines are used cnly to implement sys-
fem services and guards. They have no local variables,
and very few arguments are passed. Hence all calls are 1o
predetermined locations, Similar to Call instructions,
most branches are also directed at absolute addresses. This
i3 due to the fact that FCP is free of the concept of pro-
grammable control flow: there is no GOTO, ete.

Program execution consists of muliple processes.
Each process is deseribed by a record in memory, which
identifies its code and data. A ready (*‘sctive’”) guene of
processes is maintained. Processes are identified by
pointers to these records. The process state consists of
merely four CARMEL-2 registers, and process switches
are very frequent. The processes are ““light weight,'” in
the sense that they switch often and fast.,

These findings are the basis for the FCP support in
CARMEL-2, Tt includes an optimized instruction set, and
other architectural features, as described in the following
sections. '

3 CAEMEL-2 S¥YSTEM ARCHITECTURE

Figure | describes the unique system architecture of
CARMEL-2. Data memory is separaie from instruction
memory. Both memories may be accessed within a single
machine cycle. CARMEL-Z places the instruction and data
addresses on the address bus one after the other, in the
beginning of the cycle, and each address is captured by the
corresponding address latch. At the beginning of the next
eycle the instruction is fetched, followed by the required
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data word, on the data bus. This memory interleaving
scheme allows the matching of a fast CARMEL-2 proces-
sor with slower memories, without having to slow down

the processor.

Addidonal, relagvely small, memory is used as a
stack to keep return addresses generated by Call and Trap
instructions. An external Stack Pointer (SP) register keeps
the top of the stack (data) always ready for reading. There
is also an internal SP inside the processor. The
Jump/Call/Return detector unit is vwsed for fast decoding
and target prefetch of unconditional Jump, Call and Return
instructions, and is explained in Section 6.

The dara buffer buffers data written to memory dur-
ing gtora, and stack arguments during push. It is also used
during initialization to write into the instruction memory.
Data memory is divided, in a flexible manner, into six
main segments. It also containg an initiglization segment.
Ses Figure 2,
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Figure 2;: CARMEL-2 Virtual Memory Space

4 DATA FORMATS AND TYPES

There are ten types of data arguments in FCP. Each
argument is accompanied by a two- or four-bit tag. Two
types, inreger and fisr-integer, are real dawm; nil has no
value, and the remaining seven types are pointers, see
Table 1. Our tag allocation allows 30-bit inegers, and
28-bit addresses.

Thm_a specific tag allocation supports cdr-coding of
lists, The difference between an element {e.g. integer) and
a list of same clements (e.g. list-integer) is just one tag bit
(bit 30). Similarly, single bits determine the reference and
read-only attributes, Integers are also distinguished on a
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basis of a single bit. As a result, a simple special tag iden-

tification and mepping hardware is required.

Table 1: Data Formats and Types

argument type tag | # of data bits

1. integer . 110 30
2, list-integer 11 -
3, variable 0oLo 28
4, tuple 0110 "
5. string 0100 .
6. reference Qoo =
7. read-only reference | 0011 "
&, list-referance 01 "
9, [ist-ro-reference 0111 "
10, nil G000 0

&3 1z either a second reg

i piacement for PC.relative addressng mode. The

5 CARMEL-2 INSTRUCTION SET

CARMEL-2 instruction set is optimized according to
the execution analysis carried out in (Harsat and Ginosar
1987), and further analysis of CARMEL-1. It also reflects
pipeline dependencies, as described in Section 6. The
instructions are defined in Table 2.

In the table, we use rag() and value() to represent the
tag separation hardware. Tag{) retums the tag part of an
argument. Value{) retums a 30-bit integer, if the tag is
integer or list_integer, and a 28-bit value sign-extended to
30 bits otherwise. “II" represents concatenation, If the ALL
output is stored in a reglster, it is concatenated with the tag
of the first argoment, to produce a 32-bit Tesult. Tn all

Table 2: CARMEL-2 Instruction Set

or @ 16-bit 2's complement immediate operand., ¥ is a 22-bit 2's complement
Condition Code (CC) regizter contains four standard

flags: N, Z, V and C. Ry is a hardwinsd zerg. Tagl), vaiue() and “II" are explained in the text.

