PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1938,
edited by 1COT. £ ICOT, 19488

879

A VLSI Building Block For Massively Parallel

Computation

Abhaya Asthana

Bowd Mathews

Cheryl [, Brigas
Mark R Cravans

AT&T Bell Labaratories
Murray Hill, Mew Jersey 07974

ABSTRACT

SMOKE iz an experimental 32-bit pipelined processor
that integrates arithmetic, logic and communication
functions in a single VLSI chip. Packaged in a 256 pin

id array it provides separate paths to local program and
gla nmmﬂapsl:qfunr parallel pc?ns for fast in%r-pml:cris«ur
commuonication and a fifth parallel pont for
communication with glubal memary and global control
unit. This is in addinen to providing full 32 bit integer
and floating point operations. ‘The combination of
compuration power communication facilities present
in SMOKE make it ideally suited as a building block for
constructing processor ammays. In this the
architecture for the SMOKE processor is described, and
its ;]uiﬂicatim in constructing massively parallel machines
is illustrated with a system architecture that we are
currently developing.

L. INTRODUCTION

SMOKE iz an experimental 32 bit floating point
processor designed and fabricated in- 1.25 micron CMOS
technology for wpto 25 MFLOPs operation [1). It is
intended to be used as a building block for parallel
architectures in which computation Is performed
cooperatively by many- processors of modest size and
capability, Smoke features a Fully integrated 32-bit
floating point/integer unit, four parallel ports for inter-
processor communication, a parallel port for global
communication, and a small but powerful instruction set
that includes floating point, integer, logic, control and
communication instuctions. Figure 1 shows a bleck
diagram of the 3Smoke processing element module
consisting of the Smoke processor with its local data and
program memories. The processor chip consists of
60,000 transistors and has an area of aboutr Smin x Grmm.
Figore 2 shows a photograph of the chip layont.

Our main motivation for building Smoke is to study
the issues in architecture, hardware and software for
gm]k.l processing systems by actually constructing a test

d system. ug,u' fesearch goal iz to discover
organizational approaches that are well suited for VLSI
implementation and to provide feedback to our design
effort. One particular area of interest to vs is the senal
overhegd involved in execution of parallel programs.
Even a very small overhead can significantly limit the
speadup of a parallel processor. For example, a 0.1%
overhead in a system with 1000 processors will limit the
peak performance to 100x in accordance with Amdahl's
law [2]. A significant part of our effort iz focussed at

1
i |
i 1
I I
i 1
E mmy] TOgEAM <o Smoke adr M]:;‘;T E
| 4K xd% 3 Processor | (a3)| gx32 !
' dara data L . :
i f.a_rgu |
L"______""_ﬂiuﬁa'] us Interface -

Data and Control

Figure 1. Smoke Processing Element Module

understanding the factors thar give rise o this averhead
and in developing techniques and principles to reduce it

The following needs of . stuctared parallel
computation have influenced the architecture and design
of the Smoke processor:

« The first 0{:&117 of stroctured numerical computarion
that we Prexpnit is locality of reference. wmll':::t this
means is thet once & task is activated within a
processor, it will continue to execute without making
many glabal references for a significant period of time.
It is this pericd of time that rmines the
communication to computing ratio of the system. The
lower the ratio, the more efficient is the systemn. In
order for the task to execute independently it requires
local resources namely, program and data memory. The
Smoke architecture provides these resources. :

Secondly, much of the parallelism inside a task is of a
structured nature that can be extracted efficiently by a
pipelined architecture at the processor level. While we
do not provide a wvector imstuction set, we have
designed a software reorganizer to recognize and
provide high throughput on vector type constructs [3).

+ The third need of parallel competation s
communication of partial results between processing
elements as opposed to communication with a global
shared memory. As the computation proceeds from one
iteration to the next, results may have to be written to
a shared memory structure, passed to a neighboring
processing element, or tansmitted o a distant
processing element. The frequency with which the
communication happens and the amount of data
transmitted is application dependent. What s
important in achieving high execution rates is low

Figare 1. Smoke Chip Layout

latency and high bandwidth for communication
between processing elements. Smoke addresses this for
numerical algorithms that map well into processor
arrays. For this architecture, it provides the ability 10
communicate results to nearest neighbors via ports in
one cycle. Such an interconnect could be a nearest
neighbor mesh or 2 binary hypercube, for instance.

