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ABSTRACT

This article presents the design and evaluation of a new
Prolog garbage collector. The main difference between
our garbage collector and previous proposals is thai our
garbage collector resiricts its action to a fired amount
of memory allocated at the top of the global stack. This
strategy has several advantages: it improves the local-
ity of the executing program by keeping the data strue-
tures compacted and by allocating new objects in a fixed
part of the address space; it improves the locality and
the predictability of the garbage collection, which can
concentrate its efforts on the fixed size area where new
objects are allocated; and it allows us to use simpler,
time-efficient garbage colleciion algorithms. The per-
formance of the algorithm is further enhanced by the
use of copying algorithms whenever made possible by
the deterministic nature of the executing program. We
provide empirical evidence of the locality of our alge-
rithm, of its efficiency ai recovering unused space, and
of the added speedup copying alporithms can provide,
We also discuss the complexity and usefulness of vir-
tual backiracking as a garbage collection optimization
technigque.

1 INTRODUCTION

Virfual memory and garbage collection provide two
helpful automatic mechanisms to manage the use of
memory. It is known that thelr interaction causes con-
flicts [9]. Recent work on Lisp and Smalltalk garbage
collection [12,13,22,17] introduced several techniques to
minimize these conflicts by increasing the locality of
garbage collectors.

This family of algorithms, known as genergtion-
based garbage collectors, rely on the empirically ob-
served property that most heap-allocated ohjects he-
come unreachable very rapidly. By concentrating their
efforts on newly allocated objects, these algorithms can
have a high locality of reference and low epu require-
ments and still be able to recover most of the unused
memory cells,
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Our garbage collector is based on several of these
techniques. In our scheme, as in generation scavenging
[22], new objects are allocated in an area of fixed size, at
a fixed virtual memory location. The garbage collector
iz called when this ares is filled up with new chjects. In
our algorithm we support only two generations, old and
new, and for simplicity we promote new objects into the
old category whenever they survive their first and only
garbage collection. )

There are two families of compacting garbage collec-
tion algorithms which we can use in our garbage collec-
tor: marking and compacting algorithms and copying
algorithms., Copying algorithms are faster than mark-
ing and compacting algorithms [8], but they do not pre-
serve the allocation order of objects. Preserving the
allecation order of objects has two advantages in terms
of performance. First, it makes it possible to reclaim
global storage on backtracking simply by resetling a
stack pointer. This is important in practice, as illus-
trated in section 2.1. Second, it makes the implemen-
tation of some built-in predicates simpler and more ef-
ficient, as explained in section 2.5,

Our girbage collector makes use of a marking and
compacting algorithm to preserve the allocation order of
ohjects only when necessary for performance. For pro-
grams which are deterministic and do not use the built-
in predicates of section 2.5, our garbage collector takes
advantage of copying algorithms for achieving higher
speed.

Before presenting our algorithm we review; in sec-
tion 2, the properties of Prolog and the features of the
Warren Abstract Machine which are relevant to our
work, Then, in section 3, we describe a simple algerithm
which does not support copying, and, in section 4, we
we present enhancements which take advantage of de-
terminism. We conclude, in section 5, with a discussion
of a few related issues, and, in sectiom 6, & comparizon
of our echeme with previows work. For a more detailed
description of our algorithm, including code listings, we
refer the reader to [20]. .

We believe our method is important for the follow-
ing two reasons. First, with the current trends towards
larger physical memories and faster cpus, magnetic disks
are lagrng behind in terms of access times, maldng



page faults relatively more expensive. For this reasom,
garbage collectors based on random traversals of large
address spaces seem less and less practical [28]. Owur
scheme does not suffer from this problem. Second, our
scheme is optimized for deterministic programs, which
cannot rely on backtracking to reclaim unused storage
and are therefore the most in need of garbage collection.