| Group | CARMEL Instruections | Funetion (see Sections 5 and 6 for more details) |
Arith- ADD Ry 85, Ry Rg o+ [walue (R, )+ value (520 0 rag (R,), ser OC
metic | SUB Ry, 53, Ry By o [value (R, ) = value (3] 0 tag (R, ], ser OC
XOR Ry ba Ry Ry o= Dvluee (R, ) @ varlue (5900 1l rag (R, ), 32 CC
AND Ry 89, Ry Ry 4= [waliee (R, ) & vale (520] W tag (R, ), se¢ OC
OR By, Sa, Ry By & [valie (R, } | value (S51] U fag (R, ), zet OC
Shift SLL R Ry Ry i— logic_shift_left (value (R, 001 pag (R, ), 58t ©C
SRL £z By R« logic_shift_right (value (8, | tag (R,), set CC
SRA By By By & arith shift right(vafue (R,)) I tag (R, ), set CC
Load | LOAD S3(Re)\ Ry Ry & M [value (R,) + value (53)]
and LOADr Y, Ry = MIPC +¥]
Store STORE I <16 (R ), Ry M [value (R )+ fnm <1651 « B,
STOREr 8 M[PC + Y] Ry
Flowr JMP Address PC « Address
Contzgl | JC COND, 5a(R,) If(COND) { PC & value (R, ) + value (531 ]
JCr COND, ¥ FCOND) { PCe=PC + Y]
CALL Address 5P) & PC, PC +— Address, SP++
TRAP COND, ¥ if ({COND) {MISF] +— PC,PC = PC 4+ ¥, SP++}
RET Ryi 82 Ra £y ¢ [value (R} + value (520 U fag (R, ), ser COC,
PC 4= M[5F], §F= .
FCP InsTag Ry, Tag, Ry Ry = value (R, )| Tag
Spectal | [fTag Ry, Tag, 8z if (tag(Ry}=Tag)
PC &= [value (Ra) or PC + It <16]
{NotTag Ry Tag, 82 if (rag{R,} = Tag)
PC o= [value (Ra) or PC +Frem <16]
BRonTag ¥ J0-way branch by tag(f, )
The 10 addresses are in PC+1 FC+2,... . PC+10
Butid Ry, 52 g R+ [value (R, + value (590 | RefTag, set ©C
BuildM R, Inen <165, R, M [value (R ) = [valie (R, )+l <16=] | Reflag
STOvar Ry fmm <16 M Pvalue (R o) + Imm <16>] + vaine (R 5) | VarTag
Deref Ry, F R, . Rdy, Tag R, holds initial poirter
if (F) stop dereference wheéngver RoRef is met
Ry « final poincer
fidy « deveferenced value
canlimee as BRonTag
The 10 addresses are in PC#2 PC+3 . PC+11
Derefl Ridg, F N, Re, Ry, Tag | similar to Dereff
if (N) continue ax [[NowTag else as [fTag
the branch address is in PC+2
IfTs ¥ T8 FTE2 M PC+—PC + ¥
else T3 ¢ initial value (o1 by Serds)
SetTs fmmi8> T8 &= [l




other cases, the 30-bit ALU cutput is 2 caleulated: address,
which iz truncated to 28 bits.

The instruction set includes only 29 instructions.
Almost all instroctions execute effectively in a single
cycle. There are only four addressing modes: register,
absolute (immediate), register-based; and PC-relative.

5.1 General Instructions

The general instructions are similar to those of other
RISC processors (Gimare and Milutinovie 1987). How-
ever, their specific implementation is unique, and
represents the fact that CARMEL-2 is designed for FCP,
as explained below.,

5.1.1 Arithmetic and Shift Instructions

All arithmetic and shift instructions operate on either
two registers or a register and a 16-bit immediate operand.
The ALU operates on the value part of the two arguments,
The shift instructions provide only a single position shift.
There are no explicit multiple bit shifts in FCP, and the
compiler hardly needs any. Consequently, the data path
does not include a barrel shifrer (Katevenis 1984),

5.1.2 Load/Store Group

It is extremely important in CARMEL-2 to provide
fast load and store. The ability to exploit a large register
file in order to minimize memory traffic is very limited in
FCP, because there are very few local sealar variables that
ean be manipulated inside registers. Most arguments are
global and structured. Thus, many data accesses in
CARMEL-2 are addressed o the external memory. More-
over, as mentioned in Section 2, FCP employs multiple
“light-weight'” process switches. Bach process switch
includes two register and two memory accesses. To sup-
port fast memory accesses we have devised highly effi-
cient Load and Store instrucdons. Dual memery system
architecture is utilized, which allows to execute Load and
Store in a single cycle.

