PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. @ ICOT, 1988

1031

Massively Parallel Implementation of Flat GHC
on the Connection Machine

Martin Nilsson and Hidehiko Tanaka
Hidehiko Tanaka Lab., Dept. of Electrical Engineering,
The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, JAPAN

Abstract: We have investigated implementation of Flat
GHC on hypercube-based, massively parallel SIMD corm-
puteras. Implementations running on a simulator of a Con-
nection Machine show that the peak number of procesa re-
ductions per second could reach np to on the order of 400
kHz for programs with very much parallelism. Although
this is not faster than traditional sequential implamenta-
tions, the advantage with the hypercube SIMDrapproach is
that it is scalable: the peak reduction frequency increases
quickly, O{n/lag? n), with the number of processing ele-
ments n. Analysis shows that the limit on the reduetion
frequency stems mainly from simultaneous read accesses
of shared data by different processing elements.

Although this paper uses Connection Machine data for
timing estimafion, several results should be gualitatively
applicable for other SIMD computers. Likewise, funda-
mental limitations of this implementation are relevant for
SIMD-style interpreters of other MIMD languages as well.

1 Introduction

1.1 Motivation

What are good architectures for parallel programming lan-
guagea? What are good programming languages for par-
allel architectures? This paper tries to contribute to the
future anawers to these two important questions,

SIMD computers are attractive as candidates for massively
parallel ecomputers, i.e. computers containing more than
thousands of parallel processing elements: For the hard-
ware implementor, construction is greatly simplified, as
compared with MIMD computers. For the implementor,
programming problems such as synchronization become
much easier. However, the user is unlikely to be satis-
fied by having to program in a restricting SIMD language.
One way to solve this trade-off, is by interpreting the user's
MIMD program by a SIMI) interpreter. Here, the inter-
preter takes the user’s program (the M1 of MIMD) as data
(MD of SIMD).

We are particularly interested in interpreting concurrent
logic programming languages by SIMD interpreters, since
this kind of language allows very compact expression of
interpreters. This property is particularly important for
SIMD implementations, since compactness improves pro-
cessor utilization. Logic programming languages such as

Flat GHC [28], manage to do quite complex operations
with only unification, plus 2 very small set of primitive op-
erations. We have decided to use Flat GHC as cur MIMD
language candidate, since this language has been shown
to be a powerful programming language [3].

Of the massively parallel computers currently available,
one of the most interesting is the Connection Machine [5,
6, 28]. This is a hypercube-structured computer, which
allows fast communication between arbitrary processing
elements. We have implemented two different interpreters
which run on top of a machine instruction simulator for
the CM-2 version of this machine: One interprets a high
level intermediate language Fleng, which is similar to Flat
GHC. The other interpreter interprets low level machine
instructions, closely resemblant of the Warren Abstract
Machine [31]. The simulator is detailed enough to allow
execution Iimlng and analysis.

The main purpose of this paper is to find some indications
of how, and how efficiently, logic programming languages
like Flat GHC could be implemented on massively parallel
computers, such as the Connection Machine.

1.2 SIMD Programming Model

A processing element of an SIMD parallel computer is
sitnilar to a traditional processor. The difference is that
the instruction flow does not come from the element it-
gelf, but from a host computer used as a sequencer. The
sequencer broadcasts program instructions in s sequernce
which cannot be controlled directly by individual process-
ing elements.

Thus, the SIMD instruction sel may not contain any
instructions which attempt to alter program flow, ie.
JUMP, CALL, or RETURN instructions. Such instruc-
tions are only meaningful for the hest processor which
distributes the SIMD instructions to the parallel back-end
computer.

The operands of SIMD instructions can be seen as vectors,
where each element i of an operand vector gives the actual
operand for a processing element 1,

Since we somelimes need conditional operations, we allow
operations to be conditional en a flag or mask operand:
If the mask is true, the operation is executed as usual,
but if the operand is false, the operation becomes a no-op.

1032

For insiance, a conditional instruetion meve(s,d,m) takes
the three operands: source s, destination d, and mask m.
This instruction would for processor i move the contents
of lacal memory location s to location d, iff the flag m[i]
is set to true.

We can express this in psendo-formal notation as:

for all processors i de
if (m[il} then d[4] := alil

We would also like to have instructions which enable pro-
cessors to communicate with each other by writing to,
and reading from each other's memory. For this purpose
we will introduce the instructions store(s,.d,x,m), and
1lead(s,x,d,m). In pseudo-formal notation, stors can be
dli.ll-iul as

for all processors i do
if (m[i]) then d[x[i]] := e[il

load can be defined as:

for all processsrs i do |
if (m[il) then d[i] := s[x[il]

We will give the full set of instructions in section 6.

1.8 The Connection Machine

The Connection Machine consists of 65,536 processing el-
ements connected in a hypercube structure. It is attached
as & back-end processor to a conventional computer, which
sequentially broadeasts instructions, such as mew in the
previous section, to all processing elements, via & micro-
controller.

Each processing ¢lement contains its own memory, and
performs operations on this memory according to the in-
structions from the host computer. Except for operating
on their own memories, processing elements also have the
ability to send messages to other elements in the hyper-
cube. All message transfers are serial. The memory of
every processor is also connected to the host's bus, so that
the host iz able to access the memory of every processing
element, although thiz has to be done one element at a
time.

The operand vectors, or in other words, the arguments of
the SIMD instructions, are called purars - parallel variables.
Element 0 of a pvar resides in processor 0, element 1 in
processor 1, ete.

