PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1935,
edited by ICOT. @ I00T, 1968

KNOWLEDGE ACQUISITION BY OBSERVATION

Hirokazu TAKI

ICOT Research Center, Institute for New Generation Computer Technology,
4-28, Mita 1-Chome, Minato-ku, T'okyo 108 Japan
Phone: +81-3-456-3192, Csnet:htakieicot jp@reley.cs.net
Junet: htaki@icot junet

ABSTRACT

This paper describes a learning method for building

knowledge bases. There are two types of knowledge
acquisition systems that extract knowledge from
human experts: interactive and non-interactive.
This paper describes a non-interactive knowledge
acquisition systermn that acquires knowledge from a
human expert by observation. It learns strategies
that the human expert uses to solve problems and
makes logical rules from temporal sequential data.
The learning method of the knowledge acquisition
system is interpretation based learning (IBL), which
uses advance knowledge in the learning process.
The IBL has two subsystems: an interpretation
system and & learning system. The interpretation
system translates real world information to internal
rule form. The rule maintenance system generalizes
and specializes knowledge. In this paper, the
interpretation system and pre-processes of the rule
generalization are introduced.

1 INTRODUCTION

One major problem in building expert systems
is removal of the knowledge acquisition bottleneck,
Enowledge acquisition systems, usually interactive,
have been developed to solve this problem. Each
interactive knowledge acquisition systems has an
interview sub-system that can access a human
expert directly to ask for necessary information
about the job. This type of system is called an
active knowledge acquisition system (AKAS)(Boose
84)[Boose 87)[Taki 87I[Kahn 85]. There are many
cases or sitoations in knowledge acquisition
environments. Sometimes, the human expert is too
busy to answer guestions that are asked by the
interview system. In this case, knowledge is
acquired by observation only, by a passive

knowledge acquisition system (PEAS)[Taki 88a].
This type of system cannot ask the human expert
any questions. The AKAS obtains symbolic data
interactively from the human expert, data that can
be translated into internal form easily, But the
PEAS obtains both symbolic data and numerical
data, so it must extract the numerical date and
translate it into symbolic data. The PEAS must
build a knowledge basze inductively from
observaticns only. Most inductive learning
systems treat examples, which are represented in
their internal symbolic form. The systems require
many positive and negative examples. However,
most examples that can be obfained from
observation of human expert operations are positive.
One learning system acquires knowledge from
positive examples only: the explanation based
learning (EBL} systern [Mitchell 85][Mitchell 86],
which extracts knowledge effectively using advance
knowledge: domain theory and operationality. The
EBL learns goal concepts, which are comstructed
according to the domain theory, However, the EBL
treats symbolic examples which are deduced from a
domain theory, but it does not treat real world
information directly. The PEAS must treat real
world information and have an effective learning
mechanism, We are developing a PEAS , called
interpretation based learning (IBL) that uses
advance knowledge. The IBL has two subsystems:
an interpretation system and a learning system. The
interpretation system translates real world
information to internal rule form. The learning
system generalizes and specializes knowledge. The
following sections discuss the interpretation system,
its advance knowledge, and pre-processes for the rule
generalization. This paper does not deal with details
of the rule maintenance system[Taki 88¢).

2 IBL OVERVIEW



In this section, the characteristics of the observation
and the IBL framework are shown.

2.1 Observation Environment

The IBL can observe the actions of human experts
and the situations in which those actions oceur as
shown in Figure 1. Normally, this symbolic
information is translated from data extracted by
sengors, Therefore, the IBL must be able to
interpret the sensed data as internal symbolic
representation  data. Enowledge of an expert is
formed into rules from situation and action
information.
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Figure 1 Observation overview

2.2 Interpretation and Learning System

The IBL system consists of two subsystems: an
interpretation system and a learning system. The
interpretation system interpretes real world
information into an internal knowledge form
gecording to advance knowledge. As a natural
language processing system uses its dictionary to
understand natural language sentences, so the
interpretation system uses advance knowledge to
translate real world knowledge into its knowledge
representation. The learning system consists of a
pre-generalization system and a rule maintenance
system. The pre-generalization system eliminates
noisy information from scguired knowledge
according to advance knowledge. The rule
maintenance system specializes rules in order to
eliminate rule contradictions, and generalizes rules
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by induction. Figure 2 shows the interpretation
system and the learning system.
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Figure 2 IBL system overview
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3 OBSERVATION PROBLEMS
3.1 Interpretation Problems

