PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. @ ICOT, 1088

479

Partially Specified Term in Logic Programming
for Linguistic Analysis

Kuniaki Mukai

Institute for New Generation Computer Technology
Mita Kokusai-Buld. 21F
418, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

csnet: mukai¥%icot.jp@relay.ca.net
unep: {enea inria kddlab uke} licotlmukai

ABSTRACT

This paper describes several aspects of a record-like
structure called PST (Partially Specified Term), which
was introduced into a logic programming language called
CIL. The semantic domain for PST consists of infinite
trees called PTT with merging as builk-in operation.
PTT domain differs from the well knows one of infinite
trees of Colmerauer(?] in that a PTT is of non-fixed arity
and have possibly infinite number of branches at a node.
Unification grammar formalism is straightforwardly ex-
panded ever the domain, which is a natural extension
of Definite Clanse Grammar., As a new technical result,
it is shown that PTT domain is satisfaction complete
and compact in the sense of constraint logic program-
ming schema [13] with respect to a very simple systemn
of constraints. The PTT/PST theory is & new atep to-
wards an integrated domain of syntax and semantics for
linguistics analysis'.

1 Introduction

Record-like structures are basic and essential in lin-
guistic analysis, They have been used widely in com-
puter languages, data bases theories and computational
linguistics, and so on. The structure appears in frame of
Minsky, attribute-value pairs list, property list of LISP,

functional structure in LFG[8), anadic relation of Pollard[23],

category in GPSG[24], assignment or state of affairs in
situation theory of Barwise[d], and so on. Thus it is
natural to introduce record-like structure into logic pro-
gramming for such variety of applications. Intuitively,
record-like structurs (simply, record hereafter) is just

YA full version of the paper will appear with the title “A Sye-
tem of Logic Programming for Linguistic Analysis" as an internal
technical report.

defined inductively as a set of ordered pairs written r =
{a:/v1, .y @nfua}, where v; may be a record again, and
a; are distinct labels.

Why is record so useful? If can be answered that it
has many functions in the following senses:

o record, say r as immediately above, is & partial
Junction such that r(a;) = v

o r is a directed graph or free, which has an edge
labeled with o; from the node r fo node v,

T is a finite state gutomata.

r is a set with hereditary membership relation.

7 is an indezed set, {3 }rer, where T = {ar,...,a,}
is the index set,

® 7 is an association list.

r is a list of atéribute-value pairs

ris an algebraic structure which is associalive, com-
mutative, and idempotent [11],

r is an finite or infinite stream.

s r is a Herbrand term f (v,..,u,) for some appro-
priate functor f,. An Herbrand term can be seen
as a degenerated representation of a record.

It is clear that these aspects are necessary and useful
for linguistic analysis. So the problem ia how to intro-
duce a domain of records into logic programming, That
is, the main ebjective of the paper is fo propose a domain
of records and its theory which meets above inferpreta-
tions following the CLP(Constraint Logic Programming)
schema[12]. A record in the proposed domain is called
a PTT{Partially Tagged Tres). A PTT is roughly an

480

infinite tree of Colmerauer[8). However since record has
no arity in nature, it is not obvious to establish expected
properties of the domain. In other words, the new do-
main has a natural order, of which the domain of infinite
trees has no counter part. The theory of PTT is de-
scribed in terms of competibility of twa PTTs,

The theoretical results of the paper are:

{1] The PTT domain is compact,
{2) The theory of PTT is salisfaction complete,

This means that PTT domains can be builtin logic pro-
gramming which are complete and sound with respect to
both its computation rule and Negation as Failure Rule.
As a fact, the domain was one of the major molivation of
a logic programming language ealled CIL[17, 20]. Actu-
ally, CIL has four year experience in use for natural lan-
guage processing among other applications, showing the
usefulness of the domain as expected. The current ver-
sion was transplanted on P35I machine. Preparing envi-
ronmental facilities, CIL has been playing a role of basic
language for natural language processing at TCOT[16].

