PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATICN COMPUTER SYSTEMS 1988,
edited by [COT. © 1C0T, 1988

853

MACRO-CALL INSTRUCTION
FOR THE EFFICIENT KL1 IMPLEMENTATION ON PIM

Tsuyoshi Shinogi

Kouichi Kumon

Akira Hattorl

Fujiteu Limited
1015, Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

Atsuhiro Goto Yasunori Kimura

Takashi Chikayama

Institute for New Generation Computer Technology
4-28, Mita-1, Minato-ku, Tokyo 108, Japan

ABSTRACT

Parallel inference machine (PIM) systems are being
developed in the Japanese FGCS project. The kernel
language, KL1, and its virtual machine instruction set,
KL1-B, have also been designed at 1COT.

A PIM pilot machine, PIM/p, is now being devel-
oped. Since the action of KLI-B instructions varies &
great deal depending on their argument type, it is nec-
essary to-check them as fast as possible. So, RISC-like
instructions with meecre-call functions are incorporated
in the processor element architecture of the PIM/p.

Macro-call function corresponds %o the micropro-
gram in high-level instruction set computers (HLICs).
Conditional branch is carried out quickly in maecro-call
invocation, and the code size of compiled programs re-
mains small by uwsing this. So macro-call instructions
are suitable for implementing instructions of KLI1-B,
whose actions vary depending on their argument fype.

The merits and demerits of both RISCs and HLICs
in relation with the implementation of KLl are dis-
cussed. Then the macro-call function which is intro-
duced to realize both the features in the processor ele-
ment is described. Finally how the KL1-B instructions
cann be executed by the maecro-call function is pre-
sented along with the hardware specification of PIM/p
such as pipeline mechanism.

1 INTRODUCTION

In the Japanese FGCS project, parallel infer-
ence machine (PIM) systems are being devel-
oped based on a logic programming framework
at ICOT (Goto and Uchida 1986, Goto et al. 1987,
Goto et al. 1988). A kernel language, KL1, has been
designed. A PIM pilot machine, PIM/p, tailored to
KL1, is being developed. The principal aim of parallel
processing is to improve execution performance, and
enables users to solve large application problems. The
development of a high-performance processor element

is, of course, the first step to the target parallel in-
ference machine, The target processor element perfor-
mance is 200K to 500K RPS', so that 10 to 20M RPS
is expected as the total perfnrmam:c for practical ap-
plications.

In PIM/p, 128 processor elements are connected in

a hierarchical structure, as shown in Figure 1. Eight
processor elements (PEs) form a cluster, communi-
cating through shared memory (SM) over a common
bus. Processor elements within each cluster share one
address space, and a local coherent cache, designed
specifically for KL1 parallel execution, is provided to
enable quick shared memory access and efficient com-
munication within a cluster. The clusters are con-
pected with other clusters by a packet switching net-
work of multiple hypercube.

KL1 has the features for efficient execution that con-
ventional machines lack. Three of these features are:
(1) unification is a polymorphic operation on, usu-
ally, dynamically constructed linked data structures;
{2) the execution context, which is usually small, is
frequently - switched during execution because of syn-
chronizing funciion in KL1; and (3) single assignment
feature demands efficient memory management by in-
eremental garbage collection,

The architecture design started from develepment of
KL1-B {Kimura and Chikayama 1987), a virtual ma-
chine instruction set for KL1., Experiments using KLI1-
B emulators found: (1) mest instructions in KL1-B
include run-time data type checks; (2) the action that
follows the run-time data type check within a KLI-B
instruction varies widely depending on the type, even
though the run-time data type check selects only a
portion of the actions. Therefore, it is difficult to im-
plement KL1-B efficiently by expanded compiled code
of RISC-like instructions.

Focusing on the macre-call function in the processor
element architecture of the PIM/p, this article presents

RPS: KL1 goal reductica per second

954

Shared Memory

Clusterg

 Multiple Hypercube Network
i
JRoutml_”_H
——————— Hll-""‘--l.:-l- - F“l— -
S U [N (0 A A
Iﬁfﬁ | PEo |..|PEs || PR, |..| PE, |1} . |
Output : [Cachd .t"“hd :C“hd Cachd ot T :
A | [. |
! | Bus 1 01
i - 1 [
i i i i

Figure 1; PIM/p overview

how to exploit the advantages both of RISCs and high-
level instruction set computers (HLICs); how to imple-
ment the macro-call function in the processor element
to realize both features; and how efficiently the KL1-B
instructions can be executed by the macro-call func-
tion.