2 PROLOG SPECIFICS

In this section, we review the properties of Prolog and
the Warren Abstract Machine {WAM) which influenced
the design of our garbage collector and are relevant to
this paper. We assume the reader is familiar with the
WAM [24,19,10).

In the remainder of the paper, we use the term global
steck to refer to the WAM stack in which global objects
are allecated.

2.1 Memory Deallocation on Backtracking

One characteristic of Prolog programs, as opposed to
Lisp or Smalltalk programs, is that upon query com-
pletion the space used by the data structures created
during execution of the query is automatically recov-
ered without the need for garbage collection. In addi-
tion, within a query, Prolog programs may deallocate on
backiracking a large fraction of the memory cells they
allocate.

Some programs recover most of the heap storage
they allocate by backiraclking while some do not, as il-
lustrated by the data in table 1. This is why it iz im-
portant for a Prolog implementation to have a garbage
collector, and alse a garbage collectar which allows for
fast heap deallocation on backiracking,

The programs we used in this experiment are as fol-
lows: BOYER and BROWSE are Prolog versions of the
corresponding Lisp Gabriel benchmarks [11]; cHAT is
a natural language parser, parsing 16 sentences; CoM-
PILER is a version of the Berkeley Prolog compiler com-
piling a program of 225 clauses and 57 procedures; NRE-
VERSE is the naive reverse benchmark reversing a list of
2000 integers; QUICKSORT is a fast implemeniation of

Table 1: Memory Usage in Megabytes

Allocated:  total amount of heap storage allocated

[aed: maximum amount of heap storage wsed atb & time

Fercentage: percentage of Total Allocated in Maximum Used
Procrams || Allecated | Used E Percentage
boyer 2331 | 2.331 100,07
browse 0.896 | 0.0656 T-2% |
chat 0.731 | 0.006 0.8% |
compiler 6.648 | 3.467 5227 |
nreverse 4.016 | 4.018 100.0% |
quicksort 4.680 | 3.304 TLGYE
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quick sort sorting a list of 20000 integers generated by
a psendo-random generator.

The fact that QUICKSORT, a deterministic program,
is able to recover parts of the heap storage it allocates
by backiracking is an artifact of the current limitations
of the Berkeley Prolog compiler, which makes some de-
termimistic procedures create objects on the heap before
having chosen which clause to execute.

2.2 Pointers from Old to New Objects

To speed up garbage collection, it is important to reduce
the amount of memory that has to be scanned to find
all the references into the memory area to be collected
[22,17].

Previous researchers [2,4] have pointed out that it is
possible to exploit the backtracking mechanism to re-
duce the amount of memory that has to be scanned on
pgarbage collection. The main ohservation is that if one
wants to collect the part of the global stack allocated
since the creation of a choice point €, it is only neces-
sary to scan the portion of the stacks allocated since
the creation of €. One of these stacks, the trail stack,
contains the address of every cell ereated before © which
has been updated afier €. By scanning the part of the
trail stack allocated since the creation of C, the garbage
collector can trace all the pointers from objects created
before € to objects created after ¢ without having to
scan the whole memeory.

The main drawback of this approach is that it relies
on the presence of choice points. To be able to garbage
collect the part of the global stack that is newer than
an arbitrary execution point without having to scan the
entire global stack we have to extend the trailing mech-
anigm to record all pointers from older 1o newer objects.
A similar approach is used in [22]. In our current im-
plementation, we use the simpler approach of trailing
every variable binding, We discuss the validity of this
approach in section 5.3.

2.3 Logical Variables

The most common representation of nnbound varables
in WAM based impleméntations consists of & memory
cell containing a self referemcing pointer. When two
unhound varables are bound to cach other, they be-
come aliases of each other. This is implemented by
storing in the newer varable an antyped pointer to the
older variable. This ordering is necessary to ensure that
no dangling referemces can be created by stack deal-
location, Untyped pointers are only an implementation
technique: they are transparent to the programmer, and
automatically dereferenced by the run-time system.