For Load and Store instructions, the address calcnla-
tion components reside in registers, or are specified by a
register and a 16-bit immediate. LOADr and STOREr
instructions use the PC and a 22-bit 2's complement dis-
placement for address calculadons.

5.1.3 Flow Control Instructions

M and Call

The unconditional jump (JMP} and Call insmuctons
contain a 28-bit absolute target address. Utlizing the
external Jurnp/Call/Return detector during their instruction
fetch cycle, they perform branch in a single cycle. Call
exploits the detector in the execution cycle 1o push the
return address onto the external Stack.

Return
Observations of CARMEL-1 code show that an Add
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instruction always precedes the Return instruction. In most
cases, this is due to the *‘Test" insmuetion (which is
implemented by Add), where Test is nsed to set condition
code flags before the actual return from a goard function
{to indicate successifailure). In the other cases, the Add
ms as L.‘Add’jl ‘FMWE,'l IITESI'!T “El{'.ﬂ,” ii[md
small {16-bit) immediate,” *“Increment’” or *‘Decrement”’
{(by any number). We combine each Add and the follow-
ing Return instructions into a single Add-and-Return
instruction. The opcode field contains the opcode of
Return, while the remaining fields contain the Add
instruction arguments.

Retum employs the external detector to perform fast
branches. The remrn address resides at the top of the
external Stack, and pointed at by SP. Thus Ret can be exe-
cuted in a single cycle. Since a wseful Add instruction is
also executed in parallel with Return, Rer is effectively
executed in zero-cycles.

Condifional Jumps

The conditional jump instructions, JC and fCr, are
delayed instructions (Katevenis 1984). Register-based and
the PC-relative addressing modes are supported. TRAP is
another delayed instruetion, similar to JCr, which effec-
tively executes in a single cycle. TRAP is conditional, and
employs the PC-relative addressing mode. As in the case
of Call, the return address is pushed onto the Stack.

5.2 Special Instructions

The special FCP instructions, in additon to the other
special architectural features, distinguish CARMEL-2 as
an optimized RISC processor for FCP.

5.2.1 InsTag

This is a single cycle instruction. The actual opera-
tion performed by InsTag is determined by the immediate
tag specification. The JnsTayg instraction either inserts the
full two- or four-bit tag into the argument, or changes a
single bit of the tag. As was explained in Section 4, this
single-bit manipulation suppons cdr-coding by changing
an element into a list and vice versa, It also retains flexi-
bility to support other similar operations in the fumre,

5.2.2 IfTag and IfNotTag

These instructions check whether a certain argument
contains the specified immediate tag. The target branch
address is generally an “‘error’’ address, and in most of the
cases the branch will not be taken. Thus the processor
predicts that the branch is not taken, and the following
instruction is always ferched. Consequently, in most of
the cases, IfTag and IfNotTag are single cycle instructons.
When the prediction fails, they take two cycles,

IfTag and IfNetTag can also check for group
membership: lisr, read only, and other atributes. The
branch address is either in a register, or is computed by
adding PC with a 16-bit immediate offset. The latter mode
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is the most useful. In CARMEL-1, IfTag was a skip
instroction, The new CARMEL-2 branch-based IfTag was
found more effective.

5.2.3 BRonTag

Another sort of type-identification is carded out by
the 10-way Branch-on-Tag {BRonTag) instuction. The
instruction spans eleven memory words, one for the
opcode and the operand, and ten for alternative JMP
instructions (one per cach tag). It performs a computed
branch, according to the tag of R;. BRonTag takes three

cycles.

5.2.4 Build and BuildM

Many a time, a pointer is generated in our codes by
adding some offset to a base address. The proper instruc-
tion sequence to achieve that is **Add, InsTag."" Due to its
high frequency, we define the Buifd instruction for this
purpose. BuildM is similar, except that the resultng
pointer is also stored in memory (i.e. it replaces the
sequence **Build, Store").

Although BuildM is an exception of the register-to-
register instrucdon set, it is justified based on performance
(Section 8), and especially on the fact that no new
hardware is required for its implementation.

5.2.5 STOvar

Another memory oriented instruction is STOwar,
which allocates & new (uninstantiated) variable, The argu-
ment is constructed by ‘concatenating a variable tag with
zero value. The result is stored in memory. STOvar is a
simple and very useful single-cycle instruction. It replaces
the sequence *“InsTag, Store.”

Incidentally, a STOnil instructon was also con-
sidared but discarded. It would store a nil argument (zero
tag, zero valoe). Instead, Store Ry achieves the same
result at the same speed.