An important feature which distinguishes the Connection
Machine from other massively parallel SIMD computers
is the concept of virlual precessors. If more processing
elements are needed than are physically available, pro-
cessing elements can be multiplezed. Of course, the speed
is reduced, but this mechanism provides a kind of grace-
ful degradation. N processors can simulate bV processors

with 1/k the amount of memory per processor, in k times
the execution time.

We should also mention here that we have tried to be as
accurate as possible in the descripfion of the Connection
Machine. We believe that we have been sufficiently care-
ful to ensure that our data are adequate, but if there are
any mistakes, they are solely those of the authors. There
iz no commitment or guarantee by Thinking Machines,
Ine. whatsoever that any Connection Machine will actu-
ally perform according to these estimations.

1.4 Approach

By definition, SIMD computers cannot directly execute
MIMD programs, since all processors have to execute the
same instruction at the same time. However, an SIMD
computer could execute an interpreter, which first exe-
cutes an instruction for all processors which are waiting
for this particular instruction. Next, it executes another
instruction, for some other set of waiting processors. Large
degress of parallelism are possible, but there are serious
limitations: One is that there i3 much communication
overhead, and another is that many processes may be idle
waiting for their next instruction to be executed,

‘There are several alternatives for construcling an inter-
preter for MIMD programs: One important design deci-
sion is on which level the interpreter should interpret the
program. The high-level approach interprets the MIMD
language almost as i8. The low-level approach first com-
piles the MIMD language to an instruction set much closer
to the machine.

At first sight, it seems that the low-level approach will be
mitch faster than the high-level approach, but this does not
always necessarily have to be true: Low-level compilation
will require & larger intermediate language instruction set,
which indirect]y slows down the interpreter.

We have implemented two interpreters, a high-level ver-
sion and a low-level version.

For the high-level interpreter, we first translate Flat GHC
into Fleng, a similar language whose interpreter is simpler
io implement as a very compact loop. This interpreter is
similar io a traditional Prolog interpreter, with the differ-
ence that it operates on vectors instead of scalar variables.
An alternative way of viewing execution is as many inter-
preters executing synchronously.

The low-level version interprets a variant of the War-
ren Abstract Machine [31] we call gWAM, for mu-tilated
WAM.! This interpreter is similar to a standard byte-code
WAM interpreter.

Both of these interpreters are defined using a small set
of SIMD instructions. Fach instruction corresponds di-
rectly to one or a few Connection Machine inatructions.
This makes it comparatively easy to estimate the execu-
tion fime without having a Connection Machine, through
emulating these instructions by a simulator, and counting

Lo el Téxboe. ..

the frequency of each type of instruction.

1.5 Results

The simulations show that for our implementations, a
65,536-processor Connection Machine has a peak process
reduction frequency on the order of about 100 kHz for the
Fleng interpreter, and about 400 kHz for the uWAM inter-
preter. It seems that the pWAM interpreter is much faster
but this impression is a bit misleading, since the gWAM
interpreter has more different intermediate language in-
structions to interpret, and the speed is much affected by
the order in which these instructions are executed, The
optimal order is different for different programa.

This is not faster than current sequential implementations,
but the Connection Machine becomes very interesting in
the light of its scalability: The speed of the slowest SIMD
instruction of our interpreters (reading data from a re-
mote processor allowing collisions), grows as O(n/leg” n)
in the number n of processing elements, so the perfor-
mance increases faster with n than most other proposed
architectures. A deubling of the number of processors of
a B5,536-processor Connection Machine would result in a
1.8-fold increase in reduction frequency.

A main limiting factor is read accesses by different process-
ing elements to shared parts of the user's MIMD program,
which very roughly represents about half of the total exe-
eution time for both interpreters. Although the potential
degree of parallelism is very high, the inference frequency
of a single process is very low. For this reason, it seems
important that the Connection Machine's speed, and not
only the degree of parallelism, is increased.

1.6 Related work

Papers suggesting the combination of parallel logic pro-
gramming languages with SIMD architectures include
[23, 24, 10, 11, 12, 13, 1T, 18, 25, 9].

One of the earliest projects for investigating SIMD execu-
tion of logic programming languages is the DADO project
[23, 24]. The DADO machine is a special-purpose, tree-
structured computer.

Kanada [10, 11, 12] implements OR-parallel Prolog search
programs for vector parallel supercomputers by a kind of
compilation. He obtains very high performance, but the
method can only be applied to a restricted class of pro-
grams, We have suggested and implemented committed-
choice languages for vector parallel supercomputers, by
vectorization of an interpreter [13, 17]. Tatsuguchi has
taken up this approach to implement OR- and restricted
AND-parallel versions of Prolog [25].

As far as we know, the first paper o suggest implement-
ing commitied-choice logic programming languages on the
Cennection Machine is [17]. Some initial results for a CM-
1 simulator were presented in [15]):

The translator for translating Flat GHC into the inter-

1033

mediate language Fleng, was inspired by other researchers
working on compiling Parlog and Cencurrent Prolog into
more restricted subsets [4, 22, 2. The target languages
{“Flat® versions) are allowed to have restricted guards.
Our approach is different in that we start with a flat form
and compile down to a form without any guard goals at
all, '

Hirata [7] has designed a language called Oc, which is
similar to Fleng, but allows translation from Full GHC
into Oc. Unfortunately, some features of Oc makes it hard
to implement efficiently.

Another paper dealing with logic programming on an
SIMD computer is [9]. This approach extends a tradi-
tional sequential Prolog with special set and array con-
structs which can be executed in parallel.

