PROCEEDINGS OF THE INTEENATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTEE SYSTEMS 1983,
edited by ICOT. & 1COT, 1988

1141

A MULTI-TARGET MACHINE TRANSLATION SYSTEM

Michael C. McCord

INM Thomas J. Watson Research Center
I Q. Box T0d
Yorktown Heights, NY 10598

ABSTRACT

The LMT system is a Prolog-based machine translation
systern, originaily developed for English-to-German
translation. Recently the systern has been reorganized and
improved so that it contains a large subsystem LMTX -
an “English-to-X translation shell® = which is essentially
independent of the target language, and which can be
shared dynamically among versions of LMT for dilTerent
target [anguages. An LMT system consists of the shell
LMTX oplus one or mere target-language-specific
subsystems TSPEC for target languages 7. The shell
includes (1} the English grammar (a2 Medular Logic
Grammar), {2} most of the sourceftransfer morphology
systemn and lexieal processing system, (3) the transler
algorithm and rule system, except for low-level, lexical
transfer entries, (4) the syntactic gencration algorithm, (5)
target-independent procedures dealing with morphological

generation, and (6) many utility procedures. L

target-specific subsystem TSPEC consists of {a) a
source/transfer lexicon, (b) a set of transfarmations lor
syntactic generation, and (¢} a target morphological
system.

1 INTRODUCTTOMN

The LMT system' (McCord 1986, MeCord and
WollT 1987, McCord 1988) was originally developed as an
English-to-German MT system. Recently, LMT has
become a multi-target system, based on an “English-te-X
translation shell,” LMTX, which is cssentially
target-language-independent and ean be shared among
versions of LMT lor different target languages.

Versions of LMT flor the target languages Trench
(LMTF), Danish {(LMTD), Spanish (LMTS), and
Portuguese {(LMTP) have been started up, and the German

version LMTG is being further. improved? These dilTerent -

U “The abbroviation js for “Logie-based {or Logic-programimiig-
pased) Maching Translation,” The sysiem is wrillen onliecly in
Prolog,

1 [wish to thank Susanne Walll, Arendse Demith, and Melson Corren
for work on LMTG, LMTD, and LMTS, respectively. LATTF
a collabarative effarl with the KALIFSOS eam of the T Paris
Scientific Center {(Fargues et al, 1987), with work especinlly by Frie

versions share LMTX in the strong sense that they can all
be in the Prolog workspace simultancously, sharing the
same code for LMTX. One can switch target languages in
the same session by typing eg. +french or +german.
Obviously, the idea is to design LMTX so that the portion
LMTT-LMTX of a given version LMTT can be
minimized.

One way of trying to develop MT systems efliciently
for multiple languages is to exploit symmetry as much as
possible by designing grammars that are useable for both
analysis and synthesis {see e.g. Jin and Simmons 1986}, In
a stronger version, there is a universal semantic
representation language, an interlingua, used as the target
of analysie and the source of synthesis (see e.g. Carbonell
and Tomita (1986)). LMT is not symmetric in these ways,
The analysis and synthesis grammars are quite different in
nature. It seems better to optimize grammars far analysis

_or for synthesis, especially considering that the hardest

part of translation is getting a good analysis of the source
language. Furthermore, it seems dillicult to develop an
interlingua on a large scale.

LMT uses a syntactic transfer method, although the
source analysis trees contain information that is often
called “semantic”. Terminal nodes are word sense
predications, which consist of word senses together with the
arguments they should have in logical form. Deep
grammatical relations are shown in these arguinents.

The next section, Overview of an LMT spstem,
describes the organization of LMT from two points of
view. The first is the static organization of the system, in
terms of its division into modules, with an cmphasis on
which parts are target-independent and which are
target-depenident. Thé second is the dynamic organization.
A diggram iz given, outlining the stops of translation and
showing which modules are involved in each step. The
remaining sections of the paper constitute an expanded
expozition of the steps of translatiom Sewrce/framgfer
lexical analysis, Sowrce gpmiactic analysis, Trangfor,
Symtactic generation, and Morphological generation,

“Bilangs. LMTD i being develaped in oollshoration with 15
Eurcpean Language Scrvices, Copenhagen. LMTT s heing
developed by Paula Mewman's group at the TBM 1.4, Scienlilic
Coenler.

1142

2 OVERVIEW OF AN LMT SYSTEM

An LMT system = consists of the
target-language-independent subsystem LMTX plus one
ar more target-language-specific subsysterns TSPEC for
target languages T. :

LMT

The Shell
LMTX

1

GSPEC |

| FSPEC |

| DbpspEC |

The shared subsystem LMTX has three main
components: (1) MODL, the English analysis grammar
with supporting procedures, (2) MODMOR, the
soureeftransfer morphological component, and (1)
LMTSYN, the component dealng with
target-language-independent, syntactic aspects of
translation, These three modules are used in a runtime
LMT system. In addition, LMTX containg a module
LMTUTIL of utility procedurcs dealing mainky with
preparation of lexicons.

A target-specilic subsystem TSPEC consists of three
components: {a) TLEX, the sourcef/transfer lexicon, (b)
TRYN, the target syntactic companent, and () TMOR,
the target morphelogical component. (In the actval names
for a specific target language, 7 is replaced approprintely
fior the target language, as in DLEX [or Danish.)