Technical heart of the theory of PTT domein was de-
scribed in Mukai[18]. For instance, soundness and com-
pleteness were formalized and proved there.

This paper reorganizes the theory following CLP sche-
ma[13]. Due to the general theory[12], soundness and
completeness result of Negation as Failure are obtained
automatically from the proaf that the demain is canon-
ical [12].

BRecently there have been many important formula-
tions and studies about record-like structure and they
are still on progress. For instance, feature structure in
unification grammar has been extended so that they have
descriptions for disjuntive information and even for neg-
ative one [2, 15, 21, 25).

However as far as the author knows, it is not clear how
to fit the PTT domain to these theories. The PTT deo-
main seems to be a good test stone for any computational
domain theory[11]. .

Another motivation of PTT domain comes from situa-
tion semantics|7). Central one is to use PTT domains to
integrate syntax and semantics processing within a com-
bined framework of situation semantics and constraint

logic programming. Particularly, some parallelism is pointed

out between P: Aczel's new non-well-founded sets theory
called ZFC/AFA[1] and the PST/PTT theory. A model
for situation theory was given in Barwise[5, 6] within the
universe of ZFC/AFA, These observation strongly sug-
gests possibility of new set theoretical domains for Jogic
programming which are more general and transparent
than the teaditional Herbrand universe. The PTT/PST
theory i& a new step towards an integrated domain of
syntax and semantics for lingnistics analysis,

This paper is organized as follows: In Section 2, an
example from simple discourse analysia is described to

illustrate some motivations to use PTT domains inte-
grating syntax and semantics using a portion of idea of
situation semantics and unification grammar. In Section
3, the syntax and semantics of CIL is summarized as far
as PTT is concerned. In Sectipn 4, some built-in util-
ities of CIL for the PIT are fllustrated. In Section 5,
several leading ideas are discussed for linguistic analy-
gig in PTT domain putting emphasis on the ideas from
situation semantics, Section @ is for the theory of PTT
domain. Unification over the domain is characterized in
terms of partial equality theory. Satisfiability iz defined
so that it is equivalent to unifiability. This is the heart
of the idea of PTT domain theory. Using the solution
lemma in Mukai[18] essentially, which has a form very
similar to the one in Aczel’'s ZFC/AFA, the domain is
proved to be complete. This means that the PIT do-
main is eanonicall12). Moreover, it concludes that logic
programming can enjoy Negation As Failure rule over
this domain. The paper ia concluded ai Section 7.

2 Using Partially Specified Terms

Before we will describe the language in the sections
Lelow, we show an example which illustrates discourse
interpretation using situations and feature set. The ex-
ample program illustrates idess to use PSTs for linguistic
znalysis. It includes & simple use of constraint by lazy
evaluation. The program expresses a naive idea about
the meaning of sentence proposed in some earlier version
of situation semantics that the meaning of a sentence
is a relation between discourse situations and described
situations in Barwise and Perry{7].

Imagine the following discourse piece between two per-
sons, say Jack and Betty:

(1) Jack: I love you.
(2) Betty: I love you.

The two sentences are same, but interpretations of (1)
and 2] are different as in (3) and [4):

(3} Jack loves Betiy.

{4) Betty loves Jack.

This difference is an example of language efficiency [T}
How is this kind of language efficiency analyzed in CIL?
We demonstrate the power of PSTs by giving a program
to analyze the simplified discourse.

The name of the top level predicate is discourse_constraint.

Bar the query
7- disceurse_comstraint([(1),(2)], X, ¥1).,
the program will produce answer interpretations X= (3}
and ¥ = (4) for (1) and (2), respectively, as are expected.
In this illustration, suppose simplified discourse con-
straints (5) and {6):
{5) The speaker and hearer turn their roles on each sen-
tence utferance.