2 KIL1-B: VIRTUAL MACHINE
INSTRUCTION FOR KIa

2.1 Briefl introduction to KL1

KLl is based on GHC [Uedal 1986, Ueda2 1986). A
GHC program g a finite et of guarded Horn clauses of
the form:

H: _G'I1“'1Gm|-E'I:-"'an' {m =0n :_"ﬂ]

where H, 7y, and B, are called the clause head, guard
goals and body goals. The operator, |, is called a com-
mitment operator. The part of the clause preceding | is
called the pessive-part (or guard), and that following it
is called the active-part [or body).

When an input goal, I, is given, reduction of &
is tried in parallel, and one of the clauses whose head
unification and guard goal execution succeeded is se-
lected. After that, body geals Bys are executed, This
means that geal H is reduced to Hjs. If unification
requires the instantiation of a variable during passive
part execution, this unification is suspended.

KL1 was initially specified as flat GHC, taking effi-
cient implementation into consideration. Flat GHC is
a subset of GHC, which allows only built-in predicates
as guard goals. This restriction makes language imple-
mentation more efficient while most of GHC's descrip-
Live power is still kept. Starting from flat GHC, KL1
has been extended o be a practical language infro-
ducing the features required for the parallel operating
system design.

2.2 Basic execution mechanism of KL1

EL1-B (Kimura and Chikayama 1987) is a virtual ma-
chine language interfacing parallel inference machine

hardware and KL1, just as WAM (Warren 1983) inter-

faces Prolog and sequential machines. In other words,
KL1-B represenis ihe abstract architecture of the par-
allel inference machine.

To build an efficient parallel inference ma-
chine, execution on each processor element must
be as efficient as possible. Therefore, KLI-
B was first designed based on seguential execu-
tion (Kimura and Chikayama 1987). Then, it was ex-
tended for parallel execution. The basic execution
mechanism of KL1 from the implementation point of
view is summarized in the following subsections®,

2.2,1 Data and control structures and execu-
tion control

Data structures or variables shared among goals are
stored in a]:r&a.p. A data structure called a gmli-rmum!
is used for representing a goal. A goal-record consists
of its arguments’ slots, a peinter Lo the compiled code
corresponding to its predieate name, and some contral
information. The arguments’ slots include atomic val-
ues or pointers to varlables or structure bodies in the
heap.

The state of a goal can be a ready goal, a sws-
pended goal or a ecurrend goal The ready goal-records
are linked into a list forming a ready-goal-stack. A
KL1-B instruction, proceeds®, pops up a goal as a
current goal, then reduction of the goal is initiated.

2.2.2 Execution of the passive-part

For the current goal, candidate clauses are tested se-
quentially by head unification and guard execution to

An explanation of each KLI-B instruction can be
found in Chikayarna snd Kimurs(1987) and Kimura and
Chilayama{1987). _

*In this article, sach KL1-B instruction is written with
poatfix B, &g, proceedn. '

get_list_valueg Xj, An
put the dereferenced result of A1 to Af
if Aiis uninstantiated
then if Adis linked by suspended goals
then resume suspended goals
Ai = Xj and proceed to the next code
else if Aiis list

then do general unifieation between Xj and Af

elee Failure
Figure 2: A KLL-B instruction: gel list.valueg

choose one clause whose body goals will be executed.
If the instantiation of a variable is required during the
execution of the passive part, the test for this clause is
abandoned and the next candidate clause is tried.

If no clause is selected, the current goal becomes
a suspended goal by a suspendg instruction. That is,
the current goal is linked to these variables, which
caused the suspension, to realize a non-busy waiting
synchronization mechanism between KL1 goals,

2.2.3 Execution of the active-part

If & clause is selecied, the body part of that clause
is executed. Execution of the body part consists of
two kinds of operations, active unificalion and body
goal fork. Figure 2 shows a typical KL1-B instruction
for active unification. Getlisi_valuen unifies 2 variable,
Ai, with a List pointed by Aj Active unification is
executed on the spot. Here, suspended goals may be
resumed by this active unification, by moving the goal-
records linked from the variable to the ready-goal-stack
again.)