The shell LMTX contains about 2800 rules {before
various compilations, which produce more clavses) and
constitutes about 80% of LMTG-GLEX, lor example,

LMTG was tested on a 500-scntence corpus [fom a
computer manual, and was able to translate 95% of the
sentences in an wrderstandable way {understandable to a
native German speaker without consulting the source)
The processing time [or this corpus was about 20
milliseconds per word, using VM/Prolog (Gillet) as a
Proleg interpreter on an IRM 308,

2.1 The target-independent subsystem LAMTX

The English analysis grammar is writtcn as a
Modular Logic Grammar {McCord [985, 1987}, and the
MODL component includes the MLG rule compiler, as
well as this grammar., The graminar is compiled into
Prolog when MODL is loaded. Aside [rom these
subcomponents dealing with syntax, the MODL
compaonent containg the following: (1} an interface
between the syntax and TLEX lexicons which is called the
lexical compiler (discussed in Section 3), (2) rule compilers
for other rule subsystems of LMT, as part of a general
procedure geonsult that consults Prolog files and compiles
special rules (MLG rules and others), (3) a sermantic
interpretation system, (4) the top-level (driver) procedures
for the whole system, (5) the tokenizer, and (f) many
utility procedures.

The MODMOR component of LMTX deals with
morphological analysis of English based on a state
transition algorithm ({McCord and Wolll 1987)
MODMOR also deals with synthesis ol new lexical
transfer entries: When an English word is derived
morphologically from an English base word, the transfoer
entries [or the base can olten be converted correspondingly
into transfer entries for the derived word. MODMOR
handles the target-language-independent ‘aspects of this
synthesis (mainly top-level bookkecping procedures), but
low-[evel, target-specific rules for transfer synthesis exist in
the wvarious target morphological components TMOR,
MODMOR containg the interface to these TMOR
procedures; and the proper target language is chosen
automatically at runtime on the basis of a contral
predicate specifying the current target language.

The LMTSYN component of LMTX contnins

(1) the top-level procedures lor translation, {2) the transfor
system, (3) the basic algorithm [or syntactic gencration of
the target language, along with several wtility procedures,
(4) the top level of inflectional generation, with an
interface to target-specific inflectional systems in the
eomponents TMOR, (5) procedures for producing seitable
output character strings for translated text, {6} procedures
for lexical compiling of transler entries, {7) a rule compiler
that ereates interface rules between target-independent and
target-dependent prodicates, and (8) & system Tor keoping
statistics and evaluating translations. Aside from the rule
compiling mentioned in {7}, there is minor rule compiling.
done (by geonsult) for the transfer rules and the top-level
inflectional rules ol LMTSYN (which have an abibreviated
external format). It is interesting that the transfer system
for LMT {except lor specific lexical translers) is essentially.
all targei-independent (and hence is contained mainly in
LMTSYN).

1.2 The target-dependent subsystem TSPEC

The TLEX component of a TSPEC subsystem, as
indicated above, is a source/trangfer lexicon: Tt is indexed
by souree (English) words, and contains (1) monolingual
English information, (2) transfer information (for transfer
to the target language T}, and (1) some monolingual target
information, stored in transfer elements. All the lexicons
TLEX (for different 7)) have the same cxtermal format.
lexical entries [rom difTerent TLEXs can coexist in the

runtime system and can be distinguished {as to the proper
tarpet language) by means of VM/Prolog prodicate
prefizing: Lexical clauses, when read in, are prefived with
the name of the appropriate target language. Texical
compiling of TLEX entries is done at runtime, as specific
words of the source text are encountered.

Syntactic target-language generation is done by a
transformational grammar, The TSYN component of
TSPEC consists of the transformations themsclves; these
are controlled by the target-independent syntactic
generation algorithm from LMTSYN. TSYN
transformations are expressed in a convenient external
lormat which is compiled (by goensult as TSYM is read in)
into Prolog clauses for a procedure transform, So that
different transforimational systems can co-exist, transform
is prefixed with the name of the target language.

The target morpholopical component TMOR deals
mainly with (I} inflectional generation of target language
word forms, and (2) derivational generation ol transfer
entries. These two subecomponents of TMOR have
interfaces from LMTSYMN and MODMOR, respeoctively,
as indicated above,

2.3 Dynamic organization

The following diagram shows the steps of translation
in LMT. The items in the boxes are the data structures
involved, The items beside the arrows show the names of
steps and which modules are called.

Source Input String)

Tokenization
(MODL)

Token List I

Source/Transler

Lexical Analysis

(MODMOR, 7LEX,
TI:H OR)

Token Iljst + Lexical Clauses i

Source Syntactic Analysis
(MODL)

-

Source Analysis Tree - I

Transfer
(LMTSYM,
Results from TLEX)

Transfer Trea |

Target Syntactic Generation
(LMTSYN, TSYMN)

1143

Target Surface Tree (Uninfected) |

Ta.rgut Inflection
(LMTSYN, TMOR,
Results from TLEX)

r Target Surface Tree (Inllected) |

Target Word List

Transformations

(LMTSYN, TMOR,
Reselts rom TLEX)

E

| Target Token List |

Target String Formation
(LMTSYN)

| Target Qutput String

3 SOURCE/TRANSFER LEXICAL ANALYSIS

English text to be translated is first separated into
sentences? and text formatting commands. A sentence to
be processed is tokenized, and its words are looked up in
the appropriate TLEX lexicon in combination with
morphological analysis. This involves calling the
morphological procedures in MODMOR, plus transfer
synthesis rules from TMOR. Thus each wored gets a
{possibly derived) lexical analysis (umless the
lexical/mofphological system does not cover it). Such a
lexical analysis, being based on the compact external
format of TLEX, is then converted by the lexical compiler.
{discussed below) into internal-form clauses convenient lor
the syntactic components. These clauses are asserted into
the Prolog workspace, but are retracted alter the sentence
15 processed.

