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ABSTRACT

Distributed artificial intelligence (DAI) deals
with cooperative solutions by distributed agents.
Motivated by the conventional distinetion between
datapath and control design, we are developing a
DAT system for VLSI logic design. Assumption-
based reasoning is used to automate logic design,
which inevitably invelves tentative decisions,

Oar cooperative expert system for logic design,

co-LODEX, features DAL and assumption-based
reagoning. co-LODEX consists of three distributed
agents, two of which are for datapath and contral
design. Both agents iterate the refine-evaluate-
redesign cycle, under the constraints of area and
time. An agent unable to clear a constraint asks
the other to make a change. That is, the agents
cooperate in an attempt to satisfy all given con-
gtramts.

We treat design decisions as assumptions be-
cause they are sometimes tentative. We consider
redesign to be a contradiction resolution because we
view constraint viclations as contradictions. When
a constraint violation is detected, the redesign
mechanism, which is based on assumption-based
reasoning, is invoked., Assumption-based reasoning
15 more important when eooperation is involved, be-
cause decisions must be retracted. Justifications for
constraint violations, called nogood justifications
(MNJs}, play a central role in redesign. co-LODEX
implements redesigns by expanding and generating
MJz in a hierarchy that represents the circuit being
desgigpned,

1 INTRODUCTION

CAD systems that can produce quality designs
quickly are needed for the expanding VLSI market,
Although rule-based expert systems have great po-
tential, they are still inferior to experienced
designers. One of the most pressing problems is the
lack of a means to integrate different types of
knowledge and the iterative design cycle.

Distributed artificial intelligence (DATD} deals
with cooperative solutions by distributed agents
{Smith 1885}, It is particularly effective for prob-
lems without a global goal. Logie design involves
mutually conflicting criteria such as area and time,
which is where DATI systems for logie design come
in. Previoug attempis at this approach include
ULYSSES (Bushnell and Director 1986) and the
work of Brewer and Gajski (1986).

ULYSSES is a design environment which uses
existing CAD tools as knowledge sources (HSs).
KSs communicate through files in a global data-
base, which is called the blackboard. ULYSSES is a
realistic approach to integrating existing tools, but
itbﬂmmot be used to automate the iterative design
cycle.

Brewer and Gajski's view is that the design at
a high level becomes a specification for the lower
levels, and they propose a design based on a set of
commmunicating expert systems, each of which
corresponds o a  different level of abstraction.
Although there are two directions of communication
- down for constraint propagation and up for failure
repm‘tmg -- design is imited to a single strmm and
thus is not flexible encugh.

We use two streams of design: datapath and
control. Datapath design begins with a block di-
agram. Each component is designed hierarchically
uging either the top-down or bottom-up methaod.
That is, component and subcomponents are split up
inte subsubcomponents, Control design begins with
a behavioral specification. It then establishes fnite-
state machines conforming to the specification,
represents them with fip-flops, and designs circuits
that generate the control signals. Design progresses
with these two streams interacting. The cooperative
expert system for logic design we propose, co-
LODEX, contains two agents which correspond to
datapath and control design. Both agenis itérate
the refine-evaluate-redesign cycle, under area and
time constraints. An agent unable to clear a con-
straint asks the other {0 make a change. When re-
quested, an agent tries making changes to coopera-



1300

tively satisfy all given constraints.

The consequences of a design decision are not al-
ways clear when made. Later evaluation may show
that the decision was incorrect and must be retract-
ed. The design does not progress until a decision is
macde, and the best allernative at the time is usual-
Iy selected. With the results of the decision added to
the design, the next decision is made. When the
design can be evaluated, it is done so against the
constramts.