The body goal fork is done by argument prepara-
tion instructions, sef XXXg, put XXXp, followed by
an instruction for linking the goal record to the ready-
goal-stack, enguenegoals. New variable cells or sbruc-
tures may be allocated by these instructions. One body
goal can be executed by ezecuten without pushing it
back to the ready-goal-stack. Depth-first scheduling is
adopted.

2.3 Incremental garbage collection by MRB

KL! is a concurrent language with no side effects, so
destructive memory assignment is, in principle, not
allowed. Therefore, naive implementations of KL1 con-
sume memory area very rapidly, so that garbage col:
lection would occur frequently, Since the locality of
memory references is supposed Lo be very low dur-
ing garbage collection by widely used schemes such as
'mark and sweep’ method, cache misses and memory
faults would occur often. :

In sequential Prolog (Warren 1983), this problem is

055

collect_listp As
if MBE of diis off
then reclaim the cons cell pointed by Ai
elzse proceed Lo the next instruction.

Figure 3: A KL1-B instruction: collectlisig

not very serious because of the backtracking feature.
However in KL1 implementation, an efficient incre-
mental garbage collection method is required because
committed choice languages such as KL1 have no back-
tracking feature,

Incremental garbage collection by muoltiple refer-
ence bit (MRB) (Chikayama and Kimura 1987) iz in-
troduced in KL1-B architecture. MBRB is omne-bit in-
formation in a peinter to show whether the pointed
data object is possibly referred to by other data ob-
jects (on-MREE) or not {off-MRE). When a data object
is pointed by a pointer with off- MAB, the correspond-
ing memory area can be reclaimed after reading its
contents.

The MRB is maintained in each KLI-B instruc-
tion. In addition, several garbage collection inslruc-
tions are introduced fo KL1-B. The compiler detects
candidate places where parbage cells can possibly be
collected, and inserts garbage collection instructions at
appropriate places, Collect listg in Figure 3 is a typi
cal KL1-B instruction which reclaims memeory area by
checking the MRB at run-time. Memory area can be
also reclaimed during dereferencing. Unification in KL1
peoduces a chain of variable cells pointed by indirect
pointers. When & variable cell pointed by an indirect
pointer with off-MEB is found in dereferencing, the
memory arca for the vaziable cell can be reclaimed.

2.4 Summary of KL1-B instruction features

The characteristics of the KL1-B instruction features
can be summarized as follows.

Conditional dereferencing:

Unification instructions in KL1-B are classified as pas-
sive unification, active unification or argument prepa-
ration (Kimura and Chikayama 1987). Dereferencing is
required at the beginning of passive and active uni-
fication imstructions. In dereferencing, an argument
register is first tested whether its content is an indi-
rect pointer or not. When it is an indirect pointer,
the pointed cell is fetched into the register, then the
data type is tested again, Otherwise, unification is per-
formed depending on the data type.

956,

Embedded incremental garbage collection in
dereferencing:

Variable cells pointed. by an indirect pointer with off-
MRE can be reclaimed. Thess cells are reclaimed in
dereferencing. Therefore, each dereferencing operation
includes the MRD test and, possibly, reclamation oper-
ation.

Polymorphic instructions:

Many instructions in KL1-B include run-time data
type checks even after dereferencing. For example, the
active unification instruction, getlistvalues, in Fig-
ure 2 executes one of four kinds of actions, selected by
the data type check: (1) when Aiis a list, general uni-
fication is performed; (2) when Aiis an uninstantiated
variable without suspended goals, the Xi is assigned
intc the varizble cell; (3) when Ai is an uninstanti-
ated wvariable with suspended geals, these suspended
goals are resumed with the instantiation of Ad and (4)
otherwise, the unification fails, '

Consequently, most isstructions in KL1-B include
run-time data type checks. The actions that follow the
run-time type check are very different.

4 EFFICIENT KL1 IMPLEMENTATION BY
MACRO-CALL

3.1 Alternatives for KL1-B implementation

The following alternatives can be candidates of the
KL1-B implementation on the PIM /p:

+ expansion of compiled code by RISC-like instruc-
tion set,

s KL1-B interpretation by microprogram,

The merits and demerits of these approaches are
summarized as follows,

RISC-like instruction set:

A RISC or RISC-like mstroction set can be execnted
using a short pipeline and has advantages in hardware
design cost. However, considering the naive expansion
of KL1-B using low-level RISC instructions, the static
code size of compiled programs will be very large. This
may cause instroction cache misses or may increase
common bus traffic in tightly-coupled multiprocessors,
such as a PIM/p cluster.