The fourth requirement of many parallel computations
is an eﬁcmﬂr means for accessing large dmia structures
.!I!Eﬂ-red in shared memory. This implies a low latency,
high bandwidth path to memory from every processing
element. ﬁ;:;:- implied is hardware for resolution of
contention this path, if any, and for locking
unlocking of test_and set flags };'nr coordinating nmaalg
to shared resources,

+ Finally, synchronizing the activities going on in various
pmmssoml his mmdmi-quiNML Tlilis dﬂp?nds on the
control scheme used for 2 icular multiprocessor
application. In an SIMD schiar;nn the host processor
requires the ability to contrel the execution of the
processing elements individually and in groups. In an
MIMD scheme the processing elements need the ability
to be able to synchronize with each other in a
reasonable way without undue loss of code density or
performance. Smoke provides facilities to handle these
synchronization issues.

We envision the Smoke processing module to be
embedded in a global architecture such as that shown in
Figure 3. Smoke processing clements are combined into n
groups where each proup has upto eight processing
elements in it. As mentioned earlier, there are two distinct
types of communication that are supported in this
architecture. At the computational level, the processing
elements communicate with each other through the inter-
pe-network. This is a point to point network making use
of the parallel ports in the processor, that could range
from a 2D Mesh to a Hypercube depending on the
application. For control and access to shared data, the
processing elements use the global network. The Global
Contro! Unit (GCU) provides the host machine functions
in this architecture, It also provides the control and
egordination functions in applications that use SIMD
strategies. For applications that use MIMD operation, the
‘GCU acts merely as a more capable processing element.
Each group has a Global Interface Unit (GIU) associated
with it. The function of the GIU is to provide the means
for passing data: and contrel information between the
processing elements and the GCU and shared memory.

The architecture is hierarchical with respect to data
storage clements and also with respect to execution
control. It represents a merger of a number of techniques
for obtaining speedup. At the lowest level we have the
Smoke processor and its associated local program and
data memories. We pget speedup at this level through

ipelining and locality of reference. At the next level the
gmﬂke are combined into groups (arrays,
clusters, etc) and the speed up is obtained through array
parallelism. At the highest level, the architecire is a
ghared memory multiprocessor.

1. SMOKE ARCHITECTURE

Smoke is a seven stage pipelined architecture (see
Figure 4). By providing a wide instruction word format,
and separating the instruction and data paths for the most

10

Inter-PE-Merwork

Figure 3, System Context for Smoke

part, the effective address computation and the instruction
decoding proceed in parallel. The number of execution
stages depends on the instruction type and the context.
Two considerations dominated the Jesign of Smoke
execotion unit. First, elimination of the co-processor
model for ggurming floating-point operations [5,6], and
second, achieving a closer match berween the peak and
the sustained performance of the processor [7,8]. We felt
that a co-processor approach to constructing such 2
compute engine is inefficient in its operation at the
hardware level and is difficult to use at the program level.
Low latency 'in Smoke is achieved by using redundant
hardware to realize scparate pipelines for different
operations.
2.1 Programmer’s Model

The programmer’s view of Smoke consists of local
program memory, local data memory, index registers,

status word and global memory as shown in Figure 5.
There are eight index registers numbered ixrQ-ixr7. These

miﬁmmmmmﬂ
rmen | | e =
AL
1

Figure 4. Pipeline Stages in The Smoke Processor

registers are 13 bits wide and serve as pointers to data
stored in the local data memory. All of these registers
can be wsed as stack pointers since push and pop
instructions apply to afl of them uniformly. However,
register ixr7 is special and is called the "frame pointer”.
It is used by the processor as a push down stack pointer
during call, remuen, interrupts and exceptions.

The local program memory is 48 bits wide and has
storage for 4K ingtroctions. The lower O locations are
reserved for vectors. The data memory 15 an 8K word
32-bit wide memory. It iz both the primary storage and
the scratch-pad area in Smoke because there are no data
registers. Typically, the upper pant of the data memory is
used as the stack area. Also mapped in the topmost
address locations are the ports as shown in the figure,

The global memory is visible to the programmer as a
large 32 bit wide memory that is indirectly accessible
through move instructions. Smoke provides the facility
to move data between its local memory and global
memory. It also provides the facility to move programs
from global memory into the local program memory.

