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Abstract

Progress in designing intelligent interfaces for graphic design applications such as electronic publishing
and flustration will depend cruclally on the application of symbolic programming techniques from artifi-
clal intellipence. But the traditional "expert systems” methodology breaks down when applied in flelds
where visual problem solving, as opposed to verbal or symbolic problem solving, is paramount Expert
graphic designers are fluent in the generation and critique of visual examples rather than the articulation
of such abstract principles as IF-THEN rules. : ‘

A machine learning technique that holds promise for capturing the expertise of skilled problem solvers in
visual domains is "programming by example”. The designer constructs and edits examples using an in-
teractive graphical interface, such as a graphic editor for illustration or page layout. The system simulta-
neously records the designer's actions, using a symbolic procedural representation. The designer may
then converse with the system about how to generalize the actions to apply to fuhure examples.

This paper will describe work underway at the Visible Language Workshop of MIT's Media Laboratory,
where artificial intelligence programmers and graphic designers are collaborating to develop graphical in-
terfaces that can bridge the gap between the "hands-on" world of the designer, and the more abstract, sym-

bolic world of the programmer.

Al should study intelligent problem solving in vis-
nal design domains

Artificial Intelligence has had, in recent years, sever-
al successes in creating problem solving programs
and tools to aid people in selving problems in such
fields as medicine, business and engineering. Such
successes all depend crucially on the ability to ana-
lyze the knowledge involved in solving problems in
these fields and making it explicit enough to be em-
bodied in a symbolic computer language. The bene-
fits of doing so are twofpld: First, it enables the crea-
Hon of programs which help professionals in these

fields in their daily work, which is of great practical
importance. Second, and more abstractly, it yields
insight into the nature of knowledge in these fields
and increases our understanding of how people
achieve competence in these fields.

To date, though, the application of Artificial Intel-
ligrence techniques has been largely confined to do-
mains in which thinking seems linguistic and
symbolically oriented. People have been more re-
luctant to attack areas in which visual and aesthet-
ic competence plays an important role, perhaps be-
cause these flelds seem so ill-structured. But the
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prejudice against Al applications in aesthetic do-
mains has never been adequately tested experi-
mentally, so perhaps the time is now ripe for ex-
ploration.

Technology in applications of artificial intelligence
to the "harder” domains has reached a sufficient
state of maturity that transplanting it to domains
far removed from its original application no longer
seems oput of the guestion. Second, the prolifera-
tiom of computer graphics and sound capabilities
on inexpensive perscnal computers has made
these applications commercially important.

Problems in graphic design seem like a good test-
bed for explering the cognitive processes involved
in visual and aesthetic design. Bxcellence in graph-
ic design is eruclally dependent on making good
aesthetic and stylistic choices about arrangement of
visual elements, Yet the problem is not so difficult
and underconstrained as that of artistic expression
in the fine arts. It is easier to judge the suocess of a
program which attempts to perform automatic lay-
out of a magazine than to judge a program that
tries to produce a beautiful abstract painting,

The success of the phenomenon of "desktop pub-
lishing" is one example of how computer tools for
visual and aesthetic design are becoming impor-
tant to large comrmunities of users. The effective-
ness of communication in computer-generated
print media iz dependent upon the quality of aes-
thetic decisions made during its production. Cur-
rent generation layout and illustration tools are
"dumb”; they represent only the geometric rela-
tionships between visual elements, rather than the
function of visual components in communicating
ideas. Knowledge representation techniques hold
out the promise of making "smart" tools that free
designers from tedious and repetitive layout
chores.

The rest of this paper will introduce an approach to
Al applications in graphic design, using a direct-
manipulation graphical interface coupled to a ma-
chine learning engine. A detailed example will
demoenstrate how a simple heuristic for expert lay-
out of music notation can be communicated using
the technique of programming by example. -

How does knowledge engineering in visual do-
mains differ from verbal domains?

A paradigm for Artificial Intelligence applications
prevalent in the commercial world is the knowl-

edge engineering appreach [Buchanan and Short-
liffe 84]. A knowledge engineer interviews experts
in the field, gets the expert to communicate how
preblems are solved, and tries to codify that knowl-
edge in the form of IF-THEW rules which can later
be usad by the computer to reproduce the expert's
behavior, The great advantages of this approach are
that it does not require much preconceived analy-
sis of the target domain, and uses relatively simple
computational mechanisms. Some projects
[Weitzman 87] have shown the promise of this ap-
proach in the field of graphic design, as we have
ready access to experts in graphic design and exam-
ples of their work.