A source/transfer lexicon TLEX s of course
dependent on a target language T, but necarly all of the
procedures that process it, outlined . above, are
target-independent (in LMTX).

Let us look at some details of the format al a lexicon
TLEX (far more details, see MceCord and WellT (1987)).
The lexicon consists entirely of Prolog unit clauses of the
form W < A, where Wis an English word and A is the analpsis
of W. (There is only one such clavse for a given ward W.)

A sample entry in GLEX (the English-German
lexicon) for the word wew might be

wiew < v{obj) < n{nobj)
< tv(ace,bettracht) = tn(gen,ansicht.f.n).

* Bentence fragments are handled alse, bul we use the lerm
“senlence” — refercing to lewl sirings soparated by end-ol-sentence
gymbols, etc

1144

The [first line contains two source (English) analysis
elements, showing that view is a verb with an abject slot
and i5 & noun with a complement slot filled by an a~PP.
The second line contains two transfer cloments
corresponding to the scurce elemonts (in general, a source
element could have more than one corresponding transfer
element). The tv (“target verb™) element shows that the
verbh translates into befrachien, and the German
complement corresponding to the English object slot gets
the accusative case. The tn element shows that the noun
translates into Amsfcht, with complement taking the
penitive case.

Mote that there is target-language morphological
information in these transfer elements. The German verh
iz shown to be an inseparable-prefix verb, and the noun's
gender and declension class are specificd. Such
information is given in a compact [orm, and s
specification here haz the advantage that only one lexical
look-up is needed for processing view and its translations.
Also, it is easier for a person creating the lexicon to sce all
of the relevant information in one place.

The elements of word analyscs (such as the v, n, tv,
and tn elements above) can be of several dilferent types.
Eleven different parts of speech are allowed for source
elements, with corresponding transfor clements, and there
are eleven types for showing irregular inflections of source
words.

There are alse multiword typés corresponding o
most of the parts af spesch. For example, in order to
translate take care af X into sich wn X kilmorern, the word
take could contain the multiword clements:

take = ... < mv(=.care.of ,0bj)
= tov(pe{um,ace), s Tchikismer) .

The examples shown so [ar exhibit no semantic type
conditions; but semantic type requirements (given as
arbitrary Boolean combinations of simple types) can
optionally be associated with complements — both in
source elements, for word sense sclection, and in transfor
clements, for target word sclection. For cxample, the
[ollowing entry lor ear

eat < v(obj} < tv(nom:human,acc, ess)
< tv(nom: (animateb-human) ,acc, fress).

can select ezten or frescen as the translation according as
the subject is human or is animate and not human,

When an English word is not found in TLEX, it may
nevertheless be derived by the morphological procedures
in MODMOR from a word that can be found. [For
example, rewseable might' be derived lrom use, with
morphological structure (re.bfuse)).able. (The b
indicates the base.) Suppose the tarpet languape is

German, and the entry for use is

use = ¥(obhjl) = tv(ace,veriwend)
< n(nobj) < tn{gen,verwendung).

Then MODMOR manages the action of the aflixcs re and
able on this analysis, to produce a derived analysis of
reuseable:

{{re.bluse)).able) + adj
< ((re.b{usa)).able) + tadj('wieder verwandbar®).

The morphological structure is shown along with cach
analysis element, since it can vary in general {as with
resaw).

This morphological derivation illusirates the division
af laber between LMTX and TSPEC. All of the work is
in MODMOR (= LMTX) except for the specifie, low-level
rules for alfix action on transfer clements. This is
“dispatched” by MODMOR to the proper TMOR module
in the following way, MODMOR contains a gencral rule
for the action of the suffix able on a transitive verb
transfer element, roughly like the following:

suffixcp(able,TV,tadj(TargetAd))) +
transitiveTransferElement (TV) &
lastarg(TV, TargetVerh) &
tsuffixop(able,tv,TargetVerb, TargetAdi).

Thus the problem is reduced te the call to tsuffixep,
which Iels able act on a target verb to produce a target
adjective.

This still does not mention a specific target language,

The *target dispatching” is done by clauses for tsuffixep
ol the following lorm:

tsuffixep(Suffix, Type Wordl, , Hord2) +«
target (german) &
geuffivep(Suffix, Type,Wordl,Kord2) .
tsuffizop(Suffix,Type,Wordl, Werd2) +
target{french) &
fsuffixop (Suffix, Type,Wordl Hord2) .

4

Flere target iz a "control” predicate, which the user can
set to the desired target language. The definition of
gsuf fixep is in GMOR, fsuffixep is in FMOR, cte, For
example, the gsuffixep clause for abTe is roughly like:

geuffixoplable,tv,TVerb, TVerbibar).