{5] The successive discourse locations are numbered se-

guentielly.
First, let us see the following clause:

(T) discourse_situation(
{sit/d,sp/1,hr/You,dl/Here, exp/Exp}): -
member (soa(speaking, (I ,Here) ,yes},5),
membar (soaladdressing, {You,Here),yes) ,8),
member (soa{utter, (Exp,Hare) ,yes),5).

This elause asserts that an object =, which is param-
eterized with {sit/5, sp/I, hr/You, d1/Here} and
{exp/Exp} is a discourse situation if S has the three state
of affairs as indicated in the body of the clause. The
membership definition is as usual.

{8) discourse_constraint{[],[]):~!.
discourse_constraint{{X],[¥]):-",
meaning{X,Y).
discourse_constraint{[X,YIZ], [Mx,My|R]}:-
meaning (X, Mx},
turn_relelX, ¥,
time_precedent{X, Y¥),
discourse_constraint ([¥i2], [MyIR]).

The first and second arguments are a list of discourse
situations and a list of deseribed situations, respectively.
The clauses constrain discourse situations and deseribed
situations with the rule (5) and (6) abowve.

The constraint (5) is coded in the clause:

(9) turn_role({hr/X,sp/¥},
{hxr/Y, sp/EHidiscourse_situation) .

According to the context of the program, this clause
presupposes that the first argument is a discourse situa-
tion. The term

{hr/¥,sp/YH0discourse_situation

in the second argument place constrains that the actual
argument contains both information {he/X, sp/Y} and
some discourse situation which satisfies the constraint
defined above.

The constraint (6) is coded in the clause {10):

(10) time_precedent{{d1/loc(X}},{d1/loc(¥)}}:-
congtr{{+i=:=Y),

The CIL call constriX+l=:=Y) constrains X and ¥ with
the arithmetic constraint that the latter is greater than
the former by one.

The sentence interpretation is described in DCG form.
The following clause is an interface between the discourse
situation level and sentence level.

{11} meaning(X#{exp/E} ,¥):-
sentence(E-[],{ip/Y ,ds/X}).

481

The sentence model is very simplified. A sentence con-
sists of a noun, verb, and another noun in order. There
are only four nouns, i.e., jock, betty, (1), you. The word
love is the only verb here. The feature system is taken
from (GPSG[24]. The control agreement principle is illus-
trated using subcategorization features. By checking the
features agreement between the subject and verb, (12) ia
legal, but (*13) is illegal.

{12) { love you.
(*13) Jack love you.

The verbk love has several semantic parameters: agent,
object, location, and so on. The first and last nouns are
unified with agent and object parameters, respectively.
The lecation comes from the given discourse situation
parameter. The agresment processing and role unifica-
tion are coded in the following two clauses (i4), (15)
uging PSTs, where ip stands for inferpretation.

{14) =sentenca({ip/S504,ds/D3})-->
noun({ip/Ag.ds/ DS, syncat/{head/F1}}),
verb({ip/S0A, ds/DS, ag/Ag, obj/ Obj,

syncat/{subcat/F}}),
noun({ip/0bj, ds/ DS}).

{15} werb(
{ ip/ zoallove,(X, ¥, Loc), yes),
ds/ {dl/Leoc},
ag/ X,
obj /¥,
subcat/{head/{minor/{agr/ ({plu/F, per/W}:
(P={+) = (@per);
P=(-), (N=1; N=2)))0agrl}}tcategory})
-=» [lowe]. % love

The pronoun [and proper name Betty are described as
follows. The agreement features of [are the first person
and singular. The agresment features of Belty are the
third person and singularity, The interpretation of the
pronoun { is the hearer of the given discourse situation.

(16} meoun(ip/betty,
syncat/{head/{minor/{agr/
{plu/(-) ,per/3}eagr}}}dcategoryl)
-=>[bettyl. , W Betty
noun{{ip/X, ds/{sp/x},
syncat/{head/{minor/{agr/
{plu/(-),per/1}0agrl}dcategory})
-=>[i] 11

The system of syntax categories in this example is de-
seribed as follows:

{17) category{{bar/ @bar, head/ Ghead}).