{1} Problem of dividing sensed data

Sensed data is continuously collected at every
sampling or when a sampling trigger is detected.
Sensed data is temporal sequential data. To
symbolize series data, the IBL divides the data into
parts. If sensed data contains some ambiguity,
there are many ways of dividing it. Therefore, the
IBL must have knowledge to reduce the number of
alternatives, The results of dividing data must be
matched with internal symbolic concepts. The
cause of ambipguity in sensed data is sensor
capacity. The sensor has a limited capaeity to
detect and it detects unwanted noise. Figure 3 shows
how to make situation data. In Figure 8, parameter
1is divided into three parts. Parameter 1 has three
values (a, b and ¢). If parameter 1 changes critically
in these three walues, it is casy to divide it.
However, generally, parameter 1 does not always
change in steps (it can be a middle value between a
and b) but slides from one value to another
continuously, Therefore, itis difficult to decide the
points of change of parameter 1. If more detailed
changes are considered, parameter 1is divided into
more parts, and the IBL obtains more detailed
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gituation information. In this case, the IBL must be
able to handle many concepts related to dividing
criteria; it must have knowledge that divides sensed
data into useful level granules corresponding to
internal concepts.

Situations v v

Periodl

Period2 Period8

Situationl =(P1=a,P2=d)
Situation2 =(Pl=a,P2=e¢)
Situationd =(Pl=b,P2=e¢)
Situationd =(Pl=¢,P2=¢)
Situationi =(P1=pli,P2=p2i,
aP1=23pli,s/P1=spli,.....)

Period4

Figure 3 Data division and situation
generation

(2) Problem of symbolizing divided data

Normally, fragments of sensed data are translated
into two kinds of information : symbols and
parameters with values. A parameter consists of a
parameter name and its value. Generalized
parametric representation has a range of its value
ingtead of an instance value.

Example 1: The human expert measured register
& with voltage-tester 1. The tester detected 3 mWV.
The expert changed register 5.

Symbolic data: Voltage-tester=voltage-tester 1,
Register =register &
Parametric data: Voltage = 3mV

ERule-Expression :
use{Voltage-tester=voltage-testerl),
detect{Voltage =38mV, Register =registers)
— change(Reagister =register5).

To symbolize the sensed data, the IBL must match
real data with internal symbolic concepts, In
example 1, voltage-testerl matches the concept
"Voltage-tester”, register5 matches the concept
"Register", and the real voltage matches "Voltage".
In this case, the IBL contains concepts of "Voltage-
tester”, "Register” and "Voltage". If the IBL has
only concepts of "Tester”, "Deviee" and "no-
voltage(-5 mV = no-voltage = 5 mV)", the symbolic
expression ischanged as follows:

Example 2:
Symbolic data: Tester=voltage-tester 1,
Device =register 5, no-voltage (=3 mV)

Rule-Expression :
use{Tester = voltage-testerl),
detect(no-voltage, Device=register 5)
— change(Device =register5).

Ezamples 1 and 2 show different interpretation
results under different concept sets. The IBL must
have appropriate concept sets of the target domain,
Generally, a concept consists of some sub-concepts.
In Figure 3, a situation contains two parameters,
There is other information in this exzample,
combination information of temporal variable
data, which can be thought of as differentiation
and integration information. The necessity for
higher-order differentiation depends on the target
domain. The IBL must have internal symbolic
concepts, internal concept sets, and internal
parametrie definitions as advance knowledge.

3.2 Rule Generalization Problems

Sometimes, there are ambiguities and noise
(useless information) in the sensed data. The IBL
must be able to handle wvarious meanings in the
ambiguities in building a knowledge base.
Generally, this noise is very harmful. It makes
acquired knowledge too specific.

(1) Problem of combining situations and actions

At certain times, there is some causality between
situations and actions in the human expert’s tasks.
The IBL makes rules from these situations and
actions, However, there iz some noise in these
rules. The IBL must select appropriate sitnations
and acticns, and must combine them carefully.
Because normally there iz a time delay in the
causality, Figure 4 shows noise reduction



examples. The first example has situation noise.
The situation changed, but the action did not
change, and the situation returned to its original
state. Therefore, 3j must be noise. In the same way,
the second example shows action noise. Aj may be
noise, The IBL must have a noise reduction
mechanism using noise detection heruristics.

Sitnations

Actions

AJ meey be noise, because Siis the sarme and A returns fo
Al
Figure 4 [BLsystem noise reduction

(2) Problem of eliminating unnecessary information
The IBL ohserves all sitnations at the same time, so
it has special rules for all observed situations. The
IBL must have a function which chooses only
suitable situations related to actions, Example & is
a special rule with an unnecessary situation.