Here, reducing common bus traffic s a more im-
portant design issue than reducing the cache miss ra-
tio (Matsumoto et al. 1987), so the deficiency of the
expanded compiled code is fatal for such systems. Our
software simulation found that the expanded compiled
code canses &n increase in the common bus traffic, and

that the total performance of a cluster will seriously be
degraded as a result (Matsumoto ef al. 1987).

Microprogram;:

The static code size can. be small in a high-level in-
struction set computer (HLIC) with a microprogram,
such as the PSI (Nakashima and Nakajima 1987).
However, the KLI-B interpretaiion by ~micre-

‘instructions has the following disadvaniapes regarding

design of & high-performance processor element for the
PIM/p.

Firstly, rather long micro-instructions may be.in-
corporated te use the low level parallelism specified
in each micro-instruction field. Then, skilled designers
would strive to write the microprogram for KL1-B, but
they would find it difficult to make full nse of micro-
instruciion felds because the actions of each KL1-B
instruction are often determined by run-time data type
checks as described in section 2.4.

Secondly, the data type check often selects to pro-
ceed fo the next KL1-B instruction without performing
any operations. In addition, KL1-B mcludes simple
instructions, such as register-to-register move instrue-
tioms. Therefore, when every KLI1-B instruction is in-
Lerpreted by micro-instructions, HLIC may suffer be-
cause of useless micro-instruction dispatching.

3.2 Design decisions made for PIM/p

From the above consideration, a mew RISC proces-
sor with the efficient one-level subroutine call function,
called macro-call, and with a pipeline mechanism, is

designed as a processor element of PIM/p.

By introducing the macro-call function to the RISC
processor, the static code size of compiled programs
will remain small. And thus, the common bus traffie
may not be increased.

Skilled designers will be released from writing hairy
microprograms by writing the macro body routine with
the RISC instructions and by executing them with the
pipehne mechanism.

Conditional branch mechanism of macro-call funce
tion described in the next subsection will eliminate
the cost of useless dispatching which HLICs may have.
And indirect registers will enable the fast passing of
operands in macro-call instructions to their body rou-
tines.

3.3 Macro-call function

The run-time data type check is a primitive operation
used very often in KL1 implementation. As discussed
in seclion 2.4, mest unification includes a multi-way
branch based on the goal argument type. Some Pre-
log machines, such as the PSI (Taki et al. 1984), have
a hardware-supported multi-way branch function. The

processor element of PIM/p does not have such hard-
ware. This is because it is costly to adopt a hardware-
supported multi-way branch mechanism to a pipeline
processor, and because branches taken in run-time are
often biased, so nol all possibilities are chosen by equal
chances. The PIM/p instruction set has omly two-
way tag condition in macro-call instructions and in
tag branch instructions, bul various tag conditions can
be specified in them.

A maero-call instruction can be regarded as a light-
weight conditional subroutine call or as a high-level
instruction realized by microprogram. Macro-call in-
structions are introduced to implement bigh-level KL1-
B instructions,

The macro-call instruction has the form:

MacroCall (if) cond
(with) regy, Teg; fimmed,,
‘regyf immeds, ..., Teg./inned,,
Address

where:

cond : And, Notdnd, Or, NotOr, Xer,
NotXer, XorMask, NotEKorMask
Condition for the macro-body invocation.
reg;/inmed; :
Register number for the argument of
macro-call or short immediate constant.
Address ; .
Entry address of the internal instruction
memoTy,

A tag condition, cond, can be specified as a logical op-
eration befween a register tag, regy and a register tag,
regy, or an immediate tag, immed. In addition, & tag-
mask rpgister can be used to mask logical operabion
(sec ¥orMask, NotXorMask). To avoid frequent update
of the tag mask register, some macro-call instructions
have an immediate tag mask in their operand.

In the processor element of PIM/p, various hardware
flags, such as the condition code of ALU operation
or an interrupt flag, can be accessed as the tag of
dedicated registers. Therefore, these flags can also be
used as conditions of macro-call.