There are many cases of target dispatching clavse
gets in LMT, like those for tsuffixep. Such clause sets are
ereated by a rule compiler in LMTSYN, which is given the
names of the target languages and the predicates to be
dispatched (without the initial t) and their aritics. The rule
compiler names the target-specific predicates by prefixing
the frst letter of the language names, and prefises the
dispatehed predicate with a t.

Once a (possibly derived) analysis for an input word
is found, the analysis is given to the lexical compiler to be
converied into internal-form Prolog clauses. These clauses
are more efficient lor the syntactic componcnts to use
beeause they are put into a standard form obtained by
interpreting abbreviations allowed in the external format.
For example, & v (verb) analysis eleiment in most general
form can specily a word sense name, but if this is omitted

(as in all the examples above), it is taken to be the index
word, Semantic type requirements on verb complements
are expanded into combinations of 1sa goals, which can
be executed by Prolog against an isa hicrarchy.

Let us Jook at an example of lexical compilation.
The tv element for the ear = jfresren transfer given above
is compiled into the clause:

tverb(eat (nom:XS:¥F,acc:YS:YF),fress) +
isa(¥5,animate} L -isa{X$,human).

Here the first argement of tverb is the word scnse
predication for eat, which is produced by the lexical
compiler from the v element for eat. This will appear in
the terminal node for eat in the symtax tree and hence will
be available for transfer.

In general, the arguments of a word sensc
predication for anm open-class word are of the lorm
X:Sense:Features where X is the marker variable associated
with the complement corresponding to this argument,f
Sense is unified with the word sense name for the head of
the complement (like manl), and Features is unificd with a
term representing the syntactic features af the complement.

The tverbh clause for eat above accomplishes two
thingst (1) It uniftes the marker variables of the
complements with German syntactie cases, and these are
used to determine the cases marked on these complements,
and (2) the isa goals make semantic requircments on the
subject complement. Marker variables are like pointers
inte complenents, and are in general wsed to pass
information from a head word to its complements. IFor
example, a transfer element can pass a “rule switch” to a
clausal complement — a flag that tripgers a transformation
in TSYM on this complement.

4 SOURCE SYNTACTIC ANALYSIS

As indicated earlier, the English analysis grammar is
written as a Modular Logie Grammar (MLG). This has
been reported on in previois work, (MeCord 1982, 1985,
1987, 1988), but the main leatures of the grammar will be
deseribed here briclly, The grammar is written cssentially
independently of the task of translation,® but there are a
vory few switches in the grammar that do concern the
LMT application, even referring to target languages or
classes of them, and these will be discussed in this section.

MLGs are variants ol DCGs (Colmeraucr 1978,
Pereira and Warren 1980}, having scveral extra ingredients
in the syntax rules that allow grammars to be more
compact, and having 2 separate semantic interpretation
component of a certain type (dealing with problems of

4 The marker variable is unified with the main logical variable for the
complement used in building logical forms. For example, iF the

complement I8 an NP with head man having logical form

manl (X}, then the marker varinhle is X.

5 The MOQDE semantic interpretation system produces logheal Torms
in the logical ferm langoage LFL (MeCord 1985, 1987). This
fcility is being vsed by Bernth (1988) In a discourse understanding
system.

1145

generalized quantifier scoping). The MLG syntax rule
compiler takes care of analysis structure building, so that
the grammar writer does not have to bother with the
bookkeeping for this. Syntactic analysis trees can be built
in a first pass, with logieal forms being built in a second
pass — or optionally logical lorms can be built in a single
pass by interleaved calls to the semantic interpreter added’
to syntax rules by the rule compiler. The two-pass option
is used in LMT, since transfer is done [rom the syntax
trees.

MLG syntax rules are compiled into Prolog clauses
in such a way that parsing follows Prolog's native
execution scheme and is top-down with backtracking, etc.
Thers is a fairly good treatment of lelt-recursive
constructions in MLGs. An ingredient ol the syntactic
formalism, cafled the shiff operator, is interpreted by the
rule compiler o build left-embedded syntactic analyses
even though right-recursive rules are used.

The automatically built syntax trees are like
derivation tress, but differ rom these in three ways. (1)
Modes are not built for the expansion of all non-terminals,
but only for those declared as strong non-terminals. (2)
The shift operator produces a deviation from a derivation
tree. (3} The terminal nodes are logical terminals, which
appear on the righthand sides of syntax rules {in addition
to ordinary word-string terminals).

Logical terminals are the building blocks [or logical
form analyses. They are terms of the form Op-LF where
LF iz a logical form, usually a word sense predication, and
Op is & term called an operator, which determines how LF
aperates on (modifies) other logical terminals in building
up a legical form analysis. In LMT, the word sense
predications produced by the lexical compiler rom TLEX
entries appear in logical terminals in the MODL grammar,
hence appear in terminal nodes ol syntax trees.

The automatic structure-building scheme of M1.Gs
makes it easier to develop uselul augmentations of the rule
compiler. There is a8 metaruie svstem for handling
coordination and bracketing — constructions with paired
symbols like parentheses and text-larmatting lont-change
gymbols. Also therc is a limited tabular parsing Facility for
parsing input phrases that are not complete sentences.