Assumption-baged reasoning uses both facts
and assumptions that can be retracted (de Kleer
1986). Justification, originally introduced for truth
maintenance (Doyle 1979), is the key to manipulat-
ing information containing assumptions. Since
justification is a logical concept, the foundations of
assumption-based reasoning are given in logic
{Reiter and de Kleer 1387). Finger and Genesereth
{1985) propose a direct application of logic to
design,

We incorporate assumplion-based reasoning into
en-LODEX for three reasons:
(1) Design decisions are sometimes tentative.
(2) Some decisions must be retracted during
cooperation. '
() Constraints are also subject to change.
Degizions and constraints are treated as assump-
tions in eo-LODEX.,  We think of redesipn as con-
tradiction resolution by considering a constraint vio-
lation to be a contradiction. When a constraint vio-
lation is detected during evaluation, the redesign
mechanism is invoked, Justifications for consiraint
viglations, called nogood justifications (INJs), play a
central role in redesign. They are conjunctions of
assumptions and conditions about area or time. co-
LODEX redesipns by expanding and generating
NJs in the hierarchy representing the cireuit under
design.

The next section gives an overview of co-
LODEX, focusing on its CAD aspects, Section 3
discusses its DAL aspects and distributed agents.
Section 4 discusses the redesign mechanism. Sec-
tion § gives our current status and conclusions.

2 co-LODEX OVERVIEW

eo-LODEX inputs a behavioral specification and
generates a collection of CMOS standard cells. It
also accepts global constraints on area and time.
Design is done in two interactive streams -- data-
path and control. After combining their results, co-
LODEX optimizes and outputs a CMOS standard
cell circuit description,

The specification language for behavior used in

eo-LODEX is an extension of DDL {Duley and Diet-
meyer 19G68), and is based on temporal logie
iMoszkowski 18986). Figure 1 shows the
specification for the greatest common divisor (Cam-
posano 19571

FUNCTION: main: clk;
idle::
STOP(rat=0), x<ad, y<-yi, GOTO loop;

loop::
TF{x=y} THEN{ou:=x, GOTC idle}
ELSE(IF(x<y) THEN(y<-y-x)
' ELSE(x<-x-¥},
GOTO loop);
FENI;

Figure 1 Example of behavioral specification

Two intervals, idle and loop, have counterparts
DDL states, but are not limited to one clock cycle.
STOP(rat=0) means that interval idle is finished
when rst equals 0. <- means register transfer and
:= means terminal connection. The rest is self-
explanatory. .

The user can enter a block diagram of the data-
path on which co-LODEX will base its design. One
possible datapath for Figure 1 is shown in Figure 2.
SUE iz a subtracter and MUX is a multiplexer,

XI Y1
— @ @i
MLIX MUX
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| t
Comparator
! ¥
M_LIK MUX
¥ ]
SUB
.

(ll_’)DL.l

Figure 2 Block diagram



Constraints on area are expressed as nequali-
ties in the basic cell count, for example, "The total
basic cell count must not exceed 1300." Constraints
on time are expressed as inequalities in the delay or
clock cycle. Constraints themselves are subject to
change, because design is exploratory and depends
on the actual circumstances. The designer might
want to explore other possibilities by tightening or
relaxing certain constraints. co-LODEX lets the
user add, retract, or restore constraints by sloring
all given constraints. When the eonstraints change,
it provides another solution by redesigning only the
portions of the circuit affected by the change. This
gives fast turnaround,

—— Design cycle :: >
i Refinemeant | ~ e State machine
t‘l-~-..._._____'_,,a---“'
Companans { design KS
design KS ©
C "_: State
Technology assignment KS5)
mapping KS .
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Figure 3 shows the co-LODEX configuration.
There are three agents: control design, datapath
design, and the user interface. The items In the
figure are detailed in subsequent sections.

The datapath design agent produces the whole
datapath as a partial solution, with each com-
ponent implemented using CMOS standard cells.
The control design agent designs as another partial
solution circuits that control the flow of execution
and each component of the datapath. These two
partial solutions are linked at the control terminals
as shown in Figure 4.

Message Control design agent | Message
— Ce gn ag b
" — Datapath design agent

Design data

MNogood justifications

-/Cuaparnﬂun

t 8

User interface agent

Figure 3 co-LODEX configuration
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Figure 4 Linkage between datapath and control

Figure 5 diagrams one of the results. The only
constraint was that the total basic cell count not
exceed 1400, The design results of the greatest
common. divisor are varied by making constraints
stronger or weaker; the datapath is replaced au-
toratically (Fig. 6). The process began with the
point farthest to the right. Different results were
achieved as the area constraint got stranger. After
the smallest circuit was designed, the time con-
straint was strengthened and the area constraint
wealtened, It ended up baclk at the first design, the
fastest.
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Figure 5 Example of design result
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Figure 6 Alternative constraint designs

3 COOPEERATIVE DISTRIBUTED AGENTS

Logic design is evaluated based on conflicting
criteria, e.g., area and time, and there is no global
goal. This means that it is impossible to serialize
designs which conform to the specification. Instead,
the designer must come up with a design within the
allowed region.