My suspicion is that in the long run, the knowl-
edge engineering approach will prove limited in
the domains of visual and aesthetic design. Knowl-
edge engineering works best in domains that are
filled with large numbers of independent facts and
involve relatively shallow processing, whereas 1
suspect aesthetics involves relatively litile concrete
knowledge but deep conceptualization.

Designers tend to be relatively inarticulate in ex-
pressing their ideas in purely verbal form. The
traditional knowledge engineering approach relies
heavily on verbal expression of rules. New knowl-
edge acquisition strategies will have to be devel-
oped which use graphical and gestural representa-
tions as input.

The road to design applications starts with simple
procedures, gradually made more flexible

The aesthetic decisions made by human designers
are wonderfully creative and complex. - People
draw on a wealth of real-world knowledge and the
enormous computational power of the human
visual system. Short of solving the machine vi-
sion problem and achieving human-level perfor-
manee in a real-world knowledge base, we cannot
expect to reproduce human competence in graphic
design anytime soon.

Rather, the near-term goal of this research is to
produce computer systems that can usefully act as
assistants to human designers. A person who is
just beginning as an assistant to an experienced de-
signer might start out by simply executing proce-
dures whose content was already determined by
the mentor. The expert designer would gradually
cominunicate the reasons for the various steps per-
formed, and illustrate them in a variety of concrete
situations. . As the student learns, the procedures



become more flexible, and knowledge can be ap-
plied in less obvipus situations. Eventually, the as-
sistant becomes capable of solving analogous prob-
lems independently.

We are interested in explicitly modeling this pro-
ceas, with the computer playing the role of the de-
cign assistant. In a companion paper [Lieberman
88] I argue that there is evidence that design knowl-
edge is actually taught by the presentation of visual
examples, together with advice that directs the stu-
dent's inmterpretive process for generalizing from
the examples.

Like the beginning design assistant, a learning sys-
tem must start out with simple procedures explicit-
ly directed by a human expert. The role of the lear-
ner is initially limited to making "obvious” appli-
cations of the expert's procedures. Gradually, as
more examples, and more sophisticated generaliza-
tions are accumulated, the relation between the
original examples and the new problems becomes
less obvious, and more in the nature of analogy.
And, as many authors have observed, analogy is an
essential component of creativity.

At this stage, our systems are still at the fairly liter-
al level of learning graphic procedures by explicit
direction. Later in this paper, we will present a de-
tailed example of how a simple graphical proce-
dure can be learned by explained example. The sys-
tem contains some simple mechanisms for gener-
alizing the procedure shown so it can later be ap-
plied in "analogous” cases. This will illustrate the
approach.

Programming by example is an alternative to tradi-
tional programming for communicating proce-
dures :

In addition to asking designers to share their
knowledge verbally, a more effective approach may
be to watch them in the process of design. We seek
to equip a system with the ability to learn directly
from a designer's graphical and gestural actions, to-
gether with additional explanatory input. Artificial
Intelligence contributes the techniques of program-
ming by example [Lieberman 82], [Lieberman 84]
and learning by analogy [Mitchell B3], [Lieberman
85], which may be very well suited to the task of
capturing design knowledge In computational
form.

The designer presents a concrete example of a de-
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sign problem to the machine, then demonstrates
the steps of solving it, using graphical and gestural
commands. The designer also presents some indi-
cation of why each step is taken, and how it can be
generalized to further examples. The system dis-
plays the effect of the actlons in the concrete exam-
ple, and also remembers the steps for later use.
Subsequently, the computer can apply an
"analogous” procedure to any example sufficiently
similar to the ones on which it was taught. Fro-
gramming by example is a powerful technique that
can bridge the cultural gap between the "hands-on"
world of the designer, and the more abstract and
symbolic world of the programmer.