Example 3:
Bituation information:
{It rained, and
the output voltage of the amplifier was too
low.}
Action information:
{An expert changed an output transistor.}

Generated rule:
{(Weather = rain) -
& (Amp-output-voltage = low)
=+ (Change Amp-output-transistor)

This result is too specific to be used in real amplifier
maintenance, because the weather is mnot related
to amplifier maintenance. Therefore, the IBL
must choose situations related to actions, It has to
make the following rule (example 4).
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Example 4
Generated rule: _
{(Amp-output-voltage = low)
— {Change Amp-output-transistor)

(enerated rules are checked with domain
knowledge which containg relations between
sitnations and acticns in a target domain. This
method is a sort of pre-generalization from the point
of view of generalizing situations, The IBL must
have symbolic concept relations to make
appropriate rules.

{(3) Problem of rule maintenence

Generally, a learning system obtains general
knowledge from more special instances by induction.
The rule maintenance system controls the
generalization level to keep rules from over-
generalizing. It also maintains conflicting rule pairs
that implicate inconsistent results. If the concept set
as advance knowledge is not enough to interprete
real world information ecorrectly, the rule
maintenance system cannot maintain rules. In this
case, the rule maintenance gystem must reconstruct
a new concept set and new translation knowledge for
interpretation, The interpretation system interprets
old instances again,

4 INTERPRETATION & LEARNING

This section describes an interpretation-based
learning system and explains the learning flow and
mechanizm,

4.1 Learning Input and Output

Examples are given as samples of an expert's jobs.
They are temperal sequential data. They contain
the problem-solving strategy knowledge of the
expert. The IBL learns problem-golving rules. The
following examples show input and output.

Example 5: Input contents
Sensing parameters at time t0: pl(t0), p2(t0), ...,
pr(tl)
Values of the parameter: numerical data, symbol or
logical values.

Example 8: Output conients
Implication rules: 818&52&....5i — al&a2&...am
An expression Sii=1, ..., [} is a variable with a
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range,

An expressgion ai(i=1, ..., m) is a fonction with one
or more variables.

The variables of the action part are shown as
Alli=1,... k).

Variable and range:

The values of wvariables (SifAj) are numerical
values, symbols, or logical values. The wvariation of
the range of a variable, V, is shown as follows:

Equality: V = number/symbal/logical values

(For examples, true/false)
Upper limit: V = number-1
Lower limit: V = number-2
Upper and lower limits:
number-2 & V & number-1
A sub-get: V C {symbol-1, symbol-2, ...}

4.2 Learning Strategy

There are six learning steps in the IBL. Figure 5
shows an overview of thizs flow and advance
knowledge.

Step 1 Dividing sensed data

Sensed data consists of many parameters. Bach
parameter has terporal variable values, The IBL
checks the wvalue change of each parameter, and
divides data in the time scale,

Step 2: Matching sensed data with tnternal concepls
Here, data is separated into symbolic concepts
and parameter instanees. Symbolic concepts are set
assifuations and actions.

Step 3: Reducing noise in situations and actions
There are some relations between situations and
actions. Therefore, action data that is independent
of situations must be noise. In the same way,
sitnation data that is independent of actions must
also be noise.

Step 4: Making symbolic rules

Rules are made to combine situations and actions. A
rule consists of an "if-part" and a "then-part”.
Situations match the if-part, and actions match the
then-part. Sometimes, generated rules also have
useless information as example 1 shows., So the
relationships between situations and actions in all
rules must be checked, and unnecessary situations
or actions must be removed. '

Step 5: Optimizing values of parameters
A parameter has an instance value and a range of

Figure 5 IBL system structure

its value., This instance value is eollected from
sensed data. It is only one example, so it must be
generalized and optimized to chang it into the mean
or typieal value.

Step 6: Generalizing rules and parameter data by
multiple examples

The IBL learns rules and parameter ranges from
step 1 to step 5, at which it obtains ome example.
The IBL: acguires other knowledge from other
examples, then checls and compares rules with the
same form. If their actions are the same, the two
sitnations are reformed intc a more general

gituation, The ranges of parameters are alsp
generalized. For example, a parameter consists of



"Voltage" as a symbolic name and "0 V & Voltage -

= 15 V" as the range of its value. A new example
brings the IBL a new range of its value, thatis, "8 'V
= Voltage = 20 V", IBL makes a new parameter
which contains "Voltage" as the name and "0V =
Voltage = 20 V" as the range of its value,

5 ADVANCE ENOWLEDGE

One of the most important components of learning
gystems iz advance knowledge as a concept bias and
a background theory, Advance knowledge controls
the learning flow; it limits and stimulates the
knowledge acquisition system to induce knowledge
from examples. In the EBL, there are two types of
advance knowledge: domain theory and
operationality eriteria. Domain knowledge attempts
to explain the examples. If an example is implied
from the domain knowledge, it is explained and
the EBL recognizes it as a positive example. An
example is given to the EBL system as a goal
concept, so it learns how to construct the goal
concept from domain knowledge. Operationality
knowledge controls the generalization level of
explained knowledge. It limits generalization of
that knowledge. There are two learning steps in
the EBL. The first step is the explanation step to
cheelt whether an example is positive or not, and
the second step is the generalization step to
generalize knowledge. The IBL uses advance
knowledge as a dictionary to translate real world
knowledge, to generalize acquired rules , and to
gpecialize ranges of values in these rules.