‘Within a choice point segment, the garbage collector
is free to keep only one element of every set of alinsed
variables. We perform this optimization in cur copying
algorithm (see section 4.1.1).
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2.4 Cholece Point Segments

A choice point segment is a contiguous segment of the
global stack delimited by two consecutive choice points.
Within a choice point segment, the relative order of ob-
jects can be changed without affecting the correctness
of the backiracking mechanism. We exploit this prop-
erty in.our design by making use of copying algorithms
within choice point segments when appropriate. We dis-
cuss this point further in section 4 and section 5.1,

2.5 Global Ordering of Terms

Many implementations of Prolog provide buili-in pred-
icates which define a global ordering of terms. Moest
of these implementations order variables by comparing
their addresses. This is fast and simple, Unfortunately,
this prevents the garbage collector from using copying
algorithms with programs which make use of this order-

ng,

Another way of implementing a total order on un-

bound variables would be toassign a unique identifier to
each variable and to order variables by identifiers. These
identifiers can be penerated lazily, and kept in a hash
table. The garbage collector would have fo update the
hash table when variables are reloeated. Unfortunaiely,
this solution increases the complexity of the implemen-
tation and does not goarantee that the extra overhead
associated with the processing of the hash table will be
compensated by the wse of a copying algorithm.

3 A SIMPLE GARBAGE COLLECTOR

In this section, we present a simple version of our
garbape collector. This algerithm is easy to implement,
does not require the complexdty of algorithms based on
pointer reversal techniques, and displays good perfor-
mance and locality. Firsi we introduce some terminol-
ogy that we wse thronghout the rest of this paper. Then
we describe our algorithm in more detail, and finally we
present some performance resulis.

3.1 Terminology and Basic Concepls
Cur basic terminology is borrowed from [17).

* new space is the part of the global stack in which
new objects are allocated when created. Iis size is
fixed. The garbage collector only garbage collects
new space. This has the double advantage of in-
ereasing the locality of the executing program end
simplifying the garbage collector. A similar tech-
nique was used by Ungar [22). The WAM global
stack pointer H points to the next free location of
new space.

* old space is the pari of the global stack that con-
tains all the data objects that have survived their
first and only garbage collection. Its size is only
limited by the size of the process address space.
We introduce a new stack pointer, called H2, to
keep the address of the next free location of ol
space, .

# copy space is the part of the global stack just
aboeve old space in which the garhage collector
copies the surviving objects. Tt is added to old
space when the garbage collector has completed
its work.

# base space 15 the part of the memaory that needs
to be scanned to find all accessible pointers to ob-
jects in new space. In the case new space staris
at a choice point boundary, base apace is only
composed of the active register values, the envi-
ronment and choice peint entries that are more
recent than this choice point, and the memory lo-
cations referenced by trail stack entries that are
moré recent than this choice point [4,2]. Unfortu-
nately, there is no gnarantee in genetal that new
space starts at a choice point boundary. This is
why we keep track of stack varations to determine
the exact limit of base spaca. This is explained
in more detail in section 3.3.

We choose the simplest possible design by support-
ing only two generations of objects: old and new, and by
garbage collecting objects at most once. In spite of its
simple-minded strategy, our algorithm iz able to recover
a la.r,ge pcmpnu:tmu of allocated cr]:rjmi.'p* as llustrated in
table 2. Our results agree with similar studies for Lisp
and Smalltalk [22,17).

Table 2: Garbage Collection Survival Rate

NEW SPACE BOYER COMFILER

(Kirosyres) | global | #rail || global | #rail
B 248 % 045 )| 171 % | 3.4 T

32 224 % | 0.3 0% § 11.2 % | 1.8 %
54 || 20.4 7 | 0.1 %0 | 9.0 % | 1.5 0 |

128 [ 186 % |01 % | G8% | L0 %

256 | 16.8 % |00 % || 54 % | 0.8 7

512 || 12.8 % | 00 % || 4.0 % | 0.6 %
1024 || 116 % | 0.0 % | 26 % | 0.6 % |

2045 || 115 % | 0.0 %% || 2.4 % | 0.6 G

An important point to note is the very low survival
rate of pointers in the irail stack. Two factors con-
tribute to this low survival rate. First, we trail every
variable binding, which is not strictly necessary; sec-
ond, our current Berkeley compiler does not try to delay
bindings in deterministic procedures until after a clause
has been selected.