482

This clause says that an object which contains {bar/B,
head/H} is a category, where B and H are a bar category
and head category.

The following is & category specification by PSTs:

(18} {bar/2,
head/ {majorS {n/f +, v/ -},
minor/ {agr/ {per/1, pluf -},
case/ acc TFr.

Take query (19), to the above defined constraint, for
example.

(18) 7- discourse_constraint(
{sit/[soalspeaking, (jack, .}, yes),
soa(addressing, (betty, _),ves)|._],
axp/ [i,love,youl,
d1/ lec{l)Mdiscoursé_situation,
{exp/ [i,love,youl Mdiscourse_situation],
Interpretation).

Note that no parameter other than expression parameter
is specified in the second discourse sitaation in this query.
The ciher parameters are determined by the discourse
constraint. Then, the exact output of this query is (20):

{20) Interpretation =
[zoaf{love, (jack,betty,loc(1)),yes),
soal{love, (betty,jack,loc(2)),yesl].

3 summary of Syntax and Semantics of CIL

3.1 Syntax

Hereafter by first order term, we mean the usual first
order term, such like ones in Prolog. We define a class
of terms and clauses in CIL by extending the first order
ferm. Let us fix two disjoint sets ¥ of variables and C
of constants, For simplicity, C includes atomic symbols,
integer comstants and functor symbols all together. We

follow the convention in Edinburgh Prolog[22] for vari-,

ables and constants. That is, Abe and _323 arve variables
and abec and 323 are constants. The following are auxil-
jary symbols: .

£}, =

A class of terms are inductively defined as follows. A
variable i a ferm. If f is a constant and =, ..., =, are
terms with n = 0 then f{z,..., %) is & term. I aq, ...,
@y, are first order terms and =, ..., T. are terms then
the set

{ayfzy,....a0 2.}

is & term.

According to this definition, & constant ¢ is a term
with m = 0. A term of the form Flazyg, oy m,._} is called a
totally specified term (TST). The term {a,/%,,..., 85 /20 }
iz called a partially specified term (PST). {} iz a PST by
definition with n = 0 and is called the empty PST.

We need a subclass consisting of TST terms to in-
troduce conditioned ferm. We assume that the class
of conditions is closed with respect to ordinary Boaolean
combinations: conjunciion|,), disjunction] ;), and nega-
tion{not), PST terms are not allowed to be conditions.

‘We introduce some special forms of TSTs.

(1) :{=z, y) : & conditioned term,

{2) 8(z, y¥) : & conditioned term (lazy version of (1)),

(3) #(z, ¥) : a tagged term,

{4) '{z, y) : a labeled term,

{3) 7(z) : a frozen term.

T8Ts of the form :(z. y), @z, ¥}, 'z, y), #(z, ¥}

are written in infix notation z:y, =@y, =ly, z#y. Also

the TST ?{z) may be written in postfix notation =7,
Several examples of terms follow: [1,2,3], 3+5, and

soalgive, {agent/A,recipient/'Jack*'},1) are TS5Ts.

{} is the empty PST. Both {agent/father(X), object/0,
recipient/X} and {3LOT/X, feature(Y)/Z} are PSTs.

K:(man(X) ,wife_of (X,Y},pretty(Y)) is 2 conditioned
term, and also is Z@(Z>0). S#sca(R,{a/A,b/8},P) is
I.a.ggcd term. Man!namelfirst is a labeled term. Both
¥? and (Man!mame)? are frozen terms.