Bawden and Agre [1] has implemented a version of Schemne
on the Connection Machine. However, Scheme iz not a
parallel language, so this implementation is effectively a
number of completely separate sequential Scheme inter-
preters running simultancously.

Our approach differs from the above approaches in that
we assume a general-purpose parallel SIMD architecture
rather than a special-purpose architecture with, e.g. sup-
port for logic programs, or restricted communication pat-
terns. We do not rely on locality of programs, or on that
programs are sufficiently small to fit into local memories,
but expect user programs and data to be spread over
the global memery space of the parallel computer, in 2
minimal-grain approach.

1.7 Paper overview

This paper is organized as follows: In section 2, we
overview Flat GIIC. In section 3, we give some impor-
tant benefils of SIMD architectures in the context of Flat
GHC implementaticns.- Section 4 describes Fleng, the
high-level intermediate language and its interpreter. Sec-
tion 5 describes the WAM-like low-level language and its
interpreter, The SIMD instruction set is outlined in sec-

_tion 6. In this section we also describe the Connection

Machine and estimate the execution time of the SIMD in-
structions. Benchmark results are given in section 7, and
are discussed in section 8.

2 Flat GHC

The following is a very brief overview of Flat GHC. More
details can be found in, for instance, [28, 30].

A Flat GHC program is similar to 3 Prolog program.
One difference is that every clause contains a “commit”-
symbal, |, similar to Prolog's “cut”, . The goals to the
left of the commit-symbal are called guard goals, and the
rest are called body goals. Execution is similar to Pro-
log, but clause alternatives may be atternpied in paraflel
As soon as the guard of some clause succeeds, this clause

1034

will be selected for further execution of the body, while
execution of the other clanses will be stopped.

Head matching and guard unifications are not allowed to
bind any variables occurring outside the clause, so exscu-
tion of guards cannot affect each other. If such an attempt
is made, execution of that process must be suspended,
This is the main control mechanism of the language.

We illustrate with an example:

a(X,Y) (=X =0 | ¥ = zaro.
alX,¥) :=X%=0 | ¥ = not_zero.

The progeam is called by a query, such as - a(17,X).
This trivial prograrm binds its second argument to the sym-
bol zero if its first argument is zero, and to not_zere
otherwise,

Suppose now that we call the program with a veriable
as its first argument, 7~ a(Z,X): The guard goal X = 0
will then tey to bind the first argement, 2. This cannot
be allowed, since it would affect execution of the second
candidate clawse. Thus, execution of the first clause must
suspend. The second clanse also suspends, since it cannot
know whether the first argument is zero or not, until it
becomes instantiated.

Unifications in the body of a clause are allowed to ex-
port variable bindings, since there is no conflict between
alternatives at that point. Such a binding can cause & sus-
pended process to resume execution. This would happen
if for instance the variable £ in the example above becomes
bound by someone else.

Finally, Flat GHC has the additional restriction that
guard goals are only allowed to be certain built-in predi-
cates, not vaer-defined predicates,

3 Benefits of SIMD Execution

Obviously, the synchronous nature of SIMD ‘architectures
simplifies global communication. There are other impor-
tant advantages with SIMD architectures as well, which
are not as obvious:

o Mutual Exclusion

Several processes competing for common resources
need to resolve which process should be selected for
each resource. A method which works well for an
SIMD architecture is if both processes try to write
their process id into a memory cell representing the
regource. ‘Then they read back the contents of the
cell. If the contents are the same as the process’ own
id, that process is selected.

In pseudo-formal code this could be expressed as

for all processors i do
exclude[resourcelil] := i

for all processors i da
selected[i] := [exclude[rescurce[il] = 1}

* Avoiding Cyclic Variable-variable Bindings

The problem of aveiding eyelic variable-variable bind-
ings is quite a hard problem for MIMD systems. The
problem occurs when there are simultaneons unifica-
tions of variables, such as in & query 7- X=Y, V=2,
Z=X. If all these unifications are execufed simultane-
ously, the variables eould end up being bound in a zir-
cle, and an infinite loop will result the next time cne
of the variables is dereferenced. Locking the variables
cannot be done without risking deadlock. A poisi-
ble solution is to impese an erdering on variables,
auch as the order of the variables’ memory addresses,
and only allow bindings to go from “high” to “low”
variables. This method still has drawbacks, such as
access contention on low variables, and unability to
use a relocating garbage collector,

For an SIMD implementation these drawbacks can
be avoided, becanse it is enough with a femporary
variable ordering, which iz only used during the bind-
ing: Firat, all variables to be unified are dereferenced.
Then varizbles are bound, ebserving the temporary
ordering. It is easy &o see that these bindings cannot
intraduce any cyeles, thanks to the previous derefer-
encing. After the binding, the ordering can safely be
forgotten.

¢ Global Memory Allocation

SIMD computers in general and the Connection Ma-
chine in particular, allow an elegant way of allocat-
ing heap storage for processes. The heap is strefched
put across processors, so that heap element 0 resides
in processing element 0, heap element 1 in process-
ing elerment 1, ete. In our implementation, the heap
consists of two pvars, CAR! and CDR!. There is an-
other pvar FREE!, which indicates whether the corre-
sponding heap cell is oceupied or not. Given a pyvar
HEED!, the memory allocation procedure returns the
index of some free heap cell in the corresponding po-
gition of another pvar AVATILABLE!, for all processors
in need, and sets the new cecupied pesitions in FREE!
to false.