5.2.6 Intelligent Dereference

Deref performs linked list dereference. The number
of cycles needed for completion of Deref is proportienal to
the length of the reference chain. In CARMEL-1, Deref
required L+1 cycles for execution, where L was the length
of the reference chain. For CARMEL-2, we have devised
a more efficient dereference scheme, as follows.

Analyzing CARMEL-1 code, we have found that
Deref is almost always followed by either BRonTag or
¥Tag. In both cases, the tested tag is that of the referenced
argument, One possible improvement might have been to
combine Deref with BRonTag (or fTag) into one instrue-
tion. However, we get no speedup, since in any case we
must first wait for the dereferenced value to be ferched
from memory, and only then calculate the comect entry
address into the BRonTag jump table. Dereference itself
takes exactly L+1 cycles. Table-driven jump (BRonTag)

takes 3 cycles. Deref+BRonTag as 4 single or as two con-
secutive instructions take L+4 cycles in both cases
{Deref+IfTag take L+2, since IiTag takes one cycle).

We employ tag prediction to speed this pro-
cess, Our simulations show that there are no dominating
types in FCP (although we suspected it would be liss).
‘Therefore, we cannot gamble on any specific type (unlike
S0AR (Ungar et af 1984), for example, which gambles on
integers). However, we found out that in most cases the
FCP compiler can predict the tag by simply testing the
arguments of a clause. For example, consider the clauses:

) & Hl=X+1 ...

X iz predicted to be integer.

B(X) & giX) ..
X is most probably a variable.

7).
The related argument is either an integer or a
variable. Bdost often it is a varigble,

F[XIXs]) & ...
X i either fise int, list_ref or Hst_ro_ref. Itis
almost always the case that regardless of the list
type, they all get the same reatment. In such
cases, the compiler predicts “‘list” (i.e. one of
the three, no matter which).

Our compiler predicts tags, and they are included as
immediate operands within the Deref instruction. Deref
performs  dercference, followed by the equivalent of
BRonTag. Deref is eleven-word long. The opcode is fol-
lowed by ten JMP instructions, one for each of the ten tags
{similar to BRonTag).

The processor fetches the target instroction according
to the prediction, in parallel to following the reference
chain. This is possible thanks to the dual instruction/data
memory system. When the referenced value is fetched, it
is checked for type. If the prediction was correct, the target
instruction is execoted immediately, Otherwise, the correct
target is fetched and executed, at a cost of three additional
cycles. Also, similar to Load, Deref is a delayed instruc-
ton. A useful instruction is insertad berween the opcode
(Deref) and the following JMP instructions.

If the tag of the referenced argument is as predicted,
then instead of L+4 cycles, intelligent dereference takes L
effective cycles (2 if L=I1). This is significantly shorter
than L+4 cycles, with separate Deref and BRonTag. On
failure of the prediction, the instruction takes L43 cycles
effectively. Note that our simulations show that most of
the reference chains are very short, with length two or less.
Thus, the effective ime of Deref is only two cycles.

Similar to Deref, Derefl is a combination of derefer-
ence and IfTag, or dereference and IfNotTag. A useful
instruction follows Deref, and a branch address comes
next. Derefl takes the same number of cycles as Deref.

There are still some very rare cases when dereference



is followed by neither BRonTag nor IfTag. We synthesize
such dereference instruction by Derefl, specifying the
address of the following instruction as the branch address.
BRonTag, IfTag and IfNotTag are also used separately
from Deref, and hence are inclided as well.

5.2.7 IfTS and SetTS

IfTS (If Time Slice) instruction employs a special 8-
bit TS register. It supports the tail recursion mechanism,
which reases the ‘‘current process’” record a certain
number of times (Shapiro 1987). Whenever the father-
process spawns its sons, the first son is allocated its
father's record. However, to prevent starvation, there is a
lirit on the number of times tail recursion is allowed,
IfI'S decrements the internal TS register. As long as it is
higher than zero, the branch is taken. Otherwise, TS is set
to the inidal value and the branch is not taken, Ttis a PC-
relative delayed instruction, and executes effectively in a
single cycle. IfTS is executed once per process spawn. It
replaces the “*Add, JCr" sequence.

SerTS is used to set the TS register whenever the
current process is either suspended or halted, that is when
the regular counting down should be discontinued. SerTs
is first vsed by the inidalization procedure.