8.2 Program Clause

A progrem is a finite set of program clauses, where
a program clause is & TST. We fix a class of program
clauses and define wnit clouse, head, body, goal, guery
and so on as wsual. A program is executed in top down
depth first and from lefi io right way as the standard
Prolog. As are introduced in the previous section, CIL
has various reserved forms of terms. The current CIL
treats them as macros. They are translated into normal
form when the system reads the program elanses. For
convenience of explanation, & term ¢ is written infoemally
t[s] if ¢ has a subterm occutrence s. We write ¢[s'] for the
term ebtained from ¢ by replacing the occurrence s with
&'. The rules (1)-(6) below are rewriting rules for the
macro expansion. In these rules, r represents a program
clause and a represents a TST whose main functor ia
other than logical connectives {, ; not)

[Rules of Expanding Macros]

(1) rlz@c] — rlz : freeze(z,c)]

(2) rlzfty] = rl=: (= =v)]

(3) rlzly] = rlz: (= = {w/z})]

(4) hlw:e]: —b — Afz] : —solve(c), b

(5) : —blafe : cl] — & : ~bl(alz], solve(c))]
(6) h: ~blale?] — B : ~b{freeze(z, ala])]

Given a program, these rules are applied in suter-
most-first principle. These rules are applied until they
become not applicable. It is easy to see that final one

does oot contain any of 7, @, &, #, !. Thus we can as-
sume that a program contains no part of these reserved
forms. Therefore semantics of CIL ia reduced to the one
for our extended unification ¢ =y, suspend.lng freeze
and condition interpreter, solve.

In the current implementation, solve is an inferpreter
like CIL itself. freeze is the lazy control primitive of
Colmeraver. The unification is described below in detail
using examples,

4 Built-in Predicates for PST

Buitt-in funetions in CIL are histed below with exam-
ple uses, PSTs and lazy evaluation are major points of
CIL. The other parts follow the standard Prolog specifi-
cation, Most of what follows in this Section are related
to handling PSTs.

In what follow, single upper-case letfers such as X, ¥,
Z are used only for Prolog variables. Greek letters are
uged for any berms.

4.1 Unification and Capy

The goal & = # unifies two terms o and 8. The execu-
tion X = {af1}, ¥ = {b/2}, X =Y yields the binding
X =Y = {a/1,4/2}. Similarly, {a/b,c/{d/E}}'c!d =
yields £ = k. The next example shows something IJJ:.‘-E-.
if-filled-demon in CIL. Note that @print is equivalent to
Vo freeze(V,print(V)) where ¥V is a new Prolog vari-
able: X = {afok}, ¥ = {a/@print}, X =Y displays ok.
X#{af1,0/Xla} = ¥ yields X = ¥,X = {af1,b/1},
because the value of a-slot of X is 1. It is easy to pro-
duce and represent a circular graph in CIL: The goal
X = {afbe/¥Y}, Y = {afb,c/X}, X = ¥ yields the
circular graph X, where X =Y = {a/b,¢/X}.

As llustrated later, the notion of parametric objects
and handling them seem to be very important in pro-
cessing natural language semantics. Although much re-
mains to be investigated on the topics, here are four re-
lated built-in predicates toward the parametric objects:
FullCopy, typel f, createType, and instance.

FullCopy(a, #) makes a fresh copy of @ and unify it
with 8. typeO f(e, type(B, 7)) makes a fullCopy, (8,7'),
of (a,) and then selve(y’). ereateType(e, B, type(y,8))
unifies (v, §) with the fullCopy of (&, §). instance(a, §)
performe fullCopy(8,+) and uni fies v and o

Here are two examples of queries related to copying.
The first example will display ok:

X = {a/@print,)/ X}, fFullCopy(X, Z), Z!hla = ok?

Note that fullCepy makes a copy of creular structure.
Take the following execution as the second example:

createType(Y, (¥ = 1Y =2),T), typeC f(1,T),

typeO f(2,T). This will display yes. Note that T behaves

as if it got bound to a type whose extension is the set

{1,2}.

483

4.2 Partially Specified Terms (PST)

Here are utilities of CIL for handling PSTs: getRole,
locate, »elO f K eys, role, partial, record, buf fer, glue,
merge, d_merge, subpat, extend, meet, frontier, match,
¢t subpat, t_merge, and masked_merge.