We have deliberately chosen to keep the learning
procedure used quite simple. We are avoiding so-
phisticated inductive inference prodedures so that
the designer can easily grasp the generalizations
performed by the system. The cost is requiring
more numerous examples and ‘more verbose ex-
planations. Later, more complex inductive proce-
dures could be substituted, while retaining the in-
terface. The learning procedure employed
[essentially the same as in [Lieberman 82] and
[Lieberman 84]] is similar to what is usually called
explanation-based generalization [Mitchell 83] ex-
cept that the order in which the steps take place is a
bit different. In classical explanation-based general-
ization the explanation for a given generalization
is presented all at once. Here, bits of explanation
are provided incrementally, in order to cause the
system to come up with a desired generalization,
which may change in the course of the explana-
tion. This might be termed generalization-based
explanation.

Knowledge acquisition from graphical interfaces
through programming by example

The key to making wisual communication' of de-
sign procedures work is establishing a correspon-
dence between demonstrative actions like direct
manipulation of graphical objects, and procedural
concepts like functions, conditionals and recursion.
This correspondence allows the designer to per-
form actions in the visual domain and use them as
parts of procedures that capture knowledge about
intelligent design. The technique of programming
by example provides a bridge from the essentially
concrete nature of pictures and the abstract nature
of procedures.

In [Lieberman 85] I described a graphical interface
interpreter which exploited an analogy between
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menu-driven direct manipulation interfaces and
procedural programming languages. Commands
selected from menus act like functions do in a pro-
gramming language; they are the means of access-
ing specific named aspects of a system's functionali-
ty. Graphical objects selected with a pointing de-
vice such as the mouse play the role of arguments
to these functions. In a circuit design system, for
example, pointing at a visually displayed circuit
element and invoking a menu operation that cop-
ies the element is analogous to calling a copying
function with an argument of a data structure rep-
resenting the circuit element. Entire graphical in-
terfaces can be specified by definitions of the rela-
tions of functions and their arguments, analogous
to the way an interpreter for a language like Lisp is
driven by such definitions. '

We construct a graphical manipulation system in
which each graphical object carries with it its own
procedural semantics -- a history of the code that
gave rise to the object. We provide ways of attach-
ing procedural semantics to graphical objects, and
arrange that if operations are performed on an ob-
ject, the result carries the history of the operation
and its arguments. Naming of graphical objects can
be used to introduce variables into graphical proce-
dures. The history of operations is recorded with
the name of the object, and next time the procedure
is run, a different object can be bound to the same
name.
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Code generated by actions recorded through the
graphical interface can be edited with an event edi-
tor, which keeps a complete history of the computa-
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A design procedure by example: Gourlay's note
stem heuristic

As an example of a design procedure, let's consider
a problem in layout of music notation. My apolo-
gies are extended to those who are not familiar
with Western music notation, but my example
does not require actually interpreting the notation.
It is sufficient to know that musieal tones are repre-
sented by large dots, with lines extending from
them that may poeint up or down. The choice of
whether to place the line up or down does not af-
fect the sound of the musie, but musicians usually
agree on the "right” way to do it for a given piece of
sl

A musiclan places notes on a score by indicating
their positiens on the staff with a mouse. We
would like the system to automatically make the
decision about whether to point the stem of each
chord up or down. Musicians typically make the
decision reliably "by eye” - few can articulate in
words the precise criteria they use to discriminate
these two cases.

This is an example, albeit a simple one, of an aes-
thetic procedure. The intent is to achieve a certain
visual balance in the appearance of the music, Bal-
ance is itself an important concept that appears in
many graphic design problems. The goal is for the
designer to explain the procedure for achieving
this balance to the machine in terms of the mun-
dane pixel-manipulating operations of the graphi-
cal editor.



Gourlay [Gourlay 86] reports a heuristic for making
the decision in an autematic music typesetting pro-
gram. The following Hlustration shows the effect
that a similar heuristic would have if implemented
in an interactive music notation editor. As each
new note is added, the system makes a decision as
to which way the stem for the chord of which it is a
part should point.

One way of explaining the trick is to consider the
center line of the staff [the B pitch on the treble clef]
as a "fulcrum” which "balances” the notes of the
chord.  If the “center of gravity” of the notes lines
below the center ling, the stem points upward to
balance the chord. If the weight of the chord lies
above, the stem points down.

==
(==

The user Placeﬂ. a
B on the staff,

The note skem
points upward. .
Then, a [ is added
to the chord.

The D forces the

note stem of the
~ chord to point

downward.

Adding a G to the
chord changes the
stemn to point
upward.