3.2 Invocation Mechanism and Space Overflow

An invecation peint is a point in the execution of a pro-
gram where the garbage collector is called if an over-
flow of new space is detected. It is sufficient to place
an invocation point at procedure eniry and inside those
built-in predicates which may create large objects, pro-
vided that some fixed amount of storage is allocated
above the top of new space to buffer overflows.

Restricting the presence of invocation points to well-
defined locations of the program simplifies the task of
the compiler (e.g. variables need to be correctly initial-
ized only at invocation points) and reduces the over-
head cansed by overflow checks when they are not im-
plemented in hardware.

A built-in predicate which has already triggered the
garbage collector and still needs more space than is
available in new space should be allowed either to in-
crease the size of new space or to write directly into
old space.

3.3 Bookkeeping and Overhead on Normal Ex-
ecution

Our scheme requires the use of three additional abstract
machine registers, H2, TR2 and E2, to maintain in-
formation on which part of the memory needs to be
scanned at the next garbage collection. The bookkeep-
ing operations associated with these registers are as fol-
lows: :

1. H2 points to the top of 01d space. Outside the
garbage collector, H2 only needs to be updated
whenever backiracking deallocates the totality of
new space, which is a rare event.

2. TR2 points to the oldest entry on the trail stack
that was allocated since the last garbage eollec-
tion. It needs to be updated the same way as HZ,

3. EZ2 points to the oldest environment that was used
since the last garbage collection. There is more
overhead associated with the E2 pointer than with
H2 or TRZ, since E2 needs fo be checked and
possibly updated on environment deallocation.

The use of 82 iz not as crucial as the use of HZ2
and TR2, since the environment stack is typically much
smaller than the global stack or the trail stack. It could
be dispensed of, at the cost of some unnecessary seans
of environments during garbage collection.

3.4 Marking

Marking proceeds recursively from all the pointers in
base space pointing into new space. The locality of
base space and new space guarantees the locality of
our marking algorithm. During this phase, we can use

copy space as a recursion stack for recursive marking, |

025

which is simpler and faster than more ‘space efficient
alternatives [8].

The fact that new space is of fixed size makes the
use of o marking table possible. In our implementation,
we use one byte of mark per word in new space, which
allows faster acecss to the marks.

3.5 Compacting

The compacting phase of our algorithm scans new
spaca linearly from older objects to newer objects, and
copies the marked cells into copy space. It leaves be-
bind in new space relocation addresses. Unmarked cells
are also overwritten with the relocation address of the
most recent marked cell encountered; this simplifies the
next phase of the algorithm.

3.6 Updating

The algorithm finally seans base space and copy
space in search for pointers to new space. It uses the
relocation table now contained in new space to find the
final copy space addresses. The relocation table is also
used to update global stack peinter (H) entries of choice
points,

3.7 Performance Besults

We mensured the paging and elapsed time performance
of our algorithm on a Sun 3-50, with 4 megabytes of
physical memory, running Sun Unix 4.2 release 3.2, The
benchmark used is BOYER. We varied the size of new
space from 16 to 2048 kilobytes. The benchmark was
run 7 times; we give the average results as well as the
90 percent confidence interval. The resulis are given in
table 3.