Each distributed agent of co-LODEX produces a
partial solution on its own, based on the relevant
global constraints. These partial solutions are com-
bined to form the complete design. Any adjustments
still needed are made by cooperation between the
agents.

3.1 Communication

The two agents influence each other as follows,
If a delay constraint is so strict that the com-
ponents on a path cannot satisfy it, the contrel
design agent asks the datapath deslgn agent to
redesign some of those components. .

If the datapath design ageni cannot make a



design fast enough to satisfy the clock cycle con-
straint, it asks the control design agent to either
give up the current path or to break the operation
inta suboperations. :

If one of the duplicate components must be re-
moved because of the area constraint, the datapath
design agent asks the control design agent to
change control so that the new set of components
gatisfies all performance requirements.

To cooperate, the two agents exchange four

types of information {Fig. 7).

1. A request for change is issued when the data-
path design agent is unable to satisfy a constraint.
The control design agent decides what to change.

2. The control design agent is informed of an alter-
native datapath when the datapath design agent
selects it in place of the current datapath.

3. Since the control design agent determines the
timing of each operation by establishing finite-state
machines conforming o the specification, it gen-
erates internal time constraints. Though it may
seem logical that the control design agent should
evaluate the design, this is difficult because it in-
volves the transfer of a large amount of data. In-
stead, the control design agent sends the inlernal
time constraints to the datapath design agent for
evaluation.

4. The new datapath is sent to the datapath
design agent, that has been made possible by
change of control.

One agent comes up with a partial selution and
maltes the other check it. In the meantime, the
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agent procesds to the next task. When the check is
successful, the partial solution will be considered
valid until contradiction ocours. If the check is not
successful, the agent comes back and tries to find
another solution. For example, the contrel design
apent can tell the datapath design agent to evalu-
ate "critical paths" to determine as soon as possible
whether its design is feasible, while it begins to im-
plement it. A negative result comes as an urgent
message, which causes a different control.

3.2 Datapath Design Agent

The datapath design agent’s purpose 15 to
design all components forming the datapath. This
is done hierarchically, under constraints on basie
cell count and delay or clock eycle. Any synthesis
tool can be vuzed, ranging from rule-based KSs to al-
gorithms. Figure 8 shows a rule example for design-
ing an n-bit subtracter with an.n-bit adder and an
n-bit one’s complement. In the last stage, the
CMOS standard ecell library must be referenced.

$I‘I n
"' & COMPLEMENT
: _ .
e ADDER — 1

o

Figure 8 Rule for subtracter in component design KS
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Figure 7 Communication
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Figure 9 shows an example of mapping a 4n-bit
adder into n 4-bit carry-lockahead-adder (CLA)
cells.

8.3 Control Design Agent

The control design agent establishes finite-state
machines conforming to the specification. Tt breaks
each inferval into states, Usually, it would be hest
to have as few states as possible but, when there
are strong area constraints, time slicing is required
because of the limited compenents. At this point,
every defail of synchronous timing is determined.
The control design agent generates internal time
constraints by examining which path must be
covered within one clock cyele. It sends these con-
straints to the datapath design agent, It then con-
structs the finite-state machines with flip-flops and
designs circuits that generate the contral signals.
As for the datapath design agent, any synthesis
tool can be used.

3.4 User Interface Agent

The user interface agent is responsible for
transferring the following:
1. The behavioral spedifications are input as text.
2. The user can enter a block dispram of the data-
path through the graphics editor of the user inter-
face agent,
3. The user interface agent provides a menu-driven
dedicated window for specifying constraints as ine-
qualities. It alse enables the user to change them
by storing all given constraints.
4. The user can design or modify any component
through the graphics editor of the user interface
agent and force co-LODEX to use it.
There should be cooperation between the user and
co-LODEX through the user interface agent. The
user can explore several possibilities by strengthen-
ing or relaxing constraints, and by designing some
of the components.