The status word contains flags which indicate the
result of the previous rations, These status bits are
capable of causing exceptions unless they are disabled by
setting the corresponding mask bit to. zero. By defaunlt
the machine is initialized with the mask set to =zeéro.
Additionally, upon entty into an interrzpt or exception
procedure, the mask is set to zero by default while the
status word including the mask prior to the interrupt {or
exception) is saved on the stack.

| ol] PO !
ixcl 3 port]
jET3 e port
] W port
BN
1XT3 Local e
[Eyi] Data Memory
ixry !
Global Memory
Loscal -
Program Memory I
N vee]
EXCD VEC
refel veo

Figure 5. Programmer's View of Smoke

1.2 Instruction Format and addressing Modes

The instructions are 48 bits long in Smoke and are all
of fixed length. We realize that the fixed length
restriction is wasteful of program memory space but it
does simplify the parsing of the instructions during the
decode cycle. The form for a typical three operand
Smoke instruction is shown in Figare 6(a). It consists of
& six bit opcode and three operand specifiers: srcl, srel,
and dest. destination operand could be a memory
location, an index register or a jump address as in the
case of branch or call instructions. The operand
specifiers are interpreted based on the instruction and the
addressing modes in keeping with a streamlined
architecrure. To keep things simple, Smoke provides
only three addressing modes: absolute, indexed and
immediate. The formats for these modes is shown in
Figure 6(b). The first bit in an operand specifier is used
to distinguish between absolute mode and the other two

281

modes. The second bit is used to distinguish between the
immediate and indexed modes.

2.3 Arithmetic/Leogic Instructions

A major fraction of the Smoke processor hardware is
devoted to arithmetic processing. Full 32 bit floating
point add and multiply operations are supported divecty
in hardware, In addition, 32 bit integer arithmetic and
logic instructions are provided. As mentioned carlier,
special effort was made to keep the latency of these
integer operations to a mininmm. Conversion from 24 bit
integers to floating point representation and from floating
point to 24 bit integer representation is supported. Integer
multiplication is done by the same array that is used in
the floating point multiplier. Integer multiplication
operates on two 24 bit num and yields a 32 bit result.

24 Program Control Instroctions

All branch instructions in Smoke have delayed
semantics. Unconditional and conditional branches have
a two cycle delay. Call and return instructions are
provided to handle procedure calls and also have a two
cycle delay. These instructions use the frame pointer to
push the remrn program counter on the stack. Since
Smoke allows any index reg;isre:r to be treated as a stack
pointer using push and pop Instructions, arguments can be

on the frame or cen be passed via a separate
argument stack.,

Because of differences in the lengths of the integer
and floating point arithretic pipelines, it is difficult to

determine the ion between a compare and the
following conditional branch instruction. To s ify the
task of the programmer for integer compare branch

operations, Smoke provides a special test and_branch
instruction. This "thra" instruction compares two integer
values and branches based upon a specified condition
always in a deterministic number of eycles (four),

2.5 Loop and Index Register Instructions’

The index registers can be loaded, stored, and
incremented by an arbitrary wvalue. Push and pop
instrections also apply to el index registers and
autornatically increment or decrement the specified
register by one. '

Smoke implements the Fortran DO-loop (or a form of
the C FOR) statement in & single instruction. The
increment_test_and_branch, “bob", instruction takes an
index register as a source, increments it by a specified
value, compares it to a specified final value and, if the
condition is true, the gram branches to a specified
destination address. Awvailability of this instruction
facilitates the implementation of inner loops commonly
found in numerical applications.

{a) Theee Oparand lnsructian Fedrmat

Absalue Mode

1312 11 D0BIEATOSAS 030100
(07 I35 Abogiube Addmss |

Indexed Mode
1313 11 SR 07 005 0 DR 0L)

(TTOT aax T 5 il Sgbd oliscl |
Immmediste Mode

131211 19090807 060500202 01 ()
[TT] T2 T complement Dhaia |

" (b) Addressing Modes
Figure 6. Instruction Format and Addressing Modes

882

2.6 Global Communications

In addition to providing floating peint capability,
Smoke dedicates a significant fraction of its on-chip
resources to both Tocal and global communications. This
is most evident when the pincut for Smoke is considered.