Thiz allocation is non-trivial, but can be done very ef-
ficiently on the Connection Machine, where it is called
*PROCESS0R-CONS. This operation is described in an
extremely readworthy article to which we refer the
reader for more details [21]. Here, it should suffice to
say that we can implement this operation as a combi-
nation of ten instructions from our SIMD instruction
set.

4 Th@a High-level Interpreter

4.1 Fleng

Instead of interpreting Flat GHC directly, we translate it
to an intermediate language, Fleng. Although Fleng is not
very different from Flat GIIC, it is considerably easier to
write & compact interpreter for,

A Fleng program iz a set of clauses, like Flat GHC clanses,
but do not have any guard goals. A difference is that in
Fleng, failure is guaranteed not to be propagated until
there are no more active processes, This is in fact a possi-
ble execution of a Flat GHC program, but Flat GHC dees
not guarantes that failure ia delayved until the execution is
finished.

Fleng has only three system predicates: unify, computa,
and call. Ap important common feature of all built-in
predicates is that it is always possible to detect their termi-
nation. This enables Fleng programs to show termination
by recursively checking termination of their componenta.

The unification primitive unify(R,X,¥Y) is special in that
that it Lakes three arguments: R will be bound to true if
X unifies with ¥, but false if X doean’t wnify with Y.

compute{0p,X,¥,R) compules binary operations indi-
cated by the argument Op, which may be bound to one
of the following: +, -, =, / (arithmetic), and, or, xor (bit-
wise), =, €, sametype (comparison). = and sametype allow
unbound variables as arguments.

Fleng also has a one-argument meta-call, call(X).

For a more detailed discussion of Fleng and its properties,
the reader is referred to [13, 16].

4.2 Translating Flat GHC into Fleng

This secticn quickly reviews translation of Flat GHC into
Fleng, It iz a summary of some previous material, but
18 included heré in order to make the paper more self-
contained. A detailed deseription can be found in [14].

The compiler has to convert clauses with guard goals info
clanses without, Since most clawses have emply guards,
they can be executed unchanged ss Fleng clauses,

Moat other Flat GHC clauses have only one guard goal,
which is a test. A negative result selects one clanse, while
a positive result selects another clause:

p(X,Y) =X <0 | g{X,¥).
p(X,¥) == X »>=0 | r{X,Y).

The definition of this predicate can be transformed into
Fleng by moving the test out of the clauses. Clauses can
then be selected by indexing on the result of the test:

P{;,T} ol 1-55(1|O|R)| Pl[lrl-'ﬁ-
pi{trua,X,¥) :- q(X,¥).
. pi(fal=e,X,¥) :- r(L,Y).

lass 15 straightforward to implement in Fleng using
computa,

Most practical Flat GHC programs can be franslated in
the mentioned ways. Multiple-goal guards ean be trans-
lated into Fleng, using the following general idea:

Suppose that we have a Flat GEC predicate p, defined as

plX) - gi(X} | B1(X]).

1035

plx) - g2(X) | B2(X).
This definition will he converted into the Fleng definition

pl(L)} :- pi(X, N}, p2(X, N).
PLIX,F) = gi1{X,H), bI1(N,X).
p2(X, N} = g22(X, N}, b22(N,X).
bi1(i,X) = b1(X).

v22(2,%) - B2(1).

The introduced variable ¥ is a mutual exelusion variable.
It ensures that only the body corresponding to the first
succeading puard is executed.

The compilers task is to convert the guard g1 (X) into the
guard test gi1(X,N), where it must be clear that g11 can-
not export any bindings oulside pl except for the mutual
exclusion variable B, The compiler must similarly convert
the guard g2, Since guards may only consist of system
predicates, it is not very hard for the compiler to make
suee that the converted guards will not attempt to export
any bindimgs.

4.3 Mapping on Processors

Fleng programs are stored as Lisp-type S-expressions on
the heap, i.e. in two pvars, CAR! and CDR!. No attempt is
made to store mulkiple copies of programs locally in each
processor, since memories are too small, and this would be
a great waste of memory. Programs are spread out over
the machine.

For each type of process, one process is represented by one
processar. Aboutl 3-5 data which go along with the process
are stored in the same processing element. These data are
pointers to the heap, to a trust cell, or an environment
record for variable bindings. There is always a mask vector
for each type of process saying whether there is a process
at that position or not, so that new processors can be
allocated by *PROCESSOR-CONS.

4.4 Interpreter structure

This interpreter is an adaptation of the SIMI} interpreter
for a vector parallel computer described in [18]. Although
the interpreter operates on vectors rather than scalars, it
is quite similar to interpreters for committed cheoice lan-
guages.

A strueture sharing scheme is used, since we want to aveid
copying overhead, which is both hard to vectorize effi-
ciently, and which requires much garbage collection over-
head.

The interpreter eonsists of three main phases: An AND-
step, an OR-step, and a UNIFY-step. The AND-step
forks queries into separate goal literals, With a definition
plX) := q(X) and a query ?- p(¥}, r(¥), The AND-
step would fork this query into separate goal literals, p(Y)
and x(Y).

1036

The OR-step then takes the goal literals, and forks them
into separate candidate processes. For p{Y) in this case,
there is only ene elanse, so only one candidate process is
created, containing p(Y} and the clause p(2) :- q(X).

The UNIFY-step takes a candidate process and matches
the caller with the head of the clause. If matching is sue-
cezaful, the body of that clause is generated as a new query,
7= g{Y}. In unsuccessful, or if another clanse has already
been committed to, the candidate is dropped.