3.4 Execution mechanism of Macro-call func-
tion

The processor element of PIM/p shown in Figure 4,
has two kinds of instructions, external and internal.
Erternal instructions are mainly - used fo represent
compiled codes of user programs. The external instrue-
fion set includes macro-call instructions. The macro-
call instruction first test the data type of a register
given as its operand, then it will or will not invoke its
macro-body in the internal instruction memeory (IIM)

957

depending on the result of the test. The macro-bodies
stared in the TIM are written in infernal instructions
by system designers, just as microprogram of HLIC
PIOCESSOrs.

Here, most of both exteinal and internal instrue-
tiens are common RISC-like instructions, including
KL1 specific instructions. Therefore, system designers
can flexibly specify the machine level language, KL1-
B, using one kind of RISC-like instructions instead
of complicated micro-instructions in conventional com-
puters. Considering the difficulty to make foll use of
long micro-instructions, this scheme is advantageous to
system designers. :

Each internal instruction has an additional bit,

called eei, to specify the exiting point from the macro-
body, so that the execution of the macro-body can

. finish at any non-branch instruction.

3.5 Indirect registers for internal instructions

The macro-body is specified by internal instructions
stored in the [IM. The internal instruction can specify
virtual registers, called indirect registers, as its res-
ister operands. The indirect registers are used only
by internal.instructions. Through the indirect regis-
ters, internal instructions can -handle the operands of a
macro-call instruction which has inveked the macro.

There are two kinds of indirect registers. One is
used to get the cperand of the macro-call instruction
as an immediate value. The other is used to access the
contents of the register that is specified in the macro-
call operand. Each indirect register corresponds to the
operand position of the macro-call instruction, so the
operands of a macro-call can be efficiently passed to
its macro-body. In addition, a macro-body can be used
flexibly by changing the argument of the macro-call

instruction.

4 PIM/p PROCESSOR ELEMENT

4,1 Processor element configuration

Figure 4 shows the processor element configuration.
The CPU has two instruction streams, one is from the
instruction cache, and the other is from the internal
instruction memory (1IM). We hope that the CPU will
execite an instruction al every machine cycle using a
four-stage pipeline in most cases. The IIM is similar
to a writable microprogram store. The IIM can store
about 8K internal instructions, which are preleaded by
special instructions. '

The processor element includes two caches: an in-
struction cache and a data cache. The contents of hoth
cache memories are identical. They are provided to
enable the CPU to fetch both data and instructions
every machine cycle. The cache consistency protocol in

958

G4-hit data path

NILU
{network Network router
| intesfuce unit) [T
FELU
{flnating
point unit]
int-addz[_ TTM
CPU [internal
jnt-code | instroction
memory)
Instruction| Cache address
_|Imstruction
cache cCcy
{cache
Tata cachesf—— controller
units)
Commen bus

Figure 4: PIM/p processor element configuration

PIM/p is investigated to be suited for the KL1 execu-
tion {Matsumoto et al. 1987),

Lock operations are essential for implementing K11
in the shared memory multiprocessor. The PIM/p
cache enables a Jight-weight lock and unleck operations
by using the cache block status, lock address registers,
and busy-wait locking scheme.

4.2 Hegisters in CPU

The processor element includes 32 general-purpose reg-
jsters and several dedicated registers. Each general-
purpose register has an 8-bit tag and 32-bit data. The
dedicated registers include a condition code register,
an interrupt request register, and a tag mask register.
Most flags, such as the condition code of ALU, are
placed in their tag part. These registers are specified
by a 6-bit. register specifier in most instructions.

The PIM/p instruction set can use 16 indirect reg-
isters in its register operand., Through indirect regis-
ters, internal imstructions can handle the operands of
@ macro-call instruction which has just invoked the
internal program code. It can represent either the im-
mediate value or the contents of a register specified in
the operand of macro-call instruction,

4.3 Execution pipeline

The processor element uses an instruction buffer and
a four-stage pipeline, D A T B, to attempt to is
sue and complete an external instruction every cycle.
The target of the basic machine cycle is 50 nanosec-

onds. External insiructions are either four, six or eight
bytes long. Each internal instruction requires two addi-
tional stages, preceding the stage D, to set the internal
instruction address (stage S) and to fetch the instruc-
tion (stage C). Then they are executed using the same
pipeline stages, D A T B.

Table 1 shows the pipeline siages in both ALU and
memory access instructions. General-purpose registers
are updated only at the last B stage, thereby avoiding
write conflicts. Internal forwarding is done by hardware
so that the result of a register-to-register instruction
can be used by the next instruction even though that
result has not yet heen writlen to the register file.