5.1 Domain Concept Knowledge

One type of domain concept knowledge is atom
level concepts and relations between them. Atom
level concepts mean symbolized situations and
actions, parameter sxpressions, and ranges of the
parameter values, Ancther type of domain
concept knowledge is relation knowledge, which
contains relations between symbolic concepts.
Each concept has a range of its wvalue. This
information is used for parameter generalization and
optimization, it is a generalization limit. The range
depends on the target domain,

Example 7: Symbolic concepts
Symbelic concepts: registerd, capacitord
Parameter expressions: Voltage, Time-delay
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Example 8: Range knowledge of concepis
Parameter range: 0 V = Voltage = 12V,
SmA = Ampere 8= 1A,
In logic circuits, the voltage range isfrom 0Vio &
V. Thisrange is 0 V or 5V in the logical meaning,

5.2 Concept Relation Knowledge

Relations between concepts may be positive (such as

same class concepts and positive relativity),
negative (such as contrary relativity), no relations,
or equations.

Example 9: . Concept relations (about force feedback
robot control)
Positive relations:
pair (Movement direction, Velocity vector)
" in position control
Negative relations:
pair (X-axis velocity, X-axis pressure)

Note: If the robot's grip touches a wall, a tactile
sensor detects pressure in the opposite direction to
which the sensor is moving.

No relations: pair (X-axis velocity, Y-axis pressure)
Eguations: Velocity 3 = Velocity 5/2.0

5.3 Interpretation Knowledge

Interpretation knowledge is used for translating
sensed data into symbolic concepts and parameters,
It also contains dividing knowledge for sensed data
because divided data must be matched with
internal concepts. '

Example 10: Dividing knowledge:
IF | pl(ti)-pl(ti+1) | = el,
THEN divide parameter pl atti.
IF | pL(ti)-pl(th | = g1,
THEN divide parameter pl at fj-1.
el and gl are special knowledge for dividing data.

Symbolizing knowledge (translation knowledgel:
IF f1 = pi(from ti to ) = £2,

THEN pl(from ti to j) is a concept, "X
IF pl(from ti to tj) = £3,

THEN plifrom ti to tj} is a concept, "Y™.
The range of "X" is from f1 to 2. The value of "Y" is
3.
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6 PRE-GENERALIZATION

This section describes how o make and optimize
rules for pre-processing of learning. It describes the
induoction method, noise reduction and relation
checlk,

6.1 Rule Generation

Situations and actions are extracted each time.
They are represented by symbolic expressions and
parameters. The IBL makes implication rule sets
from situations and actions to select a good set of
situations as Figure 6 shows. Temporal
information shows a sequential rule evaluation
flow. Rule(ti), which iz made from situations and
actions that occcurred at time £, makes a new
environment which matches situations of
rule(ti+1). Therefore, the IBL adds situations
made by actions of rule(ti) to the situations of
rule(ti+1) shown in example 11.

- Subsetof situations

Set of actions

Set of situations

Figure 6 IBL induction

Example 11: , Rule generation considering temporal
information '
Situations: 51,52 and S8 are ohserved at time i+ 1.
51 = gymbol-1, 0 = 82 = 15 and 83 = symbol-2.
Actions: al is done by the human expert at time
ti+1.
The parameter of "al" iz Al, and Al = 20,
Action of rule(ti): a2 is done,

Generated rufefti+1);
51é& 52& 53 & side-effect of a2 — al{Al =
20),

in context (31 =symbol-1,0 = 82 = 15
and 85 =symbol-2)

6.2 Noise Reduction

Real neise is caused by sensors and errors made by
human experts. This noizse must be removed as it
is unnecessary data in expertjobs. For example, in
spite of a sensor detecting a situation, 2 human
expert sometimes does not react to that
situation. That situation information is useless
data, The IBL detects this noise as shown in
Figure 4, Situations and actions are causally
connected, so data that have no cansality must be
removed.