In order to prevent one very long unification from delaying
other processes which have already finished their unifica-
tions, unification must be inferruptable, so that remaining
unification steps are postponed until the next interpreter
cycle. The same principle applies to these AND-step for
long queries, to the OR-step for many candidate clauses,
to dereferencing for long variable chains, and to activation
of many suapended processes, unless buay waiting is used.

Except for the three main steps, there is also a simple
COMPUTE-step which executes the primitive computae,

The following is a more detailed, slightly simplified de-
scription of the intm:prql.er:

The AND-step:

» The first element of every query is forked as a separate
process, and a drust cell is created for this process,
The rest of the query, if non-empty, is delayed until
the next eyele.

The OR-step:

¢ A candidate clanse, if any is left, is combined with a
goal literal, and an environment is allocated. Other
candidate clauses for this geal literal have to wait
until the next eyele.

The UNIFY -atep:

» Both arguments are dereferenced one step. If either
argument nesds further dereferencing, it has to wait
until the next cycle.

o If both arguments are list cells, a cell is allocated an
a small stack implemented as a linked list. The CDR
parts of the lists are put in this cell, the CAR parts
become new arguments, and the unification will con-
tinue on the next cyele of the interpreter.

o If one mgument; is a variable, which must not be
bound, the process is suspended. For a busy wait-
ing scheme, this just delays the unification until next
cyche.

¢ If one argument is & variable which can be bound, it
is bound. If the stack is empty, this process tries to
commit. This is done by mutual exclusion using the
trust cell allocated during the AND-step. If the stack
is not empty, new unifieation arguments are popped
from it, and the unification continues on the next cy-
cle.

¢ If both arguments are equal constants, the stack is
thecked in the same way as in the previous step, and
execition continues in an analog way.

Otherwise, the unification failed, and this process is
removed.

Body unification, i.e. the unify built-in is executed by
the same code as that of head matching., The necessary
extension is a flag which says whether exporting a bind-
ing is allowed or not, and provision for binding the result
Argument.

Tnification is performed sequentially, depth-first, left-to-
right. Although we could get some extra parallelism out
of unification, the overhead for synchronization of differ-
ent branches of the same unification is expensive. [t also
seems that faiflure or suceess of unification is usually de-
cided by just a few arguments (the idea of indexing), which
speaks in favor of sequential unification. Parallelized unifi-
cation also has a tendeney to ereate “bursis” of short-lived
parallel processes. Serial unification keeps the degree of
parallelism more even.

We can see the interpreter as an abstract machine which
can execute four different instructions, AND, BUILTIN,
OR, and UNTFY. The source operands are the input pro-
cesses, and the destination operands are the oufput pro-
cesses. As we have described it, these steps are executed
eyclically. Howewver, nothing prevents us from executing
them in a different order. For instance, il is probably use-
ful to execute a few UNIFY-steps in a row.

5 The Low-level Interpreter

5.1 Compilation and the pWAM inter-
preter

pWAM is similar to WAM, and compilation from Flat
GHC inte ¢ WAM is quite similar to compilation from Pro-
log into WAM. A difference is that environments cannot
be allocated on a stack but must be records in & heap.
The implementation is also much simpler, since there is
no backtracking in Flat GHC, so choice points do not ex-
ist. :

As opposed to the Fleng interpreter, the pWAM inter-
preter is structure-copy based.

The following is an example of a2 maximally optimized
concatenate:

concatanate:

deraf{al)

switch(al, sym, num,cons, var)
eg{al,nil, empty,fail)

Bym: -

empty: bind(a2,al,concatenate)
jump(suce)

cons: getlist(al,t0,a0)
newvar{tli) '

cons{t0,t1,%2)

bind(aZ,t2,concatenate)

movi(tl, a2}
jump(concatenat a)
var: guspand
num: fail:
fail
Buce: raturn

We have assumed that either a mode declaration, or pro-
gram analysis has shown that the third argument will al-
ways be unbound when this procedure is caliad.

The instruction eqx,y.labeli,label2) jumps to
labell if comparison is successful, and to label2 is com-
parison is unsuccessful. The instruction bind(x, ¥, labal)
jumps to label if x may not be bound, otherwise it binds
it.

The argument “registers” al-a2 and temporaries t0-t2
are stored in the process environment, There are a few
other instructions for creating and handling such environ-
ments, and there are also instructions for arithmetic and
for full unifieation. An important issue iz how to aveid
having a wide sermantic gap between a unification Instrue-
tions and the much simpler instructions. We have solved
this problem by effectively unfolding the first level of uni-
fication, and rn.nHl:lE recursive calls to _H'la unfolded code.

This interpreter has many more different instructions than
the Fleng interpreter, but the principle of cycling through
the instructions is basically the same, but for this infer-
preter the order in which instructions are executed is much
more important for the total efficiency.

5.2 Mapping on Processors

The heap is represented, and memory. allocation is per-
formed in the seme way as for the Fleng interpreter. How-
ever, programs are not stored in this heap, but in a differ-
ent pvar. The program counter for each process is an index
into this pvar. Programs are nof stored [ocally in proces-
sors, for the same reason as for the Fleng interpreter.

Process environments are not very large and could be
stored in the memory of a processor. This would speed
up execution, but at the time of this writing we have not
implemented this optimization.

Otherwise, processes map on processors in the same way
as for the Fleng interpreter: One process per processor,
and a mask pvar which says whether the position is free

or not.