In & branch instruction fo an external instruction,
the beanch target instruction is fetched at stage B in
the same way as memory read instructions. There-
fore, ordinary branch imstructions may cost three ad-
ditional cycles to branch. Delayed branch instructions
ran avoid wasting the three cycles by executing other
effective instructions.

Although most tag branch instructions test their
condition at stage B, macro-call instructions and some
internal branch instructions test their condition at
stage A. Figure 5 shows the macro-call instruction
pipeline. A macro-call instruction initiates the internal
instruction fetch {stage 3) at its stage D, then tests ils
condition at stage A %, Therefore, even if the branch
condition is taken, a macro-call instruction costs only
one additional cycle to invoke its macro-body in the
IIM. In addition, delayed macro-call instructions are
provided te avoid the penalty. Return from macro-call,
that is, return from a macro-body to the external in-
struction just next to the macro-call instruction, can
be indicated by a one-bit flag: eoi. The internal in-
struction memory has an eoi field for each instruction,
so the execution of the macro body will finish with
no overhead (except for branch instructions). (See Fig-
are 5.)

4.4 PIM/p Instruction set
The PIM/p instruction set can be classified as follows.

4.4,1 Branch instructions

The instruction set includes three kinds of branch in-
structions: external branch, intefnal branch and macro-
call. An external branch instruction can be used not
only as an external instruction but also as an internal
instruction. In both cases, its branch target is an exter-
nal instruction whose address is specified by a register,
or the instruction pointer with address offset. Internal
branch instructions are used to branch within internal
instructions, whose branch address is specified by the

“When the register for iag condition i set by a mem-
ory read instruction just before the macro-call instruction, the
stage A of the macro-call instruction is siretched.

959

Table 1: Pipeline stages of AL and memory access instroctions

AL aperation

Memory access

Decade

Register read
ALU [register write

(el

Decode | register read {address)
Address calculation

Cache access (address)

Cache access (data) / regiater write

When the condition is true:

: macro-call Instruction (condition test at A)

D A
D : next external instruction (canceled)
5 C D A T B : first internal instruction
8 C D A T B ;second internal instruction
When the condition is false: B
D A : macrg-call instruction (condition test at A)
I AT B : next external instruetion
D A T B i external instruction
End of macro body:
5 C D A TB : Internal instruction with eod
5§ C : canceled internal instroction
8 : canceled internal instruction
D A T B :next external instruction

Figure 5: Macro-call instruction pipeline

absolute address of the TIM. Macro-call instructions
invoke macro-bodies in the IIM as in section 3.9,

4.4.2 ALU instructions

ALU instructions have two source registers and one
destination register. These instructions can be classi-
fied mto three kinds: 32-bit data computation, & bit
tag computation, and 40-bit computation. Mast ALU
instructions can be used both as external and internal
instructions. Although logical operations are available
for both the tag and data, arithmetic operations and
shift operations are limited to the data part.

4.4.3 Memory access instructions

Memory access instructions include the instruetions for
dereference and the incremental garbage collection by
the MRB scheme, as well as the instructions that ac-
cess shared memory with coherent cache control. Each
memory access instruction reads or writes data in a
register from or to a memory location whose address
is specified by a register and immediate address off-
set. The transferred data width can be 8, 16, 32 bits;
32 bits with an B-hit tag; or 64 bits. A new tag can
be given in memory access instruction WritewTag. In-
structions fo move the tag parl of a register fo the
data part of ancther register, and its reverse, are pro-
vided as register move instructions.

waitl_fistg Ai, Label :
if tag(Af) is LIST then proceed to the next code
elaeif tag(di) is REF
then put the dereferenced result of Ai to Ad
if tag(Ai) is LIST
then proceed to the next code
elseif Ails uninstantiated
then push Ai to the suspension stack
and jump to Label
else jump to Label
else jump to Label

Figure 6: A KL1-B instruction: wait_fisig

5 EXAMPLE OF KL1-B
IMPLEMENTATION

5.1 High-level instructions using macro-call

Macro-call instructions are used to implement high-
level KL1-B instructions. For example, the KL1-B in-
struction, wait listy, in Figure 6 first tests the data
type of a given argument. If the data type is the ex-
pected LIST, this instruction finishes. Otherwise, the
following operation in Figure 6 will be selected by the
data type. '