4 REDESIGN USING ASSUMPTION-BASED
REASONING

As mentioned earlier, design decisions are re-
garded as assumptions. The assumption-based

- 8 e
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truth maintenance system (ATMS) (de Kleer 1986)
enumerates all assumptions in advance and exam-
ines all combinations. In design, however, we are
not  intérested in all counbinations because a
decision's importance depends on decisions made
earlier. In Fig. 2, for example, how to construct an
adder is unimportant if the subtracter is designed
without using adders.

The area a cireuit requires and its delay are the
sum of their constituent parts. The delay, for exam-
ple, can be attributed to that of the components
along its path. This fact lets us break a global con-
dition into local conditions. Hierarchical structure is
uzeful for this, .

We propose a redesign mechanism based on
Nds. They are represented as conjunctions of as-
sumptions and conditions. ¢co-LODEX redesigns by
expanding and generating NJs in the hierarchy
representing the cireuit under design.

4.1 Hierarchical Design Deseription

Design objects are represented in a hierarchy.
Figure 10 shows part of the hierarchy corresponding
to Fig. 2. There are two types of nodes: component
nodes (ovais) and alternative nodes (rectangles). A
component node associates alternative nodes as pos-
sibilities of implementation. There is a special com-
ponent node called the datapath node that
torresponds to the whole datapath. An alternative
node contains information about the connection
between subeomponents and has the subcomponent
nodes as children. An aliernative is called either in
or out based on whether it is adopted or discarded.
Each component node has at most one in alterna-
tive node. Other alternative nodes are stored in the
out alternative list to be recalled later, iff necessary.
Figure 10, which shows only in alternative nodes,
means the following: The subiracter consists of an
adder and a one's complement (Fig. 8), and the 32-
bit adder consists of eight 4-bit CLA cells connected
serially (Fig. 9). The current datapath, DATA-
PATHI, is shown in Fipure 2. Current ont alterna-
tives might include a serial connection of 16 2-hit
CLA cells and a serial connection of 832 single-hit
adder cells. )

4=-Bit
CLA Celil

4$ 4&,

Figure 9 Mapping a 4n-bit adder into n 4-bit CLA cells
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Figure 10 Hierarchical design description
4.2 Nogood Justification (INJ)

An N is alogical expression that must not-hold:
during design. Satisfving an NJ means a constraint

viclation and invakes the redesign mechanism. Nds
have conjunctive forms:

1. A design decision, or an alternative

2. A constraint

3. A condition about basic cell count

4. A condition about delay
Each NdJ is put at one of the alternative nud{ﬁ

There are also default NJs. Suppose a con-
straint saying ‘the total basic cell count of the data-
path must not exceed 1300 is valid. The following
default NJ is written at DATAPATH] in Fig. 10:

(# of basic cells < 1300) & DATAPATHI1

& (SUB + COMPARATOR + ... = 1300} (1)
The first conjunct is a constraint, the second an al-
ternative, and the third a condition about the tofal
sum of the basie cells of the components. The above
M.J is the same as the original constraint in that
any design violating the constraint in DATAPATHI
satisfies it. Default Nds let us reduce the amount of
evalualion.

4.3 NJ Expansion

M expansion is used to narrow the scope down
to resolve contradictions. MNJ expansion is defined as
follows:

1. Hemoving the component's contribution from
every condition with the component in it
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2. Making an NJ the logical product of the conjunc-
tion obiained above, the component’s in alternative,
and the subcomponents’ condifions

3. Putting the resulting NJ at the alternative node
of the component

For example, expanding (1) for SUB (Fig. 10) may
give us the following NJ at SUB1;

{# of basic cells < 1300) & DATAPATHI

& (COMPARATOR + ... > 868) & SUB1

& (ADD + I'S-COMPLEMENT > 432) {2
This happens when the design exceeds 1300 basic
cells and the subtracter is selected as the part of
the circoit to be changed. Expanding (2) for ADD
will give us the following NJ at ADDI; the 4-bit
CLA cell consists of 50 basie cells:

i(# of basie cells < 1300) & DATAPATHI

& (COMPARATOR + ... > 868) & SUB1

& (1'S-COMPLEMENT > 32) & ADD1 (3}

If the one’s complement cirenit has no further alter-
native, the fifth conjunct holds and can be deleted:
(# of basic cells < 1300) & DATAPATHI