The goal getHole(w, &, &) unifies the value of “k-slot”
of a record ¥ with £, i.e., 7l = £. & does not need to be
ground. X = {afl,b/2}, get Role(X, K, V) will produce
two sets of bindings in backtracking way: (K =2,V =1}
and (K = b,V =2).

The goal lecate(w, &, £) performs a similar operation
like getfiole except that x must be ground. The ex-
ecution will fail if = has not the argument placs, i.e,
slot, named &. locate({a/b},a,L) produces L = b On
the contrary, locate({afA}, b, L) will fail because there ia
no b-slot in the first argument. locate{{a/d},a, L) pro-
duces A = 40 and L = _40, which shows A and L are
unified with each other.

set0 fK eys(x,) collects the all keys in & given PST
m

set0 f K eys{{af/ X, b/Y,c/2}, 5)

produces § = [a, b,4].

role(k, =, £) unifies £ with the content of x-slot GE .
If & is not ground then the execotion is suspended. An
argument place named & is created in + when 7 has not
the place. For example, the execution of X = {a/1, 52},
role(K, X,3), K = ¢ will produces K = ¢, and X =
{af1,5/2,¢/3}.

record(w,£) produces a stream £ which consists of
pairs (o, 7} such that xle = r. This predicate is sim-
ilar to buf fer below. £ is generated as a stream from .
This predicate is used as a stream generator. For exam-
ple, record({a/1,54/2}, B) produces R = [(a,1), (5, 2]]. It
is useful to attach “consumer” processes to £.

buf fer{m,£) is a buffered siream producer which con-
verts'a PST 7 to £, Unlike record predicate, the stream
container £ is assumed to he produced by other process.
buf fer puts in some order each pair (e, r) such that
7le = v on £ M £ s long enough then end.of list 1s
put on £ just after the final pair in . If the buffer
length is not enough, then buf fer waits till the buffer
£ grows enough. The execution buf fer({a/1,5/3}, B),

= [A]C] will produce A= (a,1), B = [(a,1})|-1161].

buf fer({a/1,4/3}, (A, B, C, E]) will produce A = (a, 1),
B = (h,3), 0 = end, and E = _118, because the buffer
is long enough.

The goal glue(x,7) glues # and + only at the joint.
That is, for each common argument place name & of ¥
and 7, wlk and rls are unified with each other. For
example,

glue(Adt{a/ H#{b/1,c/2}}, C#t{a/GH#{c/B}})

produces H = {5fi1cf2}, A= {af{b/1,c/2}}, B =2,
C = {af{bf1,¢/2}} G = {b/1, /2]

484

The goal merge(w, 7) merges = to 7. That is, 7 is
extended minimally so that 7 is a subpattern of 7. More
precisely, for each s-slot of 7, s-slot of v is created if
necessary and the two fields are unified. For example,

mergel X#{c/d, a4}, Y#{a/B})

produces X = {af4,¢/d}, B =4, Y = {a/4,e/d}.

The poal d_merge(r,) merges 7 to 7 like merge just
above, Unlike merge, however, d_merge leaves conflict-
ing fields left unchanged. For instance, d_merge X
{c/d,af4}, Y#{a/5}) produces X = {afd,c/d}, ¥ =
{a/5, e/d}. Note that two PSTs have no unifiable a-slots
each other.

The goal subpat(r, 7, §) tests whether 7 is a subpattern
of r or not. More precisely, the goal suceeeds only if each
slot name & of 7 appears also in 7. § is a difference list,
which consists of triples (&, £,7) such that = and 7 hawve
the arguments £ and 7 with the name &, respectively.
subpat i5 used in t-subpat below.

The goal estend(w, 7, 8) extends + minimeally in such
a way Lhal = becomes a subpaliern of 7. § iz the diﬂ'(:r-
ence list of = and t as above. exdend performs the same
funetions as subpaf except that r may be extended.