A macro-call instruction bas a condition to nvoke
its macro-body in the IIM. In the above example, &
macro-call instruction corresponding to wadil fislg is
written as follows, where LIST is an immediate tag
value and acp is an alternative clause pointer register

960

MacroCall NetXorMask ai, LIST, acp, waillype;

waif_fype: JumplotXor 8r0, REF, 812;
DEREF ptr, @rd;
MIumpNotAnd @r0, UNB, cose_unbound;
MIumplotind @r0, NRF, cosé_mrp;
PUSH fri, ptr;
HlumpNotRorMask &r0, 8d1, weiliype;
Hop (eoil; '

Figure T: Macro-body for Wait lisig

for Label.

MacroCall (if) NotXorMask
(with) ai, LIST, acp,
wait type;

The data type tag of register ai is tested first®.
If the register ai has a value with the LIST type,
this macro-call instruction simply finishes. Otherwise,
this macro-call instruction involes an internal routine
whose entry address is specified as wait fype. Figure 7
shows the portion maere-body in internal instructions
at waiftype. Here, 80 and @r2 are indirect registers
corresponding to the arguments ai and acp in the
macro-call instruction. @d1 15 also an indirect register
to show the immediate value in the second argument of
the macro-call, namely, immediate tag LIST. The frst
internal instruction, JumplotXor, tests the tag of @r0,
namely ai. When the tag is REF, proceeds to the next
instruction for deveferencing. Otherwise, it jumps out
to the external instruction specified by @r2, namely
acp.

The DEREF instruction is used for dereferencing the
operand @r0, and putting the result in @z0 and the
pointer to it in ptr. The PUSH and POP instructions are
used for efficient free list operations. PUSH can link a
variable cell or & structure to the free list, and POP can
allocate it from the free list, in one machine cycle.

The macro-body in Figure 7 can be used for other
KL1-B instructions. Assume that the data type of a
four-element vector is represented by a tag, VECT4, and
that a KLI1-B instruction, wait_vect{s, unifies a goal
argument with a four-clement vector. The macro-call
instruction correspending to wait.vectfn can be:

MacroCall (if) NotXorMask
(with) ai, VECT4, acp.
wait_fype;

¥ fAgawme that MRB iz assigned in &-bit teg field, and that

" the tag mask register holds a value to mask the MRB. The

operator, NotXorMask, is used to test LIST Lype mesking its
MEB.

5.2 Compiled code

Figure 8 shows a part of a sample compiled code:
machine instructions and KL1-B instructions for ap-
pend. Here, KL1-B instructipns that include derefer-
encing and unification are represented by macro-call
instruetions. Ten KL1-B instructions in this example
are represented by six macro-call instructions and eight
RISC-like instructions. In ordinary execution, three of
the macro-call instructions actunally invoke their macro-
bodies, and the other three only proceed to the next
instruction. The performance of the processor element
estimated from the compiled code is over 600K RPS
for the append program. Note that the estimated per-
formance includes the incremental garbage collection
cost using MRB,

6 CONCLUSION

The macro-call function for the efficient KL1-B im-
plementation was discussed. The processor element
architecture for the PIM pilot machine, PIM/p, was
presented. Most PIM /p, instructions are RISC-like in-
structions which can be execuied in one machine cy-
cle using four-stage pipeline. The instruction set in-
cludes the tagged architecture and the MREB incre-
mental garbage collection support. The macro-call in-
structions are introduced to invole their macro-body
efficiently. The condition of the macro-call instroction
can be specified as register tag computation. The in-
ternal instructions of the macro-body can use indirect
registers to access registers or immediate value in the
macro-call instruction’s operands. As a result, the pro-
cessor element of PIM/p, has the advantages of a high-
level instruction sel computer as well as those of a
RISC-like computer.

The instruction set has been specified. The detailed
design of the CPU, the OCUs and the NIU has been
completed. The target of the basic machine cycle is 50
nanoseconds. The LS implementations of these chips,
as well as the design of the processor element beard,

4Te NOW in progress.