6 An SIMD Machine Instruction
Set

6.1 Instructions

We do on purpose resirict ourselves to as small an instrue-
ticn set as possible. Exotic instructions will prevent com-

1037

parisans with other architectures, and complicate timing
estimation. Fortunately, not many instructions are neces-
sary. Each imstruction corresponds to one or a few Con-
nection Machine instruetion [26]. {All of these instructions
do in fact also exist as either a single or a few machine in-
structions of typical vector parallel Euper:.qmputersl 2.8

8].)
Although in this paper we will use timing data for the

Connection Machine, results should be gqualitatively ap-
plicable to any hypercube-based SIMD computer.

We would like to have the following similar “traditional”
instructions, with their obvious interpretations, as part of
cur SIMD instruction set:

movals, d,n)
add(sl,s2,d,m)
sub(sl,s52,.d,m)
mul(sl,s2,d,m)
divisl,s2,d,m)
and(si,s2,.d,m)
or(si,s2,d,m)
xor{al,s2,d,m)

We alsb want to have a few instruections for comparison.
The result of the comparison is stored in the destination
vector:

cmpeq(s1,s2,d,m)
cmpna{sl,s2,d,m)
emplt(sl,s2,d,m)
cmpge(sl,s2,d,m)

We assume that stere described earlier never causes col-
lisions by trying to store two data in the same location,
ie. that all x[i] for which m[1i] are true, are different.
We assume the same thing for the load instruction, so
that it will never try to read several times from the same
processor.

When we need fully general load and store opera-
tions which can manage collisions, we use the aperations
loadeell(s,x,d,m) and storecoll(s,d,x,m). The dis-
tinetion is important, because as we shall see later, the
speed of these pairs of instructions differ substantially.
storecoll introduees non-determinism by storing values
in the destination by overwriting, without control over in
which order the values are written. This speration 15 use-
ful for arbitration of parallel processes.

We need to be able to count or enumerate all proces-

sors with their corresponding mask element true. The
count(d,m} operation counts the number of masked pesi-

tiong, and fills 4 with this value. enumerate{d,m} could
be described as '

tmp 1= 0
for all processors i do
if (m[4i1) then d[i] := tmp = tmp + 1

1038

6.2 Instruction Timilig for the Connec-
tion Machine

We will now take a look at how our SIMD instruction set
matehes thal of Paris, the Connection Machine parallel
inatruction set, and the execution time of the instructions.
The timings are based on datz and formulas obfained from
[5, 6, 26, 28, 27].

We assume that all operations are 32-bit operations. This
simplifies the estimation, but is overly pessimistic, since
1-bit or 16-bit cperations are sufficient in many cases, and
the execution time is considerably shorter for bit-narrow
instructions. For the time complexity, we assume that the
bit-width of operands is of the same order as the number

of processors,

® mov,movs,add,adds,aub,emp..: Thess operations
are all of time complexity Oflog n), if we assume that
the order of the range of arguments is the same as the
number of processors. The execution time for 32-bit
arguments is less than 20 ps.

o mul,div: It is not quite clear from our sources what

the timing of these instructions are, but straight for-.

ward coding should produce code which takes approx-
imately 400 ns, considering the time for addition. The
speed of these instructions is not very important for
olr implementation anyway, since they are only rarely
executed. The order is Olog? n).

e enumerate, count: These instructions are imple-
mented taking advantage of the hypercube structure
of the Connection Machine, and execute in just 400
ps. The order is O(log? n).

e store: The time for a 32-bit operation is approx-
mately 800 ps. It is a O(log® n) operation. One factor
logn comes [rom message Lransmissions being serial.
The other factor log n comes from the maximum dis-
tance between processing elements.

s load: This is the same as two atore operations: The
first processor sends its own address to the other pro-
cessor, which returns the required data. The time
spent by this O(log® n) operation is approximately
1600 ps.

atorecoll: This instruction was slow for the first
varsion of the Connection Machine, CM-1, but perfor-
mance has been much improved by CM-2. For CM-2,
message routers on the way to a destination are able
to delete messages hound for the same destination.
This makes the time complexity O{log?n), and the
execution time is about 1.6 ms.

loadcoll: This operation is more complicated than
storecoll. How to implement this operation effi-
ciently is & semi-classical problem of parallel comput-
ere. OM-1 solved the problem by using sorting -as
a subroutine, giving the operation a time complex-
ity of O(log*n). CM-2 hardware allows a more ele-
gant scheme called “backward roufing,” where mes-
pages are combined and saved in routers along the

way, and the required data are returned by using ex-
actly the same kind of routing backwards. This re-
duces the time to about 3.2 ms, and the complexity
to G{log® n).

T Results

It is very hard bto find suitable benchmarks for paralle]
implementations, It is important that the benchmarks
have predictable behaviour, go that different implementa-
tions can be compared. For instance, we would like the
degree of parallelism not to fluctuate wildly. For such rea-
sons, we have chosen to use the traditional concatenate
benchmark., By running several concatenate in parallel,
and counting the executed instructions, we have found ap-
praximate values for the different classes of instructions,
as shown in the table below. The values given are per pro-
cessing element and process reduction for 65,536 parallel
processes on a 65,536-processor Connection Machine,

The peak process reduction speed for the Fleng interpreter
would be approximately be 65, 536/0.606 Hz == 108 k=,

‘Frequeney- Total time per
reduction [ms

Instruetion group-

mov, add, etc 1911 a8
mul, div 4] 0
anumarate, count By 35
store 154 123
load 59 04
storecoll 11 18
loadeoll 93 208
Total 2,315 a0

Benchmark results for the Fleng interprater.

There are no calls to compute in concatenates, so mul and
div are not called at all.