The goal meet{r, 7, §) computes the difference list §,
which consiste of all triples (o, £,%) such that = and
have the arguments £ and n with the name &, respec-
tively. For example, meet({a/1,8/2}, {b/3,¢/4}, A =[]}
produces A.= [(£,2,3)].

The goal frmi.ﬁm‘{x, Ty ﬁ:] computes the difference list
between 7 and v, where, ¥ and 7 are non variable terms.
This predicate may fail becavse of some unmatching fune-
tors pairs. For example, frontier(f(a,g(B)), f(A, B), L—
[} will produce 4 = 54, L = [g(b) = 75,2 = _54],
B = .75, On the other hand, frontier{s,b, L — []) will
fail.

The goal match{r,r,§) computes the difference list
of terms = and v of any forms. Unlike frontier, this
predicate always succeeds. For example, match(a, b, L —
[} produces L = [a = #].

The goal t_subpai(r, 7) tests whether r is a subpattern
of 7 in & fransifive way. This predicate is intended to be
a realization of hereditary subset relation in set theory.
For example, t_subpat{{a/{B/¥}}, {/1,a/{c/2,b/3}])
succeeds. On the other hand, {subpat({a/{b/¥}, /L],
{6/1,0/{c/2,b/3})) fail.

The goal i merge(r,) merges 7 to 7 in & transitive
way., For instance,

t-merge({bf1,a/{c/2,b/3}}, {a/{b/Y}}}

produces ¥ = 3.

The goal delete{s,n,7) deletes the x-slot of #. More
precisely, T is unified with the record which is the same
as 7 exeept that it has ne x-slet. For instanece,

delete(a, {af1,b2}, D)

will produce O = {b/2}.
The goal masked_merge(7, 4,) computes = minus p
and then merges it to r. For instance,

masked merge{{afl, b1, ef1}, {af b/}, U#{af2})
will produee IV = {af2, ¢f1}.
5 DPST in Linguistic Analysis

In this Section, we illustrate several ideas how to use
PST describing linguistic analysis.

5.1 Features Co-occurrence Restriction.

Let us take an example from linguistic constraint en
a feature set that if refl feature of X is (4) then the
gr feature of X must be sby. This is an example of con-
straint called a Feature Co-occurrence Restriction (FCR)
in GPSG written :

(REFL +) = (GR SBJ).

Using consir, whick is a builé-in p:edit;éte in CIL, a
feature set X is constrained so by a call

constr({Xlrefl = (4] — Xlgr = sbj)).

By effect of thiz constraint, the following query gen-
erates’ automatically the gr feature in X: the execu-
tion of goals constr((Xlrefl = (+) = Xlgr = sbj)),
Xlrefl = (+), A = Xlgr in order produces A = sbj,
X = {refif(+),gr/sbj}.

5.2 Complex Indeterminate

Here cornplex indeterminate is understood as restricted
(= conditioned) parameter, which is written = : ¢ in CIL,
where £ is a term and ¢ is a condition about 2. The fol-
lowing is an example of complex indeterminate, which
describes a discourse situation:

{sitf5, spfd, ke You, dif Here, exp/ Bxp} :
[member{soa(speaking, (I, Here), yes), 5),
member{soa(addressing, (You, Here),yes), 5},
member{soa{utter, (Exp, Here), yes), §)).

The second illustration is related to semantics of ques-
tion sentence. The idea is that the meaning of a question
gentence is a complex indeterminate of the form x @ ¢ and
that answering the question is to return the value of T
after solving condition ¢, applying appropriate contexts
to contextual parameters in .

However, although CIL stands for complex indetermi-
nate language, the current implementation has succeeded
to catch only emall part of this rick notion. Much re-
maing to be done in the future.