6 CARMEL-2 PIPELINE

The processor cycle is divided into four (unegual)
phases, ¢y through ¢y, During ¢, & new instruction is
ferched from the data bus, while the address of the follow-
ing instruction is produced on the address bus. Similarly,
during 4y, a data word can be either written onto the data
lines {on store and push), or fetched in {on load or pop),
and, simultaneously, the next data address is generated on
the address lines. Arguments are read from the register file
on $3, and all pre-ALU data path logic, such as sign extend
and tag separation, complete preparing the arguments for
the ALU. ¢, is dedicared to ALU operation and tag map-
ping. The result can be stored in the register file during
either §q or ¢, of the next cycle, 'We provide two cxam-
ples on how the pipeline operates: Load and Jump.

6.1 Single-Cycle Load

During the first cycle, say €y, of the LOAD instroe-
tion, the data address is computed. See Figure 3.

Ca Cy Ca Cy
& b
fetch A: Lond exec Load %
fetch A+l anee At
fetch A+l exec A+2
e
form ey

Figure 3: Single-Cycle Load of CARMEL-2; Mo cycles
are lost, thanks o Instruction/Data memory interleaving.

The address is provided to the data memory during ¢,
of Cq. The operand is ready and fetched during ¢ of Cs,

0B

and is stored into the register file during ¢y, Meanwhile,
since data and instruction memories are separate, 3 normal
flow of instructions continues to be fetched and executed.
Hence, Load takes effectively only a single cycle.

6.2 Single-Cycle Unconditional Jump

JMP instruction contains a 2B-bit absolute. target
address. The external Jump/Call/Return detector (see Fig-
ure 1) identifies the JMP as soon as it comes out of the
ingtrucrion memory. See Figure 4,

Ty m cﬂ. Cy
Tetch Jump [ Tumnp execmed
detector .~ derectt overarites +.. PCupdated
Mentifics [ | trgelinstrustion | “imside the
Jump J,'J nddress inio 8y procaIseT
WM%W Teich targel . Mrgel ex —

Figure 4: Single-Cycle Jump; No eyeles are lost, thanks to
the Jump/Call/Rerurn detector. '

The absolute address is latched into By, overriding
the ““next PC*" which is sent simuoltanecusly by the pro-
cessor on the address bus, Consequently, the correct target
instruction is fetched. Meanwhile, the instroction is also
transferred to the processor, and the program counter is
updated too. Hence, no cycle is lost, and the unconditional
branch instruction is executed in & single cycle,

7 CARMEL-2 DATA PATH

data bus

s o e
) Rggi;w:r husﬂj Py
File L
(25232} bus A '
lbus C [
Tk
1:!{;5_ |
) address
Figure 5: CARMEL-2 Data fnth

Figure 5 shows the-data path of CARMEL-2. The
twenty five 32-bit registers file'is organized as a single
window. As explained in Section 2, FCP, unlike pro-
cedural langnages, does not employ user subroutines, The
system subroutines almost always vse global data, and the
nomber of arguments transferred by subrouting calls is
close to zero, and very few local variables are used by sub-
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routines.  Consequently, multiwindow register file
(Katevenis 1984) is unnecessary in CARMEL-2.

CARMEL-2 does not need a large rumber of general
purpose registers for local scalar variables. As also men-

tioned in Section 2, scalar integer variables are not the '

dominating type in FCP. The number of general registers
required is even smaller because return addresses are held
in the external stack. Consequently, all register allocation
is predetermined at compile time, and 25 registers suffice.

8 PERFORMANCE EVALUATION

The VLSI layout of CARMEL-1 was completed
lately. Some logic and timing analysis have been carried
out, and provide the basis for performance estimation. An
instruction level simulator has besn constructed. The
simulator computes run-time statistics such as instruction
frequency and execution time distribution, memeory access
patterns, register utilization, type distribution, and others.
In addition to the simulator, & compiler, an assembler and
a debugger were also written.

CARMEL-2 is designed for implementation in
1.25um CMOS. Thanks to the very regular design, the
critical path consists of only 12 gates. Using 2 nsec delay
per gate a5 & conservative measure and leaving additional
marging for phase transitions and driving internal busses
and external loads, we estimate that the cycle will be 32

nsee. Since (almost) each instruction takes a single cycle, -

this amounts to 31 MIPS. Measuring logical inferences
while executing append, we get 2400 KLIPS with our new
optimizing compiler. This is 13-times fasier than
CARMEL-1. About 3-fold speedup is due to the nowvel
compilation technigque. Also, CARMEL-2 has a shorter
critical path (32 nsec vs. 36nsec of CARMEL-1). The
remaining speedop is due o gptmization of the Call-
Return mechanism, and the extension and rmodification of
FCP special group instructions (see Table 2). A significant
speedup is doe to imtellipent dereference mechanisr,
Reported performance for some other processors running
append is shown in Table 6. Various features of the pro-
ceszors are shown as well.