Table 3: Paging Performance with BOYER

SIzE: size of new space in kilobytes
elopsed ime:  elapsed time in seconds
page foullz:  number of page faults
average; a&verags over T runs
conf ind: 90 percent confidenee imterval
speedup: retio of elapsed times
each line is compared with the worst entry
Size elapsed time || poge foulls spesdup
average | mnfn# || average | comf int ]
6] 1854]o07a%]] o000 *0.00 1.31 |
32| 1841 | 052 % 0.00 | & 0.00 1.32
64 || 182.7 | 0.33 % 0.00 | = 0.00 1.33
128 182.7 | 0.74 % 0.00 | %000 1.33
256 181.3 | 021 % 0.00 | = 0,00 1.34
512 | 1840 111 % 414 | £5.98 1.32
1024 215.9 | 1.00 W || 96043 | £ 20,46 1.13
2048 2431 | 233 % TE2.00 | £ 31.22 1.00
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We belisve that these resnlts are not as dramatic as
they would be for & faster system. Moreover, our mea-
surements were faken on a byte-code emulator which is
roughly 3 to 6 times slower than Quintns Prolog. All
other things being equal, speeding up our emulator by
a factor of 3 would make the effect of page faults double
the total elapsed time, instead of increasing it by 30%.

4 "TAKING ADVANTAGE OF COPYING
ALGORITHMS

The algorithm we introduced in the previous section
displays much higher locality than exhaustive garbage
collectors. By reducing paging, it redaces the total time
spent in program execution as the user perceives it. We
now propose to take advantage of copying alporithms to
increase the cpu performance of the garbage collector,

We first present a simple algorithm which takes ad-
vantage of copying only when the entire new space is
above the topmest choice point. We then investigate a
more general way to incorporate copying into our alge-
rithm to extend its scope of applicability.

4.1 A Simple Scheme using Copying Algorithin

As we mentioned earlier in section 2.4, within = sin-
gle choice point segment the garbage collector does not
need to maintain the relative order of objects. In partic-
ular, when the entire new space is above the topmost
choice point, garbage collection can be done entirely by
a copying algorithm, :

Our simple scheme works as follows: when the
garbage collector is invoked, we check whether new
space is entirely above the topmest choice point. If this
is the case, we use a copying algorithm. Otherwise, we
simply use the marking and compacting algorithm pre-
sented previously. We deseribe the copying algorithm
itself in more detail in the next snbsection.

4.1.1 The Copying Algorithm

The copying algorithm we use is directly derived from
Cheney’s algorithm [7,3). It proceeds as follows: for
each pointer into new space pointing fo an unmarked
object, the object pointed to is copied into copy space.
The original copy is marked and replaced by relocation
pointers pointing to the corresponding locations into
copy space. Pointers to marked locations are imme-
diately relocated.

Since new space is guaranteed to be entirely above
the topmost choice point, we can follow dereference
chains inside new space without having to copy or mark
the intermediate variables of the chain.

" This optimization may not be very important sinece
dereference chains axe usually very short [18,21]). How-

ever, it avoids 2 problem which may sccur when cne
variable points to a cell ¢ inside a structure or a list.
If the garbage collector accesses the variable first, and
later the structure, and ddes not eliminate varable
chains, it- will allocate two cells for ¢ in copy space,
which is clearly undesirable.

4.1.2 Performance

We compared the efficiency of the copying algorithm
with our marking and compacting algorithm, using
BOYER as a benchmark, The benchmark was mn 6
times on a quiet system. We give the average results
as well as the 90 percent confidence intervals in table 4.
Since BOVER is entirely deterministie, our enhaneed al-
gorithm was able fo use the copying algorithm at each
invocation.

Copying elgorithms only need to touch the active
cells of new space. In comsequence, our copying al-
gorithm should perform better than our marking and
compacting algorithm, which needs to scan new space
entirely. In addition, the lower the proportion of active
cells in new space, the better our copying algorithm
should perform relative to our marking and compacting
algorithm. This is confirmed by our experiments {see
table 4 and table 2). Again, we should stress the fact
that these timings include the garbage collection of the
irail stack. We estimate this effect in section 4.3.