Two styles of global communication are supported:

uest for data
¥ a program

+ Processor indtiated, in which a re
movement or a signal s penerated
executing within the Smoke processor.

« External control undt initiated, in which a program
gction n the global control unit causes data to be

transferred or a control signal to sent to a processing
element.)

Thﬁpmcessnrr:anmquestdamufarbinary sizes 1o be

moved between global memory and its local program or
data memaory. global dara_read operation has the
following syntax.

global_data_read(global _address local _address,count)

This instruction will result in cownr words being copied
frorn global memory location global address into the
processor’s local data memory starting ar location
local_address. There is a seéparate instruction, pmid, to
read code into program memory. The global darta write
operation, which hag the same syntax, does the reverse
_mmfmmlocaldammmmﬁrmglohal memory. These
operations are non-blocking in that the processor
continoes to execute subsequent instructions. The
processor can check for completion of the transfer by
monitoring the global access done bit (GADY) in the
processor status register or can synchronize using a wait
instruction as described later.

Communication injtiated by the Global Control Unit
iz either for reading or writing the processor’s memory,
for starting a processor’s execution or causing an
interrupt. The reads and writes are block transfers and
are transparent to any program that may be executing in
the processor. This facility is uwseful for initializing 2
processing element with 2 code and or data for the next

of computation while the cument phase is still in
progress. Similarly, the results of a previous phase of
computation can be read tansparenily while the next
phase is in progress. Another use is in ging. The
program or data memory can be read even though the
program executing within the or may have
stopped. This is possible because the extemal read and
write transactions are interpreted and executed completely
in hardware.

27 Pﬂr‘t.cul'llll:l.lﬂl:aﬁl}l‘l!

There are four parallel ports In Smoke each of which
allows 32 bits to be written to or read from every major
cyele. They are all memory mapped, so sccessing a pornt
is like accessing memory. Naturally, all addressing modes
that apply to memory apply to ports as well. A program
can output a result to only one of the four ports in any
given instruction. However, a result can be input into all
of the four ports every major cycle. The ports can be
used by a program in either blocking or non-blocking
mode. * Physically the poris are implemented using five
sets of 16 lines, one set for output and four for input.
Two clock phases are used to complete a 32 bir ransfer
in a cycle. There are additional lines for indicating port
full condition and for data larching,.

Smoke has been designed with efficient transfer
between directly connected neighbors in mind, Howewver,
its use with arbitrary interconnection metworks is not
precluded. For use with an arbitrary network, an
appropriate packet structure and protocol will have to be
designed by the user.

28 Synchronization

Programs executing in a processing element have to
synchronize with activities in other processing elements
and with activities in the global control umit. In an MIMD
environment, the synchronization with nearest neighbors
is achieved through port reads and writes.
Synchronization with distant processors can be achieved
ﬂm:mgh shared data struchires (e.g. semaphores) present
in the global memory. The Smoke usage model supports
this by reserving certain global locations for read modify
write references, The same method may be wsed for
synchronizing with GCU. Altematively, if the
programmer S0 choeoses, programs running within
processing elements could use message passing to

transmit and receive events or data.

In an SIMD environment, the GCU needs the facility

sunulxanmus]y control the emutlm'l of programs in all
processing elements. It also requires the ability to sense
the completion of a rask on a given pro:e.-aamg element or
a group of processing elements. This is achieved with
two signals go and done. The protocol that uses go and
done is very simple. The signal go is an input which
when asserted by the GCU signifies to a processing
element that competation can proceéed. The processing
element performs that task and thereafter signals the GCU
of its completion by asserting done, The GCU on its end
can assert the go lines to all processing elements in the
systems at once, for a group of processing elements at a
time or individual processing elements depending on the
control algorithms suitable for a given application,
Similarly, the done bits from all processing elements are
monitored by the GCU to determine when the next stage
of the computation should begin.