We have also performed a partial analysis, to meas-
ure the contributon of special CARMEL-2 instructions
and the tag separation and mapping circuits, to the execu-
tion rate. Table 5 shows the incremental growth in KLIPS
and the speedup in percents by introduction of varous
groups of instructions, one at a tme, as achieved for
append. We also show the number of execution cycles for
each of the cases. To arrive to these resulls, we have made
six different compilations of append, as follows:

1. All instructions, excluding those of the “‘special

FCP** group. See Table 2. The antomatic tag separa-

tion and mapping hardware is not included as well,

As'in 1, but the tag hardware is nsed.

As in 2, including: InsTag, IfTag, IfNotTag, BRon-
Tag and CARMEL-1 Deref instriction.

4. Asin 3, but with the intelligent dereference instruc-
tions (Deref and DerefT).

5. As in 4, and including Build, BuildM and STCOwvar
instructions.

6. Asin 5, and including the IFTS and SetTS instruc-
tions.

Table 5 summarizes the results.

Table 5: Evaluation of Incremental Contribution of
special FCP support in CARMEL-2

Case# | Total ercba Execotion rate | Incremental
per réeduction [KLIPS] improvement
1. 63 496
2 40 781 576
i 4 - 1,302 67%
4, 19 1,64 265
5. 16 1,953 19%
6, 13 2403 3%

9 CONCLUSIONS AND FUTURE WORK

We have shown how the results of 2 structured
analysis of FCP have led us to the design of an efficient
processor optimized for the langnage. CARMEL-2 is the
second generation processor, and is based on the lessons
learmed with CARMEL-1. CARMEL-2 shows perfor-
mance of over 2400 ELIPS executing append.

Special support for FCP in CARMEL-2 includes: Tag
separation and mapping hardware, a well-chosen set of
special instructions and mechanisms sech as inrelligen:
dereference with tag prediction scheme, switch-on-type
and single type identification instructions, cdr-coding, sup-
port for tail recursion, ew. Also, the pipeline supports fast
process switches by utilizing fast load and store instrue-
tons. Smart control flow mechanisms avoid pipeline
suspensions, and provide single-cycle jumps and calls, and
zero-cycles return. Each and every processor feature is
included only because it specifically supports some featurs
of the language, and it improves overall performance.

Meanwhile, a prototype of CARMEL-2 is being
implemented in CMOS 1.25 pm. The simulations are also
being used for analyzing CARMEL-2, in order to further
improve its architecture and performance, together with
improvements of the compiler.

Our most important goal is to investigate parallel
architectures and the issues of dismibuted computation in
FCP. We examine shared memory and message based
schemes, exploiting AND-paralielism.
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Table 6; CARMEL-2 vs. Related Processors

Processar  |Lang. | Peri. KA SAY [Imp. [Word|[Int [Tag [Mul [Branch |Degel| Rofenmes

cP bitz |bitz|bits | way |onsingles | nse

[HLIPS] branch tag

Low Rise  |Prolog R |SA [ Mo | 32 (28| 3 | Yes HNa Yee |Mills 1987
HFM - 2808 | M |CP | Yes | 34 Yes Makarabi et al 1985
PS5l KLD A00M| M [SA | Yes | 40 |32) 8 Yies Walknshime nnd Makagions 1987
PLM Prodog| 425E | M |SA | Yes | 32 |25) 2 Yes |Dobry e af 1985
CHI-IT " MOE| M |5A | Yes| 40 j32| B Yes Yes |Habata ar al 1987
RPM " 526E| R [8A | No | 32 127 3 | Ho Yes Mo [Cheng er ol 1987
TPP(ECL) | " |1000M| M |CP |Ves | 32 |28[ 4 | Yes | Yes Yamaguchi et al 1987
CARMELZ|FCP_|2400E | R _|5A | No | 32 |30 | 24| Yes | Ve |Yes®

Mots 1: Performance exccuting append.  Mose 2: Rizs or Microcoded. Impiemented,
Mose 3: Stand-Alone or Co-Processer.  Note 5: CARMEL-2"s Tatzllipert Dereferernce.

E-eatlmated, M-mansused.
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