Table 4 Ceopy vs. Mark & Compact (BOYER) -

S1ZE: gize of new space in kilobytes
average;  average over § runs (in seconds)
eonfind: B0 percent confidence interval
speedup:  ratio of elapsed times, copy vs. mark & compact
SIZE | mark & compact copy apeedup
average | confint | average | confint
16 450 [ 0.55% 337 1.0TH 1.34
32 417 | 1.08% 3.04 | LB1% 1.37
B4 305 [ 0845 2ET | 1.060 1.38
128 .62 11T% 250 0.425% 1.39
2E6 337 | 1.50% 231 | LiTh 1.41
512 304 | 1.30% 210 | L67% L.45
1024 205 | L0i% 187 | 161% 1.50
9048 209 | 1.20% 203 | LO7% | L47

4.2 An Improvement on the Simple Scheme us-

. ing Copying Algorithm

So far, we were able to use the copying algorithm only
when the entire new space is above the topmost choice
point at the time the garbage collector is invoked, We
can extend the scope of applicability of the copying al-
gorithm as follows. At each garbage collection call, we
interleave marking and copying. Copying is used when-
ever a pointer to the oldest choice point segment in new
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Table 5: Efficiency of Extended Copying with COMPILER -

SIZE: gize of new space in kilobytes
conf ini: 90 percent confidence interval
copy mode:  percentage of cells collected by copying
specdup: ratio of elapsed times, mack & copy vs. mark & compact
a ratio larger than 1 means that mark & copy is faster
SizE | mark & compact mark 8 copy speadup
average | conf int | copy mode | overage | conf int
15 768 | LO1% | 42.2% | 730 L41% 1.05
32 536 | 001% 3LTR 497 | 1.82% L08
G4 4.57 | 1.08% 23.3% 438 [ 1.73% 1.04
128 206 | L20% 20.0% 380 | 1.45% 107 |
256 3.63 1.00% 12.7% 3.56 1.66% 1.02
512 3.13 0.7T0% 14.3% 2.96 1.81% 1.06
1024 297 0.75% 1.6% 2.92 2.096% 1.01
2048 1.99 | 0.92% 0.0% 2.04 | 2.77% 0.97

space is encountered; otherwise marking is performed.
There is little difficulty in doing so since marking and
copying can be made to follow the same traversal order
of the program data structures. We give a more detailed
deseription of this technique in the next seetion and
présent performance results in the following section.

4.2.1 The Extended Copying Algorithm

In what follows, the older part of new space desig-
nates the intersection between new zpace and the old-
est choice point segment intersecting new space. The
newer part of new space designates the part of new
space not in the older part of new space.

We interleave marking and compacting using depth
firet iraversal both for marking and eopying. Marking
males use of & marking stack, and copying relies on
Cheney's algorithm, which embeds a copying queue in
the data structure being copied. Processing a refersnce
to new space is complete when both the stack and the
quens are empty.

It iz no longer possible to compress dereference
chains throughout the entire new space, since some
chains may span several choice point sepments. To guar-
antee that the garbage collector will not copy scme cells
twice, we need to delay the processing of untyped point-
ers until all other poinfers have been processed,

After the marking and copying phase is complete,
the clder part of new spaca is entively parbage collected
and can be made part of old space, while the newer
part of new space becomes new space. The compact-
ing and updating phases of our marking and compact-
ing alporithm, deseribed in section 3.5 and section 3.8,
can then be used without modification to complete the
ga.rbag& collection of naw Bpace.

4.2.2 Performance

The main factor which determines the overall perfor-
mance of our enhanced algorithm is the percentage of
cells which are collected with the copying algorithm.
This percentage needs to be relatively high for us to-be
ahle to obtain a significant speedup (this is an instance
of application of Amdahl's law [1]). Unfortunately this
percentage decreases with larger new spaces, as can be
seen in table 5.