The MODL grammar has a fair amount of loxicalism
in its techniques, because of a systematic use of stot-rames
that originate in lexical entries. Complements of
open-class words are analyzed by general slat-filling rules.
Slat-frame manipulations are used, for exampie, to handle
passive constructions. Preference heuristics in the sense
of Wilks, Huang, and Fass (1985) lor attachment of PP's
look at slot-frames and prefer slot-filling over adjunct
madilication, Semantic type tests (for - ambigeity
resolution) can be done during parsing, based on semantic
type conditions associated with slots (sce Section 3 above).

Let ws look at the switches in MODL that are
concerned with the translation task, and in particular with
multi-target translation.

An example is the treatment of relative clauses and
other noun postmodifiers. When logical forms are being
built {and the translation task is not “on), the marker
variable for the relative NP {usually a relative pronoun) of

1146

a relative dlause should be unified with the marker variable
of the modified noun phrase® However, when LMT is
“on", we do not want these marker variables to be unified,
because marker variables are used to control target
syntactic [eatures like cases, and the case of the relative
™P is independent of the case ol the modified NP, There
is a predicate 1inkmarker(X,Y) that controls this. Its two
arguments are the typed marker variables? associated with
the modified WP and the relative MNP, IT' LMT is off, then
Tinkmarker simply unifics X and ¥, ICLMT is on, it allows
the actual marker varnables to be independent, but it does
unify the remaining portions of X and ¥. (This a sermantic
type requirement by the slot filled virtwally by the relative
NP will in fact be made on the noun modificd by the
relative clause.)

Another example of a switch, having to do with
classes of target languages, is the treatment of noun
compounds. MODL has a fairly goeneral treatment ol
noun compounds, allowing [left- and right-branching
structures (by use of the shift operator) according to the
various ways members of the noun compound modily (or
attach to) other members. A procedure attach controls
this; it iz given the typed marker variables of the two
subcompounds, as well as the slot-lrame of the one to the
right. One way of attaching is for the first subcompeound
to fill a slot in the second one, as in file management, so
attach can unify the marker ol the lirst with the marker in
a suitable slot of the sccond, and return the reduced
slot-frame. For producing logical (orms, exactly this is
done, But there iz a variant nlinkmarker of Tinkmarker
that does something different when the target language is
a language like German or Danish where nglish noun
compounds are translated into more or less isomorphic
cenglomerations of nouns. For such target languages, and
for noun-noun maodification (as epposed to adjective-noun
modification), nlinkmarker dozs the same thing as
1inkmarker above, allowing the two marker variahles to be
independent. (But the slot-frame of the modificd
compound is still reduced.) The transfer component
recognizes the independence of these marker variahles, and
unifies all those of the premodifying nouns with a special
“case” symbol conb {for combining fornt), which causes the
morphological generation rules te inflect the noun
premodifier as a combining lform (as in commnand panme =
Befehlsname),

For translation to Romance target languapes,
Enghsh noun compounds must olien be unfolded to
NP-PT combinations; and in this situation, nlinkearker
does unily the marker varfables. 'When the modified noun
s transferred, its complement case requircments ean
include specific prepositional cases, which are unified with
the marker varfable of the premodifier. Thus the proper
prepositional case is marked on the premedifier, and a

£ Thus, in the novn phrase the man that John sold Bl gaw, the
logical varlaile associated with mon eventually gets unified with the
object varlable of saw since the relalive pranoun fills the
corresponding sbol.

T These are moerkor varablos topether with the sense and fealure
lerms as described al the end of the previous section and also with
it lerm representing a test on the scnae and for feature term.

general "unflolding” transformation in TSYN creates the
appropriate PP out of the premodilier.

A [nal example of a switch related to choice ol
translation target iz the treatment of adjective phrase
complements of linking verbs. In French and Danish, such
an adjective complement must agree in gender and number
with the subject ol the verb, whereas in German the
adjective s unillected. Such verbs are distinguished in
MODL by having a slot predemp. The filler rule for
predemp calls another linking procedure which (eurrently),
far all targets but German, makes a sueitable unification ol
subcomponents of the markers of the subject and the
complement, namely the subcomponents of the feature
components that specily number and gender. Tn Lhe casc
of German, it 15 desirable to Jeave this subcomponent
unbound, because the German morphological component
leaves an adjective uninfllected iF its pender [cature is
unboumnd,

5 TRANSFER

The transfer system of LMT converts an Tnglish
syntactic analysizs tree into a tree which iz basically
isomorphic but which has contents appropriate or the
target language. The terminal nodes are target-language
words in base form together with leature structures that
determine correct inflections in the target language. The
non-terminal nodes are feature structures that have two
basic purposes: (1) They serve as vehicles for passing
information up and down the tree during transfer. {2)
During syntactic pgeneration, transformations = (lrom
TSYN) do pattern matching on these nodes as part ol their
tests of applicability.

As mentioned in Szction 2.1, most of the transler
algorithm is target-independent — cxecept lor the low-level
word transfers compiled from TLEX cntries. There are
three kinds of transfer rules, the first two of which are
{arget-independent: (1)} mon-tferminal trangfer ruiles, (2)
termtinal transfer rules, and (3) word rrangfer rules. We will
describe these first, and thoen describe the transfor
algorithm that uses them,

The simplest form of & non-terminal transfor rulo is
just
Sourcelabel ---> TargetLabel.