[This analogy between musical notes and physical
weight is itself interesting. [t might be amenable to

description in terms of structure-mapping [Gentner -

1953], so that a goal for a future system might be to
accept an explanation of the note-stem heuristic in
terms of the physical analogy. This is beyond the

scope of the present paper, however.]

Imagine you are a designer of an interactive musie
tvpesetting program, and wish to communicate this
heurlstic to the system. We will show how this
procedure can be taught to the system graphically,
through presenting examples and explaining how
to make the decision for each case.
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Implementing the note stem heuristic consists of
the following steps. The heuristic is a procedure
that accepts as input a point where the user clicked
on the staff to insert a new note, and returns an ob-
ject representing a chord with the stem pointing in
the appropriate direction. Given the point, we
must find which pitch on the staff the point is indi-
cating, retrieve the chord which les at that posi-
tion on the staff, then add the new note to the
chord. Then we perform the heuristic test of com-
puting the center of gravity of the new chord and
comparing its coordinates to the center line of the
stafi. The actual details of computing the coordi-
nate arithmetic comparison are uninteresting from
our present perspective. What we are really inter-
ested in is how the manipulations of the underly-
ing musical representations are communicated by
interaction with their graphical representations.

Steps in the note stem heuristic
User indicates a
point
omn the staff

Get new note
at that point

Get chord at that point

Add new note to chord

Compute proper stem
direction

Replace new chord on
staff

=

= =

L
(===

Graphical and textual representations of objects are
clogely coupled

The music editor uses an object-orienied represen-
tation which provides conmections between data
structures representing musical obiects [staves,
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notes, chords, clefs] and graphical representations
of these objects [lines representing pitches, ovals
representing mote heads]. Interactively, the user
can only point to the graphical representations, so
we need some way of making the descriptions of
musical objects accessible. To illustrate, we will
generate an access path for the line which is at the
center of the staff, and the foecal point for our bal-
ancing act.

We provide an interactive tools which is like a tra-
ditional browser or inspector, but extended to
maintain a correspondance between graphics, de-
scriptions of objects, and the code necessary to gen-
erate them. In addition to the parts list common In
traditional inspectors, all those parts of the object
that themselves correspond to displayed graphical
objects are sensifized -- made available for selection
with the mouse. Pointing at a sub-object selects
that part graphically, simultaneously selecting its
textual description. Pointing at the textual repre-
sentation of a subpart alse selects its graphical rep-
resentacon.

The illustration below is from a prototype imple-
mentation by Suguru Ishizaki.

In the example, inspecting the object representing
the staff brings up a textual inspector detailing the

components of that staff, which include the five

lines representing pitches. The graphical represen-
tations of the pitch lines themselves become sensi-
tized, so pointing to a pitch line indicates the pitch
line object. Pointing at the text corresponding to a
pitch line in the inspector window highlights the
corresponding line of the staff. In either case, the
selection generates code which specifies the access
path to that component. In the case of an object-
oriented data structure, the code containg the name

(a Trable-Statf ...),
Symhﬂlic inherils from: Staff
I . Lines:
g;_'ﬂlgﬂaﬂcn t{a Fltl::h Line [l.mm P,t,,;h F:,}

fulcrum line

(a Pitch-Line {mth Pitch E}))

Graphical ]
designation of

fulcrum line .

Generated

—rn [ {nth 3 (send Staff :Lines)) |

of the message used to access that l:ampanent, here
the lines instance variable of the staff,

Direct manipulation of graphical ohjer.'ts yields code
for manipulating the underlying semantic objects

In addition to merely accessing graphical objects
and their compomnents, we must be able to perform
operations upon them. Just as we give both graph-
feal and textual representations to the objects in
our musical domain, we also give both graphical
and textual semantics to operations as well.

Direct manipulation systems have always been
treated as worlds in which every operation acts
solely via side effects. Menu and iconic operations
are considered to work by global changes to the
state of the screen. Certainly, some direct manipu-
lation operations are best modeled in this way, but
this view loses the crucial ability to have the ana-
logue of functiona! programming in the graphical
world. The lack of a functon oriented view is
what limited previous programming-by-example
systems such as [Smith 78] and [Halbert 84] to sim-
ply recording stralght-line programs. We provide
graphical functions which can accept arguments
and return values. These values may be used in
further computation, leading to the nesting of ex-
pressions.