There is some overhead associated with the inter-
leaving of marking and copying. Thas comes from the
fact that with marking and copying we need to deter-
mine for each pointer to new space whether it poinis
to the older part or the newer part of new space. If
the percentage of cells collected by copying is close to D,
marking and copying may display a slightly lower per-
formanes than marking and compacting, as illustrated
in table 5. '

The relatively poor performance of the marking and
copying algorithm on the COMPILER benchmark, which
is essentially a deterministic program, is surprising. A
closer look indicated that in many parts of the program
choice points were not removed as early as possible.
This limited the use of the copying algorithm.

4.3 QOwerall Performance

To correborate our claims of efficlency, we measured the
cpu overhead of our garbage collection algorithm for a
size of new space of 256 lilobytes, and compared it to
the cpu time consumed by Quintus Prolog on the same
programs without parbage colleetion. The results are
given in table 8. The measurements were taken on a
VAX 8600, runming Quintus Prolog 1.6, Since the two
implementations are different, these measurements are
only indicative. The timings for the last two bench-
marks, QUICKSORT and NREVERSE, inclade the time to
construct the lists processed by the programs.
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Table 6: GC CPU Time Overhead (256 Kilobytes)

Runr Time: Quintus Prolog cpu time without ge (in seconds)

GC CPU Time: our garhage collector cpu time (in seconds)

GC CPU Overhead:  overhead of our ge with respect to Quintus

trail all: when our emulator trails every binding .

trail some: when our emulator trails bindings coly when needed
ProcraMs || Run Time | GC CPU Time GC CPU Ouverhead || Survivors

{CQuintus] || trail oll | trail some || frail all | trail some

boyer 16.1 245 161 IE.ZE 10.0 R 16.8%
compiler 52.6 358 300 42% 3.6% 5.4% |
nreverse 274 9.00 451 | 328% 16.5% 6.0 |
quicksort 20.2 B.65 404 | 28.0% | 245% aLan |

We can evaluate the efficiency of our garbage collec-
tor as follows: for the memory intensive BOYER bench-
mark, the garhage collector decreased the global stack
memory consumption by a factor of 6.0 for a cpu over-
head of 10.0%. For the cOMPILER benchmark, it de-
creased the global stack memory consumption by factor
of 18.5 for a cpu overhead of 3.6%.

The performance of the garbage collector with NRE-
VERSE is also good, despite the fact that this bench-
mark does little more than allocating objects on the
heap. However our algorithm performs relatively pootly
with QuIcKSORT. This is due to the faci that the pro-
gram sorts a list of 20000 elements. This list occupies
160 kilobytes in our implementation, which is close to
the 256 kilobytes we allocated to new space. If we dou-
ble the amount of space allocated to new space, the
overhead drops to 15.5% and the percentage of survivors
to 17.9%.

5 SIDE ISSUES

5.1 Applying Copying to Several Choice Point
Segments

One possible generalization of our mark and copy algo-
rithm is to apply copying to other choice point segments
than just the last one. There are two difficulties with
this scheme. First, we cannot predict in advance the fi-
nal size of the choice point segments being collected. As
a consequence, we cannot relocate the surviving objects
to their final location in one pass. We need two passes
over the set of surviving objects and base space instead
of one. Second, we need to know into which choice point
segment of new space a given pointer peints. This in-
duces an extra cost of the order of (1 + logep), where
cp is the number of cheice point segments intersecting
nev space. For this two reasons, we do not think that
this approach can lead to any significant speedup over
our basic mark and compact algorithm.

5.2 Virtual Backtracking

Virtual backiracking [5,16] is an optimization technique
for Prolog garbage collection. This optimization relies
on the observation that abjects only reachable through
pointers which would be reset by backtracking before
ever being accessed need not be kept by the garbage
collector,

We implemented in all of cur alponthmes an im-
proved version of this fechnique which is due to Ap-
pleby et al. [2]. In this improved version, pointers
which would be reset by backtracking before ever be-
ing accessed are reset by the garbage collector, which
can also remove the addresses of these pointers stored
in the trail stack.