6.3 Concept Relation Check

As shown in example 3, sensed data contains most
concepts of the target domain. Therefore,

generated rules contain unnecessary situations in
their “if-part". Each situation must have some
causality which depends on the target domain; this
cansality is dealt with as the concept relation
knowledge. The IBL uses this concept relation
knowledge to reduce the amount of unnecessary
information.

6.4 Generalization and Specification

In one learning process, only parameters are
generalized or optimized. However, structures of
rules are not generalized in one observation, but by
multiple examples.

(1) Specialization for ranges of parameters

Range expressions are shown in example 12.
They show the generalization criteria. Strictly
speaking, range information containg a lower case
and an upper case. The lower case is used for
parameter generalization and the upper case
for parameter specialization.

Example 12: Range specialization
Lower case (narrowrange):3 = V=4
Upper case(widerange) :1ZE V=5
Aequired range: 0.5 = V=35
Optimum range: 1 = V=4

The lower limit of value "V" must be more than 1
and less than 3; therefore, the acquired range is
changed to "1 = V = 3.5". The higher limit of value



"V must be more than 4 and less than 5, so the
acquired range is translated into "1 = V = 4",

If an aequired range is within the limits of a lower
cage, it must be rewritien as a lower cage. If it is
beyond the limits of an upper case, it must be
rewritten as an upper case. A range of an instance
is generalized or specialized in order to fit it into a
range between the upper case and the lower case, It
becomes an optimized range asshown in Figure 7.

Specialization _

Instance bound
_ 4

Optimized
**  hound

..» Upper case

“*m  Lower case

Generalization
Figure 7 Range optimization

{2} Generalization by multiple examples

There are many rules in one expert task. However,
general rules and special rules are mixed in the
task. Taking other expert tasks into consideration,
some of the same rules are extracted. Both old and
new rules have some differences from each other.
To use these differences, rules can be generalized.
We explain the generalization of the IBL for each
difference.

Cage I: There are no symbolic differences in the if-
parts between new and old rules, and each then-part
is the same. However, the values of the new
parameters of the ifparts are different from old
ones. The IBL generalizes the ranges of situation
parameters,

Case 2: There are symbolic differences in the if-parts
between new and old rules, but each if-part is the
same. The IBL applies the logical-OR operator to
these if-parts and males a new rule,

Case 3 There is no difference in the if-parts but the
new then-part is different from the old one, The IBL
applies the logical- AND operator to these then-parts
and makes a new rule, .
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{3} Rule maintenance

Some causes lead toinconsistent situations in a
knowledge base. Sometimes, the human expert
makes mis-operations, Local errors of these mis-
operations can be eliminated by the noise reduétion
heuristics. In order to detect non-local errors include
backtracking processes, the learning system
searches the expert’s recovering processes. Then it
eliminates non-appropriate knowledge made from
mis-operations. If advance knowledge is not enough
to interpret the real world, then non-correct
knowledge may be acquired. In this case, the rule
maintenence system does not always maintain rules
easily; it reforms the new concept set and new
translation. knowledge. The interpretation system
must re-interpretat.

7TOBJECT MODEL

Human expert knowledge is learned from situations
and actions induetively. A form of acquired
knowledge is an implication rule (situations —
actionz ), These actions are made by the human
expert according to situations. These actions lead to
next situations in an object of the expert job,
Therefore, an implication form (actions — next
situations ) represents a sub-model of the object. The
IBL can also obtain the sub-model of the object. If &
detail model (such as deep knowledge) of the object is
given, we can know a coverage of acquired
knowledge to compare the detail model and the sub-
model.

8 CONCLUSIONS

The IBL learns the human expert's problem
solving knowledge by observation. Itconsists of the
interpretation system and the learning system. In
this paper, this interpretation system, its advance
knowledge and the pre-generalization mechanism as
a sub-system of the learning system are described.
The IBL system acquires knowledge in logical ‘form
and the range information of the values in logical
rules. It cannot obtain general rules from one
chservation, but it haz a function which optimizes
parameter ranges, In order io acquire general
koowledge, multiple task examples are given to this
system. A subset of its functions was developed for
a robot skill acquisition system [Taki 85], and it
was proved that the major functions of this
system are useful for skill acquisition by
observation in that system. We believe that itis



1258

also useful toextractnotonly the skills but also the
knowledge of human experts. This paper does not
deal with the treatment of alternative
interpretations (translations) and the rule
maintenance mechanism. The TMS [Daoyle 79] and
ATMS{de Kleer 86]) mechanisms are useful to
maintain the acquired rule base. Acguired
knowledge is a logical form, so  the partial
evaluation techniques in logic programming
[Fujita 87] are useful for these rules to reform
effective rule sets.
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