Here the lefthand side iz a node label for the English
syntactic analysis tree, created automatically by the MLG
rule compiler.® A rule of this simple type iz

s{Infl,*,*,*) ---> vp(ind:s,Infl:*,nil).

This transfers a source s (sentence) node label (only the
inflection. argument is relevant for transfer) to a target vp
structure, which is used for any phrase whose head iz a

P Such a node label is taken normally frem the sirong non-terminal
on the lefthand side of the MLG synlax rule that is expanded in
crealing the nede. U consists of the non-terminal name, as o
funclor, tegether with its (nslanfiated] feaiure argumenis. The
feature argumenis are he ficst # arguments, where o is specified
aleng with U non-lérminal @ the declaration of strong
non-terminals for the pramenar.

verb, (We will not give the general form of a targel wp
structure here.}

Mon-terminal transfer rules can alzo look at a kind
of context, in order to pass information around the tree,
namely at (the label on) the mother node. Such rules are
written in the form

Sourcelabel ---» TargetLabel % MotherLabel.

The MotherLabel iz the targer Feature structure on the
mother node; transfer works top-down, so this is available.
Most non-terminal transfer reles use the mother context.
An example of this sort is needed for translerring the label
on & participial clavse medifier of a noun phrase {as in the
Sfile created by the user), where it is important (for some
target languages) to link the person-number-gender feature
on the mother NI with the inllection of the participle.

Finally, non-terminal transfer rules (of either of the
above types) can have a condition +—Cond added at the end.
A simple rule compiler converts any non-terminal transfer
rule into a clavse for the predicate

traniabel (Sourcelabel ,TargetLabel ,MotherLabel)
with & condition, if given.

The second kind of transfer rule iz a terminal translfer
rule. The purpose of such a rule is to take a terminal node
of the source analysis tree, namely an MLG - logical
terminal, inte a terminal of the transfer tree. Terminals of
the transfer tree are of the form BaseWord+Features where
BaseWord is a target language word or multiwerd in hase
form (or, in a very few eases, symbaols that are treated
specially by syntactic or morphological gencration) and
Features isa feature stricture to be used by morphological
generation for inflecting BaseWord, Recall that a logieal
termimal . (in the source tree) is, of the [orm
Operator-LogicalForm. Transfor ignores the oporator
component. The logical form component is normally a
word sense predication; in fact transfor 7erocs out all
logical terminals for which this is not true. Obviously, a
logical terminal (in the source tree) has no leatures marked
on it directly, but the target label lor its mother is available
to use. (This would be produced by a non-terminal
transfer rule acting on the source label af the mather.)

The most peneral kind of terminal transfer rule is of
the [orm

EPrediMotherLabel -->> TargetWord¢TargetFeatures
+ Condition.

(Here the rule symbel -->> has higher precedence than
+3 The left operand of --»> is the logical lorm
component EPred of a logical terminal, together with its
mother label.

An example is

EPredyve(T,Inf1,L) --=> TVerb+ve(T,Inf11,C)
+ cons(*.X.*,EPred) &
tverb{EPred, TVerk) &
svagrae (Infl,X,Inf11).

This is one of the rules for transferring a verb
terminal. The mother label (the we structure) is used

1147

almost unchanged for the target feature structure, bt
there is a (possible) adjustment of its inflectional Feature
{Inf1) by svagres (“subject-verb-agree”), to make sure that
it agrees in person and number with the target languape
subject {which could have features different (rom those of
the English subject}. There are other verh terminal transfor
rules, dealing for example with the case when the target
subject does not correspond to the English subject (as in
fike = gefalien in LMTG), dealing with passives, etc,

If the target feature is just to be taken as the {target)
mother label for the source terminal, then the target
feature need not be specified en the righthand side of the

=== e

EPfrediMotherLabe] -->=> TargetWord
+ Condition.

A simple example is:

EPradipp --== TPrep
+= tprep(EPred, TPrep) .

Also, the condition andf/or the mother label may be
omitted if’ they are not needed because of a special form for
the terminal itsell] az in the transfer of special symbols like
numbers.

Apain, a simple rule compiler translates all of these
forms into a standard form, a clavse lor

tranword [EPred,MotherLabel,
TargetWord, TargetFeatures) .

As will be noted from the preceding examples,
termminal transfer rules (internally, clauses for tramword)
generally call transfer rules of the third Kind, the
target-specific word transfer rules {like thosc for tverb)
which are compiled from TLEX. But most of the terminal
transfer rules have some non-trivial preparatery work to
do befors calling these low-level rules, and this is done in
an essentially target-independent way (in a eouple of cases
target dispatching ts used).

Mow that we have described the types of transfor
rules, we can specily the transfer algorithm as a whole. 1t
works in a simple top-down, lelt-to-right manner. The
transfer procedure,

transfer{SourceTree,Motherlabel ,TargetTres),

is recursive and keeps track of the target label,
Motherlabel, for the mother of the current troo
(SourcaTree) being transferred. In the top-level call of

transfer, this is just a symbol top. There are two cases:

1. If SourceTree is non-terminal, then transfer calls
tranlabel (ie., the non-terminal transfer rule system)
on the label of SourceTree, with MotherLabel also as
imput, getting a target label for TargetTree as output.
Then transfer runs through the list of daughter trees,
calling itsell on each of them, with the label on
TargetTree (just obtained) as the mother label, thus
getting the list of daughter trees [or TargetTree. (In
the processing of the daughter list of SourceTree,

1148

certain terminals not relevant to translation are
ignored.)