Our experiments with virtual backiracking were dis-
appointing. We did not find any advantage in using it
for most of our benchmarks. Only with ciAT and a
new space size of 4 klobytes were we able to obtam
some improvement, In that, case, virtnal backtracking
reduced the survival rate from 80.5% to 75.1%. With a
size of 8 ldlobytes, the garbage collector was net even
called. Our conclusion is that we did not find sufficient
evidence that the extra complexity of virtual backtrack-
ing is worth implementing, with the usual caveat that
we have only checked for a few programs.

5.3 Trailing every Binding

As we explained in section 2.2, the parbage ccllector
relies on the fact that every binding from a variable in
old space to an object in new space is trailed, and
our current strategy is simply to trail every variable
binding, Al the data reported in this paper, with the
exception of the data in table 6, were obtained with an
implementation which trails every binding,

" Data reported in table 6 show that the garbage col-
lector can be between 129 to 50% faster if we irail
bindings only when needed. But trailing bindings only
when needed may have a negative effect on the overall
performance of the program when a large proportion of
bindings need to be trailed, because these bindings are
checked twice, once at binding time and once at garbage



collection time. This is why we originally decided to
trail every binding.

However, there are two reasons why this is not a
good idea, First, it is possible to reduce the number of
variable hindings being trailed by improving the com-
piler. Second, when a large proportion of bindings really
needs to be trailed, it is likely that the execufing pro-
gram relies heavily on backtacking and does not need
much help from the garbage collector.

6 COMPARISON WITH PREVIOUS WORK

The first attempt to use the ideas of generation based
gtorage reclamation was [16]. Their approach was based
on choice point segments, For each choice point seg-
ment, they allocated a different logical segment of mem-
ory, and nsed this segment as & unit to perform garbage
collection. We believe that this scheme is more complex
than ours, and more distaptive of the basic WAM orga-
nizaticn, Moreover, it does not guarantee the locality of
the garbage callector for programs which do not create
many choice points. The authors do not provide any
performance data.

The first study to notice that garbage collecting
above the topmost choice point is significantly simpler
than the general case was [4]. Again, this approach
does not guarantee the locality of the parbage collector,
Moreover, it requires the intervention of the program-
mer,

Several Prolog implementations [6,15,2] have used
the pointer reversal techniques introduced by [14]. The
most recent WAM garbage collector we are aware of was
described in [2]. This design also relies on the presence
of choice points to limit the scope of the garbage col-
lection, and thus does not gnarantee the locality of the
garbage collector. The marking algorithm used is quite
complex and requires two marking bits per word, but
has the advantage of using no extra space. Our design
uses some extrs space, but is based on simple algonithms
and does not reguire any marking bits,

T CONCLUSION AND FUTURE WORK

We designed and implemented a garbage eollector for
Prolog which displays good Iocality and high cpu per-
formance. In our implementation, new global objects
are allocated in an area of fixed size. By calling the
garbage collector each time this ares overflows, we were
able to ensure good locality. By using copying algo-
rithms rather than marking and compacting algorithms
whenever possible, we were able to significantly improve
the cpn performance of our algorthm on deterministic
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programs. We were disappointed with our experience
with virtual backtracking, where the extra implementa-
tion complexity did not appear to pay off.

There are many important questions we left unan-
swered in this paper. Pethaps the two most important
ones are: how to determine the optimal size of new
space, and how to combine our garbage collector and
the technique of adjusting stack sizes dynamically that
was ariginally implemented in DEC-10 Prolog [25]. One
interesting direction to explore would be the use of sur-
vival rates and page fault rates to adjust dynamically
the size of new space. Also of interest for future in-
vestigations would be to evaluate how beneficial o our
garbage collector the optimization techniques recently
proposed for Smalltalk by Ungar and Jackson [23] can
be,
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