Frequency Total time per

Instruction group
reduction [ms]

mow, add, etc 76 16
mul, diwv 0 0
anumarate, count a1 - 20
store 14 11
load .11 18
storecoll 1] 0
loadeell 32 102
Total B4 167

Benchmark resulls for the pWAM.

For this benchmark and the pWAM interpreter, no rmutual
exclusion is necessary, so the count for storecoll is zero.

The peak process reduction speed for the pWAM in-
terpreter would be approximately be 65, 538/0.167 He ==
392kHs.

7.1 Analysis and Discussion

The simulation data shows clearly that execution time is.

dominated by loadeoll. Maost of the calls to loadesll
turns out to be the inlerpreters reading user programs. It
is tempting to tey to store programs locally in processors
to speed up such sperations. However, even if the time for
loadeell could be reduced to zero, the speed would only
increase by a factor of less than two, which hardly makes
such a solution worthwhile.

The speed figures we have cbtained are for ideal circum-
stances, It is clear Lhat for a less homegeneous mix of
predicates, the performance would be less, may be not so
much for the Fleng interpreter as for the pWAM inter-
preter: Suppose that some process would like to execute
the instructions a, b, ¢, d, e, f, in this order, and that some
other process would like to execute them in the opposite
order, f, &, d, ¢, b, a. This will reduce the total speed
to most half, in whichever order we execute instructions.
For the Fleng interpreter this effect is not so pronounced,
gince there are only four “instructions’.”

Even if the performance of the g WAM interpreter for this
reason sometimes may fall to the level of the Fleng inter-
preter, it may have an advantage in simplifying garbage
collection. In this paper, we have not discussed garbage
eollection, which is obviously an important topic. It docs
seem that garbage collection is well shited to SIMD execu-
tion, since it garbage collection ia of parallel nature, and
consists of & large number of relatively simple operations.
Garbage eollection for SIMD architectures is discussed in
{14].

At a peak reduction frequency of a few 100 kHs, the
Connection Machine is not faster than current sequential
implementations. However, the Connection Machine be-
comes much more interesting considering its scalability:
Since the speed of the slowest SIMD instruction of our in-
Lerpreters (reading data from a remote processor allowing
collisions), grows as O(n/flog® n) in the number n of pro-
cessing elements, the performance also increases at this
rate. A doubling of the number of processors of a 65,636-
processor Connection Machine would result in a 1.8-fold
increase in reduction frequency.

This discussion has all the time assumed that programs
possess very much parallelism. For strictly sequential pro-
grams, performance is abysmal. Thus, a suitable future
direction may be to combine a fast sequential, or low-
degree parallel front-end computer, with a massively par-
allel SIMD computer as a back-end.

The approach we have described should be applicable
to other committed-choice languages, such as Parlog, as
well. However, languages which rely on very complex non-

1039

interruptable primitive operations, like atomic unification,
deo at least for now seem less suitable for SIMD implemen-
tation,

8 Conclusions

The results of the simulation show that implernenting Flat
GHC on the Connection Machine is not a free lunch. The
speed is comparable to that of mainframes. However;
the advantage with the hypercube SIMD approach is its
unigque scalability. This assumes that programs executed
contrin massive parallelism - if not, performance will be
very low. The best approach for the future may be to
combine a sequential processor with a massively parallel
processor as a baclk-end,

9 Acknowledgments

We are very much indebted to Ken Kahn, who really went
out of his way to arrange a visit for us at Xerox Pare,
introducing us to Connection Machine wizards and to the
real machine, and help us around in all kinds of ways.
Without this visit, which became possible entirely thanks
to Ken, our paper would have been much less interesting
{or at least, much more boring). We are grateful to Xerox
Parc for generously sponsoring our visit there.

We are also grateful to Charles Elkan from Cornell for very
valuable discussions of various CM topics, which especially
inepired work on the pWAM implementation. We learned
much about the Connection Machine from John Lamp-
ing at Xerox Pare, and Donna Fritzsche from Thinking
Machines, who spent a long time patiently explaining the
machine and *Lisp to us.

We have benefitied very much from discussions with mem-
bers of the Special Interest Group of the Inference Engine
at the university, and with members of the Parallel Pro-
gramming Systems Working Group at-ICOT, especially
Kazunori Ueda.

This work was supperted by the Japﬁnﬁe Ministry of Ed-
ucation, and the Swedish National Beard for Technical

Development.

References

[1] Bawden, A., Agre, P.E.: What a parallel program-
ming language has 1o lef you say. MIT AT Memo 796,

Septemnber 1984,

2] Cedish,M. and Shapiro,E.: Compiling OR-parallelism
into AND-parallelism. In Shapiro, E. (ed): Proc. 3rd
Int. Conf on Logic Programming, London. July 1986,
p. 993-500.

(3} Furukawa K. and Mizgoguchi,F. (Eds.): The Parallel
Programming Language GIC and its Applications.
Kyoritsn publishing Co. Tokye, 1987, (In Japanese).

1040

[4] Gregery, S.: Parallel Logic Programming in Parleg
Addison-Wesley, 1087,

[5] Hillis, W.D.: The Connectlion Machine, MIT Press,
Cambridge, Mass., 1986,

[6] Hillis, W.D. and Steele, G.L., Jr.: Data Parallel Al-
gorithms. CACM, Vol. 29, No. 12, p 1170-1183.