ACKNOWLEDGEMENT

We wish to thank all of the PIM research members
both at ICOT and at Fujitsu Limited, Especially we
thank ICOT researchers: Dr. K. Tald, Mr. K. Naka-
jima, Mr. A. Matsumoto, and Mr, T, Nakagawa; and
Fujitsu researchers: Mr. 5. Arai and Mr. A. Asato, for
their useful comments. We also wish to thank Mr. I
Murano and Mr. H. Tamura of Fujitsu Limited for
their help in developing the LSIs and for their ose
ful eomments. Finally, we would like to thank ICOT
Director, Dr. K. Fuchi, the chief of the fourth re-
search section, Dr. 8. Uchida, the general manager

261

append{[HIX],Y,Z) :- true | 2 = [H|ZZ], append{X,¥,22).

appf2/1:
Read al, ad, =-;
Read al, a5, 8;
MacroCallforHask ad, REF, al, 0, readvar;
MacroCallXorMask a5, REF, al, 8, readvar;

MacroCallXorMask al, MRBLIST,-, alloclist;

Write al, ad;

HacroCallXorMask fri, WIL, genvar;
WritewTag al, fril, B, REF;

POPwTag as, frl, REF;

MacroCall al, a3, getlistvalue;
DelayJumplotind cc, SLIT, app/2/1;
Move a5, al;

Move ab, ad;

HacrofallNotXorMask al, LIST, acp, waittypa;

% wait liste ol

% rend_variableg a4
% read_variabley af
%

%

W reuse_lisly al

% write_valueg of

% wrile_variableg af
%

F

% get distvalueg af,af
% execuien append
% put.values af,af
% put_values af,ad

Figure 8 A sample compiled code: Append

of Infermation Processing Division in Fujitsu Labora-
tories Lid, Mr. J. Tanahashi, and the managar of Ar-
tificial Intelligence Laboratory in Fujitsu Laboratories
Ltd, Mz. H. Hayashi, for their valuable suggestions and.
guidance.

REFERENCES

(Bitar and Despain 1986) P. Bitar and A. M. Despain.
Multiprocessor | cache synchronization. In Proc.
of the 18th Annual Internafional Symposium on
Computer Architecture, pages 424-433, June 1986,

{Chikayama and Kimura 1887) T. Chikayama and

Y. Kimura. Multiple Reference Management in
Flat GHC. In Preceedings of the Fourth Inier-

national Conference on Logic Programming, pages
976-293, 1987.

{Goto et al. 1987) A, Goto. Parallel Inference Machine
Research in FGCS Project. In US-Japan Al Sym-
postum BT, pages 21-36, Nov. 1987.

(Goto et al. 1938} A, Goto et al. Overview of the Par-
allel Inference Machine Architecture (PIM) In the
Proe, of the Fifth Generation Compuier Systems
1988, Mov. 1988,

(Goto and Uchida 1986) A. Goto and 5. Uchida. To-
ward a Hig;h perfn‘rmam.‘e Parallel Inference Ma-
chine -the Intermediate Stage Plan of PIM-. In
Future Parallel Compulers, pages 299-320. LNC3
272, Springer-Verlag, 1986,

{Kimura and Chikayama 19587) Y. Kirmmra
and T. Chikayama. An Abstract KL1 Machine
and its Instruction Sef. In Proceedings of the 1987

Symposium on Logic Programming, pages 468477,
1487.

{Matsumoto et al. 1987) A. Matsumoto et al. Locally
parallel cache designed based on KL1 memory ac-
cess characterestics. TR-327, ICOT, 1987.

{Nakashima and Nakajima 1987) K. Nakeshima and
H. Na]:a;ama Hardware architecture of the se-
quential inference machine: PSEIL In Proceedings
of 1987 Symposium on Logie Programming, pages
104-113, San Francisco, 1987 .

(Papamarens and Patel 1984) M.S, Papamarcos and
JL.H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In
Proceedings of the 11th Annual International Sym-
posium on Compuler Architecture, pages 348-354,
1984.

(Taki et al.-1984) K. Taki et al. Hardware Design and
Implementation of the Personal Sequential Infer-
ence Machine (PSI). In Prec. of the Interna-
tional Conference an Fifth Geéneration Computer
Systems, pages 398-409, Tokyo, 1984,

(Uedal 1986) K. Ueda. Guarded Horn Clansss: A par-
allel logic programming language with the concept
of a guard. TR 208, ICOT, 1986.

{Ueda?2 1986) K. Ueda. Introduction to Guarded Horn
Clauses. TR 209, ICOT, 1986,

{Warren 1983) D.H.D. Warren. An Absiract Prolog
Instruction Set. Techmical Note 309, Artificial In-
telligence Center, SRI, 1983,