The synchronization function is manifested in the wait
ingtruction in Smoke.

wait(event(s)_specifier)

The wait instruction can specify one or more events on
which the processor can wait. When a wait is issued, the
execution suspends until all the specified events have
occurred and then the execution is resumed. Thus the
wait ments an AND semantic. By waiting on the
port buffers to empty before writing, and to fill up before
reading the processor can make the ports into blocking
ports. If such synchronization is not done by the program
the ports are essentially non-blocking, The same applies
for global operations.

1.9 Interrupt

An interrupt mechanism is provided in Smoke to
allow an exlr:rrml agent to preempt the execution of the
current task in a processor and redirect it to execute a
pre—spemﬁm interropt procedure. The actions taken h:|."

the interrupt ure are under the programmer's
control. Any forther intermipts are masked entry into
the interrupt procedure. Physically, t interrupt

communication 15 through an interrupt pin and an
interupt acknowledge pin.

3. IMPLEMENTATION OVERVIEW
The main modules that make up SMOKE are shown
in Figure 7. The program control unit is responsible for
fetching the instructions, decoding them and managing
the program counter and the processor status word.

dmadr | Daa |
L Memery
] ta

['] ['] i) [E
Program Fansction Global
Contral Units Bus =
Unik Interface W Port
Y]

feset, imr, go, doos Global Bus

Figure 7. Smoke Organization

memory access controller performs the effective address
computation and fetches the operands from the memory.
It also manages the address queue for storing results back
into memory. The function units perform the arithrmetic
and logic operations. The global bus interface unit
provides the interface to the global bus and the GCU. The
ports provide interface to the neighboring processors.
Smoke has separate instruction and data spaces. This

allows the accesses to the program and data memorics to

be completely overlapped every cycle. Most operations
in smoke are memory to memory operations due to the

absence of data registers. Treatment of memory as the ¢ o2 3 [;; =|
—=

lacal register set places a heavy demand on the data bus.
The processor uses a three phase clocking scheme as
shown in Figure 8. This allows two source operands to
e read in C1 and C2, and o:;dmsu!ithm be stored n C3
respectively, every maj e. The memory must,
therefore, gm thm? rmmsp:s fast as the processor pipeline
stages to make this possible,

a_[— 1 I 1-
e I
= N L
rd opodl ol opnd2 wit msht
mgjor cycle

Figure 8. Three Fhase Clocking

3.1 Pipelining

Smoke is a seven stage pipelined architecture. The
seven stages of the pipeline are shown in Figure 4. The
decoding procesd, in parale: This 5 possible boowse of

[l n g] S5100e ause o
lh:ff]lﬁ:gﬁuuctmn g'rfatandthenrﬂmpu gonality of the
addressing modes from the instruction type. The number
of execute stages depends on the instruction type and the
context, as mentioned in the last section.

Smoke has a 32-bit multi-function pipelined
arithmetic and logic unit designed to operate at peak rate
of 204+ MFLOPS [11]. The unit is physically divided into
three separate pipelines: an integer ALU which is a single

883

stage pipeline, a three stage floating-point adder, and a
three “stage floating-point and integer multiplier. The
format of floating-point numbers ing and exiting the
function unit is a restriction of the IEEE standard 754 for
single precision floating-point numbers [9]. The integer
ALU - performs the standard arithmetic and logic
operations. The floating-point adder performs the
operations of add, subtract, fixed-point to_floating-point
conversion, and floating-point to fxed-point conversion
[10]. The HAoating-point multiplier performs both
floating-point multiplication and integer nuﬂﬂg!icat’um,
The organization of the function unit pipelines is shown
in Figure 9. The use of separate pipelines simplifies the
hardware implementation because the need for resource
scheduling is eliminated. A new set of operands can
enter the function unit every major cycle.

The length of the function unit pipes was kept as
short as possible. Another objective was to keep low
latency for logic and integer operations in the presence of
floating point operations. In short, we concluded that best
improvements in the overall system performance would
come only by improving the wvector and the scalar
performances in a balanced manner [7]. Low latency in
integer operations is achieved by having a short integer
pipe. However, this requires a mechanism for resolving
conflicts that we describe in the next section.

pipe-eoh (4) :
fecode (7 I —]_|dmain(32)

: R e
[INTALU] [FADD | [FIMPY |

:L; [=== : - :
fo-frecze __]_I Fl:l

- I . |
I | |
[| =3 I'_I:

[T []]