[7] Hirata, M.: Selfdescripiion of the Parallel Program-
ming Language Oc. Computer Software, No. 3, Vol.
4. September 1987, (In Japanese)

[8] HITAC 5-510 Processor’s Hendbook Manual ne.
8010-2-001. Hitachi, Ltd. September 1984, (In

Japanese)

[#] Kacsuk, F. and Bale, A.: DAP Prolog: A Set-erienied
Approach to Prolog. Computer Journal, Vol 30, No.
5. 1987. p 393-403.

[10] Kanada, Y.: High-speed Erecution of Proleg on Su-
percompuiers. In Proc. 26th Programming Symp., In-
formation Processing Society of Japan. 19856, p 47-56.
(In Japanese)

[11] Kanada, Y.: High-spesd Ezecution of Prolog on Su-
percompuiers - Realizafion and Performance of dif
ferent models of OR-vector ezecefion. In Information
Processing So¢. of Japan Workshop on Programming
Languages no. 12, 87-PL-12. July 1887. p 1-10. {In
Japanese).

{12] Kanada, Y., Kojima, K., and Sugaya. M.: Vecloriza-
tion Technigues for Prolog. In Proc. Int. Conference
on Supercomputing. St Malo, France. August 1988,

[13] Nilsson, M. and Tanaka, H.: Fleng Prolog - The Lan-
guege which furns Supercompuiers into Prolog Ma-
chines. In Wada,E. (Ed.): Proc. Japanese Logic Pro-
gramming Conference. ICOT, Tekyo. June 1986, p

' 209-216. Also in Wada, E.(Ed.): Logic Pm-gra.nmung
‘86, Springer LNCS 264. p 170-179.

Nilsson, M. and Tanaka, H.: Converting FGCHC
Clanses with Guards info Clouses withow! Guards. In
Information Processing Soc. of Japan Workshop on
Programming Languages, 88-PL-17. July 1988, (In
Japanese). Section 17-3.

Nilssen, M. and Tanaka, H.: STMD Archilecture and
SBuperparallel Logic programming. In Information Pro-
cessing Soc. of Japan Workshop on Computer Sys-
teme, BB-ARC-71. July 1988, Section T1-16.

[16] Nilsson, M. and Tanaka, H.: The Art of Building
a Parallel Logic Programming System. In Tanaka, H.
(Ed.): Proc. Japanese Logic Programming Confer-
ence, ICOT, Tokyo, June, 1987. p 155-183. Also in
Furukawa, H., Tanaka, H., Fujisaki, T. (Eds.): Logic
Programming '87. Springer LNCS 315, 1988, p 85-
104,

f14]

(18]

Nilsson, M. and Tanaka, H.: A Proposal for imple-
menling GHC on the Conneclion Machine. In Proc.
IEEE Region 10 Conf. p 821-826. Seoul, Aungust,
1987,

[17]

[18] Wilsson, M. and Tanaka, H.: A Flet GHC Imple-
menlalion for Supercompuiers. To appear in Proc.
Int. Conf. Symp. Logic Programming, Seattle, Au-
gust 1988,

Milsson, M. and Tanaka, H.: Graph Algorithms for
Supercomputers. To appear in Proc, Int. Computer
Symposium, Taipei, Taiwan. December 1088,

(18]

[20] Shapiro, E.: A Subsel ﬂf Concurrent meﬂy and ifs
Inferpreter. ICOT Technical Report TR-003, Febru-

ary 1983.

Steele, G.L., Jr. and Hillis, W.D.: Connection Ma-
chine Lisp: Fine-Grained Parallel Symbolic Process-
ing In Proe. 1986 ACM Conf. Lisp and Funectional
Programming, Cambridge, Massachusetts. August
1986. p 27T9-267.

[22] Sterling, L. and Codish, M.: Pressing for Parallelism:
A Prolog Program Made Concurrent, J. Logic Pro-
gramming, No. I, 1986, p. 75-892.

Stollo, 5.7.: On the Limitations of Massively Paral
lel {SIMD) Architectures for Logic Programming. In
Proc. US-Japan Al Symp. 1987, [COT, Tokyo, Japan.
December 1987, J. Logic Programming, No. 1, 1885,
p. 75-92, '

[21]

[23]

Stolfe, S5.J. and Shaw, D.E: DADO: o iree-
structured machine erchifecture for production sys-
fems. Proc. National Cenf. Artificial Intelligence,
Carnegie-Mellon University. Augnst 19582

[24]

[25] Tatsuguchi K. and Muracka,Y.: Parallel Logic Pro-
gramming Interpreters on Supercomputers. In Infor-
mation Processing Soc. of Japan Workshop on Pro-
gramiming Languages no. 14, Decernber 1887, (In

Japanese).

Connection Machine Model CM-2 Technical Sum-
mary. Thinking Machines Corporation, Technical Re-
port 87-7. April 1987.

[26]

[27] Personal communication. Thinking Machines Corpo-
ration, Augnst 1088,

[28] Tucker, L.W., and Robertson, G.G.: Architecture and
Applications of the Connection Machine. In IEEE
Computer, August 1988, p 26-38.

Ueda, K. Guerded Horn Clauses. In Wada,E.
{Ed.): Proc. Japanese Logic Programming Confer-
ence. ICOT, Tokyo. July 1985 p 225-236. Also in
Wada, E.(Ed.): Logic Programming '85, Springer
LNCS 221, p 148-167,

[29]

Ueda, K.: Guarded Horn Clauses. D.Eng. Thesis, In-
formation Engineering course, University of Tokyo,
Japan., March 10886,

[30]

Warren, DUILD: An Abstract Prolog Insfruciion Sef.
Technical Note 308, Artificial Intelligence Center, SRI
International, 1983,

[31]