2. If SourceTres is a terminal (a logical terminal
containing an English word sense predication), then
transfer calls tramword (i.c., the terminal transfer rule
system) with the English word sense predication and
the mother label as input, and obtains the target word
with its feature structure as output.

The basic idea in making most of the transfer rules
target-independent s to include enough information in
target feature structures to make them useable for all the
target languages currently under consideration. Tt scems
to be possible to do this with reasonably simple structures.

Let us look at an example of target feature
information that is useful for a class of target languages,
but can be ignored lor other target languages. This
concerns the treatment of adjective inflections and articles.
In both German and Danish, there is a distinction between
a strong and a weak declension for adjectives. For
premodifying adjectives in & noun phrase, the declension
depends on the kind ol determiner {and the presence of
one} in the noun phrase. Furthermore, in Danish the
definite article is enclitic on the head noun if there are no
adjectives and no restrictive postmodifiers present.

These interactions between determiners and
adjectives in German and Danish are handled by a
subcomponent of the noun phrase feature structure — the
premodifier shape feature® All of the noun premodiliers,
including the determiner, share this feature by unification.
(For the required unifications, the "mother context” in
non-terminal transfer rules is important.)

The premodifier shape feature is a term of the form
St:A. The subterm A is bound to the atom a by the
non-terminal transfer rules iF an adjective premodilier or a
restrictive postmodilier is present {otherwize A gets bound
to 8). Thus A is refevant to the Danish noun phrase; it is
ignored for the other languages currently considered, but
would be relevant for other Scandinavian languages. The
sublerm St has to do with the strong/weak choice lor
adjective declensions. Although the unifications ol St
variables during transfer are important, these are not
actually bound during transfer, but during morphological
generation (by rules in GMOR or DMOR). In both
German and Danish, St can get the value st or wk
according as adjective premodifiers should receive the
strong or the weak declension. In the case of Danish, 5t
can also get the value elitfe (during morphological
generation), when it is appropriate to have an enclitic
definite article. More details (for Danish) will be given in
Section 7. An interesting point is that the Danish definite
article is treated withoul using transformations (lrom the
syntactic generation component).

* There arc only three other sutbeampenents, dealing with noun type
(commen, proper, eto.), case, and person-number-gender,

6 SYNTACTIC GENERATION

Syntactic generation takes the transfer tree and
produces a surface structure trée for the target language
by using a transformational grammar. As mentioned
above, the translormational algarithm is
target-independent. It works recursively on the tree. Af
each level, the algorithm is first applied recursively to the
duughter nodes, giving a tree with 2 new list of daughter
nodes. Then transformations are applied to this tree in a
loop: Each time through the loop, the first applicable
transformation is wused (thus the order of the
transformations matters). The loop terminates when no
transformations are applicable.

The transformations themselves are of eourse
target-specific, coming from TSYN. The call to them by
the transformational algerithm is as follows:

target(Lang) & Lang:trensform(Name,0ldTree,NewTree),

Thus a specific transformation is given by a clause for the
predicate transform, which is prefixed by the target
language. The Mame argument is just the name ol the
transformation, wused for tracing, The actual
transformations (in TSYN) are expressed in a special
notation that is cenvenient for doing pattern matching
with sublists (of tree constituents), and the rules in this
format are compiled into Prolog clauses for transform.
The transformation rule compiler is o course
target-independent. We will not give details here about the
format of the transformation rules and the rule compiler,
because there is nothing new for these over what was
described in previous papers {McCord 1986, 1988).

We should comment that generally a 7S¥N
component is relatively small, because a principle of LMT
is to get as much right as possible during transfer.
Cuorrently GSYN has only 44 transformations.

Some MT systems apply a target-dependent system
of transformations Lo source analysis trees prier to
transfer, as well as a system of target-dependent
transformations after transfer. The LMT scheme, with
mast of the rules up through the transfer step being
target-independent (and with transformations applied only
after transfer), seems better suited for a multi-target
translation system.

7 MORPHOLOGICAL GENERATION

This last step of translation in LMT takes the output
tree from syntactic generation and produces the character
string representing the target sontence. There are actually
three substeps: (1) the application of inflectional
procedures to the terminal nodes of the tree, producing an
inflected tree, () the application of target word list
trangformations to the inflected tree, producing a list of
words and special symbols, and (3) the production of the
final character string, taking account of punctuation, text
formatting symbals, ete,

The first substep is the principal one. There is an
outer layer of target-independent rules handling inflections.
The rain rules of this sort have heads of the form

BaseWord+Features -»>> Inflecteddord.

Ultimately, these rules call target-dependent inflection
procedures in TMOR; but there is some recursion in -»»=
rules for handling compeund words (perhaps of more than
one part of speech), and there are varicus “tidying-up”
operations for getting the inflectional features in good
order for TMOR. TFor emmple, subject-verb agreement
for coordinated subjects is treated here.

The target-dependent procedures called by -=>> rules
are mainly just the inflection procedures for speciflic parts
afl speech, like

tverbf (Verb, Inflection,VerbForn)

for verbs. These are “target-dispatched"'" to procedures
like gversf in GMOR and fverbf in FMOR.