OUTPFUT SELEEI‘
¥] []
statos oot (6) data out (32} select id (3)

Figure 9. Function Unit Pipelines
3.2 Conflict Reselution and Reorganizing

A contention for the output bus occurs when results
from two pipelines of unequal lengths arrive at the owntput
in the same cycle. The function unit module handles this
by adding buffers to the integer pipeline to effectively
make all pipelines the same length {We sl allow results
from the short integer pipe to be written as early as they
can be). When all pipelines are the same length we are.
guaranteed that only one can have a result at the output
in any cycle because only one operation can enter the
pipeline in any cycle. In cycles where no result has come
to the end of a long pipe, and a buffered result from a
short pipe is ready to be stored, it will get written into
data memory. ifically, the result at the integer
pipeline is normally enabled unless thers is something at
the end of either of the longer pipelines. In that case, the
result at the short pipeline is buffered and must wait until
the next cycle, This ensures that in case of a conflict, the
result that has stayed in a pipeline the longest gets
written out first.

Consider the example shown in Figure 10.. The major
clock ticks are shown along the horizontal axis and the
pipeline stages along the vertical. The eddf instruction is
the first to enter the pipeline followed by addli, subi, subf

BR4

and addi. The addi is the first to complete in tick T6 and
its result is stored. In the next eycle both addf and subi
finish simultancously and compete for the store operation.
Since addf has been in the pipe longer, it gers
precedence. The result of subi pes passed to the next
pipeline stage, and gets stored in cycle T8. In tick T9 the
result of addi is written from the shortest store path, and
finally, result of subf is stored in T10.

The ill effects that could arise from reordering of the
result stream are avoided by proper reorganization and
pacing of the input instruction stream [3], We belisve
that & multiple latency pipeline creates a scheduling
problem which iz manageable in software and yields
improved performance over a multifunction pipeline of
oniform length. MNote that reordering of in nit
operations can give faster and denser code than automatic
insertion of mops where stalling is required. Hardware
interlocks to handle dara dependencies can yield denser
code but not faster execution since the mops are merely
being implemented as waits in hardware,

TI T: T3 T4 TS5 T6 T7 TE T9% TIO

[addfTaddi | suli [subf [addi
DEC addf | =i |zubi | sabf | addi
OPFET addF] addi T subi [subf | addi
EXEC1 addf | 30d7 | subi | sabl | addi
EXEC2S ~[adlE {addi] suhi | subl |aadi
EXEC3S addl (Fubi] subl
ETORE gl [5ubl]

Figure 10. An Example of Conflict Resolution

33 Delayed Branching

Because of pipelined execution in Smoke, the
branches are delayed. This implies that a number of
instructions following the branch instroction will get
executed whether the branch is taken or not. Once an
instruction has been decoded, its processing continues on
its own as it moves down the pipeline. the necessary
state information is passed down from stage to stage.
Smoke does nor do branch prediction, instead, it relies on
instruction reorganization to get maximum possible
performance. The number of instuctions thar get
executed after a branch depends on the particular type of
branch instruction. The number is two in case of call, rer,
bra and chra and four in case of test_and_branch and
increment_test_and branch, T a program counter
medlifying instroction is placed in the two or four cycle
window following a branch, it will lead to the undesirable
program behavior,)
3.4 Safe Period and Handliog of Abnormal Conditions

The streamlined execution of a pipelined machine can
get severely disrupted when an abnormal event occurs.
Instructions that do not medify the program counter
directly, such as arithmetic, logic, lead and store, do not
present much of a problem because once the instruction
has been decoded its operation affects the state of only
the socceeding stages of the pipe. An instruction that
modifies the program counter, however, presents a
difficulty.