The system thus records dependencies between
graphical actions. A newly created or modified
graphical chject holds associated with it a procedu-




ral representation of the graphical gestures used to
create it. Further manipulations of this object are
interpreted as intending composition of the ac-
tions, recording later actions as dependent upon
earlier ones. Generalization operations and edits
are propagated accordingly. These assumptions
about user intent are only heuristic, of course. The
user may have, in fact, intended a different inter-
pretation of the sequence of events other than that
induced by the system. If that is the case, the user
must explicitly replay and edit the event sequence
and generalization links to conform to expecta-
ions. In our experience, however, the dependency
assumptions we have chosen seem to correspond
well with natural "teaching sequences”.

Lisp procedures are generated by genera]izi.ug re-
corded actions

The illustration below recaps the steps in the defi-
nition of the note-stem heuristic, showing the code
generated at each step. © The name attached to a
graphical object at each step can be used in further
expressions to refer to the result of that step. The
name tags also serve as the means te indicate

Mote-Point

{a Pelnt (x 145) (y 82))

{find-note Staff
Hote=Polnt]

0ld-Chord

{find-chord Staff Wew-Hota)

{egpend-note Cld-Chord Hew-Hota)

(stem=directlion ¥New=Choard]
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which objects are candidates for generalization.

The learning engine attached to the graphical inter-
face records these steps, generating the following
Lisp procedure. It is parameterized by the point
where the user clicked the mouse for the new note,
so that the next time it is vsed, a new note can be

given.

(defun Add=Note
(lat*

(Hote-Point)
{{Staff {(staff HNote-Point)})
(Hew—-Hote

(Eind-note Staff
Mote-=Point) )

{0ld-Chord
{find~-chord Staff
Mew=HNote})
[Hew-l‘:hcrd

(append-note Dld-ﬂhurd
Hew-Note) ) )
(setf (stem Wew-Chord)
(stem-direction
Hew-Chord) } })

The determination of the direction of the stem re-
quires, unavoidably, some numerical computation.

The stem direction procedure is computed by
graphically inspecting the objects representing the
staff and chord, retrieving the numerical values of
the coordinates. The system then operates in a
“calculator” mode, and the numerical average of
the chord's notes Y coordinates are compared agai-
nst the ¥ ceordinate of the fulerum line,

{defun Stem-Direction (Chord)
{cond ({< (center-of-grawvity
Chord)
(note—y
{fulcrum=1line Staff)))
{stem—down Chord))
{ {stem-up Chord}})}

(defun Center-of-Gravity (Chord)
{f (sum
{mapcar
#' (lambda (note}
(note-y note)))
{notes Chord)})
(length (notes Chord))))

As described in [Lieberman 84], the leamning engine
is capable of integrating multiple examples. In this
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case, the demenstration of the stem direction pro-
cedure requires two examples: one indicating the
cazse where adding a note results in flipping the di-
rection of the stem, one where the stem direction
remains unchanged. This is the mechanism for
generation of conditionals. If the target language
were a rule-based formalism instead of Lisp, multi-
ple examples would correspond to multiple rules
[though not necessarily in a one-to-one mapping].

Summary: Programming by example integrates
machine leamning with interactive graphical inter-
faces

Graphlc designers are visual thinkers. They can
neither be expected to write programs directly in
rule- or frame- based languages, nor express their
expertize verbally to knowledge engineers. Howev-
er, their intelligent problem solving behavior can
be captured by a system which records thelr actions
in using an interactive graphical editor to solve
particular concrete desipn problems. If the actions
are recorded in a sufficiently high-level symbolic
form, they can form the basis for a machine learn-
ing engine to synthesize intelligent procedures.
Through the use of multiple examples and interac-
tive graphical feedback, the designer can have a
conversation with the machine about how such ex-
amples are to be generalized to work on examples
other than those that were originally shown. Pur-
thermore, the resulting procedure is then smoothly
integrated back into the original graphical interface,
Programming by example is the key technique for
accomplishing this synthesis,

Status

Implementation of the music editing scenario is
not yet complete as of this writing. A program-
ming-by-example learning engine, a graphical in-
terface interpreter, and an editor for a reversible
procedure recording system, all necessary compo-
nents, have been implemented.
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