& (COMPARATOR + ... > 868) & SUB1

& ADD1 (4)

Note that (4) does not allow the use of 4-hit CLA
cells for a 32-bit adder under the condition:

{# of basic cells < 1300) & DATAPATHI1

& (COMPARATOR +-...>-868) & SUB1

4.4 NJ Generation

If every alternative of a component causes a
constraint vidlation, N.J generation enables us to
get an MNJ with rio reference to the component from
a set of NJs, which contain each alternative as a
conjunct. If, for example, there are only alterna-
tives a, b, and ¢ for compoment X, and we have
Nds, Aa B&b andC &c then NJA&EB &
C will be generated at the alternative node of X's
parent node. This procedure is justified by resolution
{Robinson 1965). The generated NJ suggests that
a component to be changed be selected among those
it references,

Suppose, in addition to (4), we have NJs for an
alternative with 2-bit CLA cells (ADD2: 256 basic
cells) and for an alternative with 1-bit adder cells
(ADD3: 256 basic cells):

{# of basic cells < 1300} & DATAPATH1

& (COMPARATOR + ... > 1012) & SUB1

& ADD2 a) .

(# of basic cells < 1300} & DATAPATHI1

& (COMPARATOR + ... > 1012) & SUB1

& ADD3 (6)
If no other alternative is available, N.J generation
gives us a new NJ, from (4), (5), and (8):

(# of basic eells < 1300) & DATAPATHI

& (COMPARATOR + ... > 101%2) & SUB1 (T
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This shows that the design in Fig. 8 is not possible
under the circumstances specified by the first three
conjuncts. co-LODEX would have to change elther
the subtracter or the circumstances,

4.5 Redesign Algorithm

The redesign algorithm uses N.J expansion and
generation. Redesign is involked when a default N.J
turns out to be true. The redesign algorithm beging
with the NJ, from the alternative node where the
NJ resides.

Step 1: If this alternative should be kept intact and
one of the subcomponents should assume the
respongibility, the algorithm selects it, expands the
N.T for it, goes down the hierarchy one level, and ex-
ecutes Step 1 apain,

Step 2: If there is an alternative available that
makes no NJs at the ancestor nodes {including it-
gelfl true, it modifies the curvent alternative and ex-
its.

Step 3: It generates an NJ and goes up the hierar-
chy one level, If the NJ generated contains only con-
gtrainis (faill), it issues a request for change to the
other agents, Otherwise, it retwns to Step 1. []
The decision to replace an alternative and which
subcomponent to seleet in-Step 1-is based on heoris-
tics which are separated from the above alzorithm,
An example of heuristics wonld be to select the larg-
est or the slowest subcomponent.

We have proposed a redesign algorithm that is
defined on the hierarchy representing the design, so
it is already part of the design process. It is impor-
tant for the user to be able to adjust design without
disabling the system’s justification mechanism. Cur
approach is to add 'no-more-alternative’ assump-
tions. Suppose, for example, we add a 'no-more-
alternative’ as the fifth conjunet to NJ 7. If the
user comes up with a smaller adder and enters it in
the system, the system adopts it as an in alterna-
tive and malkes the assumption false. It means NJ
7 is not satisfied and the subtracter is restored to
the way it was before,

5 CONCLUSION

We are implementing co-LODEX on personal
sequential inference machines (PSls) in ESP (Chi-
kayama 1984). Our work focuses on the coopera-
tion bebween distributed agents (datapath desipn
and control design agents) and the redesign
mechanism using assumption-based reasoning. Pos-
gible extensions include addition of an agent for
DFT (design for testability) and to have agents
responsible for each partition of the whole cireuit.

Assumption-based reasoning proves to be more
effective when used for DAT. Tt is also nnpmtant to
work on individual CAT) teols, such as logic minimi-
zation and synthesis which consider delays.
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