Consider the case in which the decoding of the
instruction immediately following a branch is disrupred
due to an interrupt. In the nommal course of events, the
two mstructions following the branch instruction would
get executed. Since in the previous cycle the branch
instruction was decoded, in this cycle (in which the
following instruction is being decoded) the program

counter will get updated to its new value. At the same
time the i is recognized and the machine enters
the interrupt sequence. In the interrept sequence, the
retum valee of the counter will be the new
branch address that got loaded. Thus, when the program
is resumed after retum from the interrupt procedure,
exccution will begin from this branch address. The eror
is that the original two instructions following the branch
that were supposed to have been executed did not get
executed. ’

To ensure proper program behavior, the logic in
Smoke allows the instruction following the branch to
finish execution before an interrupt or hold is aceepted. In
a sense there is time period during which it is not "safe”
to allow abnormal conditions to come in. In designing
this circuit another problem we came across was deciding
on the of this window, because it is dependent on
the instruction rype. A close examination of the
instrection set revealed three window sizes. For non-
branch instructions the size was 0, meaning that interrupts
do not get delayed at all. For branch instructions the
window iz 2 cycles. For test_and branch and loop branch
ingtructions, the window is 4 cycles. Note that thess
represent the worst case delay experienced by the
interrupt or wait conditions, The size of the window is
encoded by the control PLA with every mmstriction it
decodes. This is then used to generate an inhibit signal of
that length. This inhibit signal prevents the abnoomal
condition from being recopnized until it is “safe” to do

OLOBAL MIOMORY

BB ,f% ‘

3 /o /85 /53
e 5,

OLOBAL INTFEFACE
Figure 11. A Two Dimensional Processor Amay
4. A]’P'L_ICAT[GN

Smoke processors can be configured in various ways
to produce large processor arrays. One such array is

To D

" shown in Figure 11. A two dimensional bus structure is

used to interconnect the processors along rows and
columns. The communication protocol supported in this
structure allows a processor to send or receive messages
to any other processor in the system. Fonthermore, it
allows broadcast communication along any row or
column. The broadcast communication is blocking in
nature. Thus, a processor doing a broadcast will bleck
until all the recipients can receive the message. The
scheme can be extended to three dimensions for larger
arrays while still maintaining the regularity of
interconnect and uniform wire lengths. As shown in
Figure 12 the fourth port is used for high bandwidth
connection to [/O, while the global port for all processors
along a column in a given computational plane provides
the connection to bal control and memory. A
complete system architecture is shown in Figure 13, We
envision each ¢ tational plane to be mnt‘t'l’_iléy
constructed on a wafer substrate using the advanced 1
packing technology [4,12,13].

The architecture described above has several
chargcteristics - that match well with many important
applications both in the area of structured nmerical
computation and in symbolic computation. One
application that is of particular interest to us is circuit
simulation which has a mix of both symbolic and
structured numerical computation. The input phase in
circuit simulation where the node equations are being
formulated and the matrix being set vp is mostly
symbolic. The load phase in which the matrix elements
are being computed by evaluating the device models for
each iteration of the Newton's method is computationally
expensive but has litle structure to it. The soive phase in
which the system of linearized equations have to be

solved using Oaussian Elimination method s
T Campristisnsl Plane 42
F L
Coamperasivel Plare: 51 @ /{@1
Ta LD i — @- Fo CLOBAL MER ssdl CONTROL
4@ A
Compratineal Fae i P | 1 r

Te Compatatioeal Fle |1
Figure 12. A Three Dimensional Pracessor Adray

computationally intensive and is structured as well. The
broadeast communication is ideal for transmitting the
pivot element to all members in a row and for
transmitting the factors along the rows and columns that
are required in update operations. By properly mapping
the large matrix to be solved on a finite-sized array, we
manage to preserve the regularity of communication. The
fact that a sparse matrix representation is used for the
matrix to be solved requires an organization of the dara
within each of the local data memories such that the
access time is minimized. We are currenily designing
hardware solutions to further reduce this access delay.

5. PACKAGING

The perallel architecture shown in Figure 13 places
new requirements on the packaging technology used to
interconnect devices and assemble systems. These
requirements include the assembly of high pinout (up to
500 I0s) devices, the ability to susiain synchronous
system operation at frequencies up to 100 MHz, the
propagation of pulses with rise times less than 2 nsec,

cooling at thermal loads greater than 1 wart/sg.cm.
A systern packaging which is based upon the use of
individually packaged devices and PWBs tend to limit the
performance of VLSI devices due to parasitic effects. The
AVP technology [(4,12,13] overcomes many of the
limitations of conventional packaging. The substrate is a
silicon wafer. An integral bypass capacitor is fabricated
on the surface of the wafer, Devices are attached to the
interconnection substrate by means of solder, which
allows to be placed over the area of the chip, is
repair and provides. low inductance connection.
Multichip packaging allows ICs to be tested individually

883

o FEOC ARRAY G

e B g ™

A|R(F |
B|IR|R|W
LA AE RE]
RB|R[(F R
e
HEBEER
- = K O
EIETR]E
"u
I
o,

Figure 13. System Architecture

before attachment so that only functional devices are
assembled.