It could be said that a target inflectional system (in
TWMOR) is the most independent part of an LMT systen
the task of finding inflected forms from base forms and
inflectional features is rather theory-independent. GMOR
and DMOR were written locally, but most of the French
inflectional morphology for LMTF is that of the
KALIPSOS system (Fargues et al. 1987).

In Scction 5 we mentioned the use of the premodifier
shape feature 5t:h in treating determiner, adjective, and
noun inflections for Danish. IFa definite article is present
and A can be bound to 8 (meaning that no adjective

premodifiers or restrictive postmodifiers are presént), then,

ddetf can both bind St to €litie and rcturn B as the
inflected form ol the premodifying article (zeroing it out).
When dnounf sees thiz feature, it adds the clitic to the
noun., The other cases for 5t can be handled appropriately
by ddetf and dad]f, depending on the type of determiner
present.

The second substep of morphological generation is
to convert the inflected tree into a target word list,
applying rarger word fist transformations, i possible, on
each level. The purpose of these transformations is to do
any cleaning up of the translation that is appropriate on
the word list level. The main example of intcrest is the
treatment of contractions, as in i dem Maus = im Haus,
or le honuse - Chomme.

The main part of the algorithm for this second
substep 15 itself target-independent. At cach level, the
daughters of the tree node being converted are [irst
converted recursively to lists and concatenated into a single
list, Werds, At this point, application of & word list
transformation is attempted, by calling a procedure

tphrase(Category Words Mordsl) .

The Category is the principal Munctor of the label on the
tree - .node being converted. This procedure s
target-dispatched to target-specific procedures in TMOR
(like fphrase in FMIOR). IF the call to tphrase succeeds,
then the desired word list for the node is taken to be
Hords1; otherwise it is Werds.

10 Recall that there is a rule compiler in LMTSYN thal creales the
clanses for switching to the larget-specilic procedures for the

appropriate larget languages.

1149

Word list transformations can alse be used
sometimes to effect idiomatic phrasal translations, by
letting phrases translate compositionally and then
transforming them. The transformations can appear, in a
slightly abbreviated format, in a TLEX lexicon, and the
lexical compiler converts them into tphrase rules.

The third and - last substep of merphological
generation (producing the final character string, handling
punctoation, etc.) will not be described, although it should
e mentioned that it is target-independent.

REFERENCES

Bernih, A. (1988) "LODUS — A logic-oriented discourse understanding
system,” Research Report RC 13676, IBM Research Diviston,
Yorkioom Heights, NY 10598,

Carbonell, 1. G. and Tomita, M. {1986) " Knowledge-based machine
translation, the CMU approach,”.in MNirenburg, 5. (ed.), Machine
Transiation: Theoretical and Methodological .an's. Cambridgs
Undversity Press. '

Celmeraver, A. (1978) “Metamorphosis grammars,” in L. Bole [EL),

_ Natural Language Commmunicarion with Computers, Springer-Verlag.

Fargues, §., Bérard-Dugeurd, A., Landsu, M. C., Nogier, J. I, Catach,
L. (1387) “"KALIPS0OS Project: Conceplual semantics and lnguistics,”
Proc. of the Coaf. on Artificial Tarelligence amd Natiral Languags
Techrofogy, IBM Evuropesn Language Services, Copenhapen.

Jin, W. and Simmens, R. F. (1986) “Symmelric rules for transfation of
Englith and Chinese,” Contputers and Transiatian, vol. 1, pp. 153-167.

MeCord, M. C. {19#1} *Using slots and modifiers in [ogic grammars for
natiral lenguage,” Ariificial fntelligence, vol. 18, pp. 327-367.

McCord, M. C. (1985) “Modwlar logic grammars,” Proc. 23ed Ansal
Meeting of the Association for Computationa! Linguisticr, pp. 104-117,

Chicago.

MeCaord, M. C. (1986) “Design of a Prolog-based maching translation
system,” Proc. of the Third [atermational Logic - Programming
Conference, pp. 350-374, Springer-Verlag, Bedin.

MeCord, M. C. (1987} “Natural language processing in Proleg™ in
Walker ct al. (1987}

McCord, M, C. (1988) “Design of LMT: A Prolog-based machine
translation system™ Mesearch Report RC 13538, IBM Rescarch
Division, Yorklown Heights, NY 10598, To appear in Compaationa!
Lingulstics,

McCord, M. C. and Wolll, 5. (1988) "The lexicon and morpholopy for
LMT, a Prolog-based MT syslem,” Research Report RO 13403, 15M
Research Division, Yorktown Heights, NY 10598,

Percira, F. C. M. and Warren,). H. D. (1%80) "“Definiie clawse
grammars for language analysis — a sucvey of the formalism and a
comparison with trangition networks,"” Aridffeial Intelligence, val, 13, pp.
231-278.

Walker, A. (Ed.}, MeCord, M., Sowa,). F., and Wilson, W. G. (1987}
Knowledpge Spstems and Prolog: A Logical Approach to Expert Sypsicmys
and Natural Language Processing, Addison-Wesloy, Reading, Mass.

‘Wilks, Y., Huang, X-M., and Fass, D). (1983) "Syntax, preference and
right-attachment,” Proc. %th Irternational Joint Conference an Artificial
Tntelligence, Los Angeles,