We hope tw package & 2x2 aray in our prototyc
system on a single wafer. As the design rules shrink to
.5 meron feamre sizes and the wafer sizes for AVF grow
to 12"x12", it will be possible to construct larger arrays
such as 8x8 or 16xl6 directly on a single wafer
substrate, Three dimensional structures can be
constructed by stacking wafers. With such a packaging
technology, a modest sized dxdxd4 aray with a 25
MFLOP Smoke processors, will be capable of delivering
1.6 GFLOPs in a cube of size 6"x6"x6". And, a Bx8x8

array would result in a peak performance of 12.8
GFLOPs in a cube of size 10"x10"x10",
6. CONCLUSION
The combination of computation r and
communication facilities. present in SMOKE make it

ideally swited as a building block for constructing
processor amays. In this paper the architecture for the
SMOKE processor was described, the rationale for the
design is discussed and the system architecture of our
machine currently under development was described.
Given the architecure and the packaging technology
described here, we believe it is possible to baild a system
to deliver 10+ GFLOPs in a size of 1 cu.fi.!

Our research focos has been at exploring techniques
that will help reduce the gap between peak and sustained
performance of parallel systems. This, of course, is
possible only with a careful combination of VLSI design,
machine ization, © iler technology, and,
ultimately, understanding of the application programs and
reducing them to efficient parallel algorithms.

7. REFERENCES

[11 A. Asthana, B. Mathews, K. Padmanabhan,
"Architectural description of the MAP
Processing Element (SMOKE)," AT&T Bell
Laboratories Internal Report, Nov. 1985,

[2] G. M. Amdahl, "Validity of the Single
Processor Approach to Achieving Large Scale
Computing Capabilities," AFIPS Conf. Proc.,
1’31;31;43&, [hompson, Washington, DC, 1967, pp.

85.

886

3]

(4]

151

(61

[7]

(8]

8. Abraham and K. Padmanabhan, "SRS: An
Instruction Reorganizer and Simulator for the
SMOEKE . Processor," AT&T Bell Laboratories
Internal Report, Moy, 1985,

C. I. Bartlett, "Advanced Packagi
Solid State Technology, June, |
123.

Moshe Gavriclov and Lev Epstien, "The
IN532081 Floating-Point Unit,” IEEE Micro,
April 1986, pp. 6-12.

Howard Sachs and Walt Hollingsworth, "A
High Performance 846000 Transistor UNIX
Engine- The Fairchild Clipper,” Proc. ICCD 85,
Oct. 1985, pp. 342-346.

James J. Hack, "Peak Vs Sustained
Performance in Highly Concurrent Vector
l’gachines." Computer, September 1986, pp. 11-
19,

G. 5. Pamerson, Jr. "Large Scale Scientific
Computing - Future Directions,” Computer
Physics Communications, Vol. 26, Nos. 3 and
4, June 1982, pp. 217-225.

or VLSL"
. pp 119-

k]|

[10]

[11]

[12]

[13]

Point

"IEEE Standard for Binary Floating
IEEE.

Arithmetic," (ANSIIEEE Std. 754).
1985.

J. B. Gosling, "Design of Arithmetic Units for
Digital Computers,” Springer Verlag, New
York, 1930.

A, Asthana, CJ. Briggs, M. Cravais, B.
Mathews, and K. Padmanabhan, "A High Speed
Multiple Pipeline Function Unit as a Building
Bleck for el Architectures,” Proc. ICCD
87, Oct. 1987, Port Chester, N.Y.

H. J. Levinstein, C. J. Bartlett, W. J. Bertram
Ir, "Multi-Chip Packaging Technol for
VLSI Based Systems,” Proc. 1SSCC, (1987).

W. 1. Bertram, Jr., "High Density, Large Scale
Interconnection for Improved VLSI System
Performance," Proc. IEDM, 113 (1987,