534 Attitudes in P5Ts

An attitude (mental state) is here understood as a
pair of a frame and a setting[7]. A frame iz a parametric
object, and a setiing is an assignment or anchor, that is,
binding information.

Let (T, Ay) and (T, A2) be two mental states with a
same frame T and different setting 4;, 43, These might
remind the reader of familiar data structure called a efo-
sure in LISP or & melecule in Prolog of structure sharing
implementation. Suppese the following two belief con-
texts:

(1) Jack: I believe Taro beals Hanako.
(2) Betty: I believe Honako beats Tare,

The mental states of (1) and (2) may be represented in
(3) and (4), where beater and beaten are indeterminates.
The setting of jacks belief is

beater s taro,
beaten = hanako

{3) believe(jack, | frame/beat(beater, beaten),

beater ftaro,
beaten/hanakeo}}

Similarly,

{4} believe(betiy, { frame/beat(beater, beaten),
beater fhanakeo,
beaten fﬁarn}:l.

Since mental states are represented in PSTs, various
types of queries about the states are treated by unifica-
tion over PST's as follows:

(5} Whe believes taro is the beater?

(8) T — believe(X, {beater [taro}). = X = jack

(7) Who docs jack believe is beaten?

(8) ? — believe{jack, {beaten/X}). = X = hanako
{9) What does jack belicve taro does?

(10)

T — believe(jack, M##{ frame /T}), get Role(M, A, taro).
= A = beater,
Z = beat(beater, beaten),
M = { frame[beat(beater, beaten),
beater ftare,
beatenhanake}

5.4 Type Theory for Parametric Object

Assumne a discourse which the question (1) below pre-
SUPPOSES:
(1) What is Mr. Rell?

Query (1) may be formalized in some polymorphic
type system as [2):
(2) (X : role,istypeof(“Mr.Roll”, X}) The type in-
ference system will compute & realizer Xy such that “Mr.

485

Holl* is of-type Xy. Combined with the situation theory,
such a type theoretic approach [10] seems to be a prowmis-
ing approach which will be useful at least to male clear
some clagses of the discourse understanding problems.
A type inheritance mechanizsm seems to be easily em-
bedded in CIL by modifying unification over PET. Sup-
pose a type hierarchy is given as a lattice. The idea is
very simple. Let B and P be PSTs. Then the desired
unification + between PSTs is defined as shown {1):

(1) ({twpe/S1} + By} ({typef 52} + Fa) =4ef
{typef (5 + 52)} + Py -+ Py,

where 5;+45; means the meet operation in the lattice.

Alse Ait-Kaci proposes a similar inheritance mecha-
nism based on his 9~ terms[2, 3]. However sophisticated
type inheritance including parametric objects is a further
work. ’

6 Theory of Partially Tagged Trees

A characteristic points of theory of partially tageed
trees (PTT) are summarized in this section following
CLP schema. First of all, the domain of PTTs and its
algebraic properties are introduced. Secondly, a theory
of partial equation is introduced over the domain, Uni-
fication is formalized in terms of the theory. Thirdly, a°
simple model theory for the language is defined over the
PTT' domain in terms of satisfiability relation. There are
two maimn results here: (1) satisfiability and unifiability
are equivalent, and (2) our theory of partial equation is
compaect. This result gives good qualification of the
PTT domain iz logic programming. The following de-
scriptions is not self-contained. A full version will appear

elsewhere,

6.1 DAG and PTT

Before going into PTT, we remark some difference be-
tween DAG and PTT. DAG in unification grammar and
PTT in CIL are very close to each other, as is easily
expected from Shieber[14], for instance. However, we
point out some difference in that CTL uses PSTs, which
use logical variables essentially and that PSTs are inter-
preted more straightforwardly to be constraints on PTTs
as linguistic information. Notle that the PTT domain is
mathematically more simple than the DAGs domain in
that the former is the latter module graph isomorphism.
Furthermore, owing to using logical variables, the behav-
iors of CIL are described completely in a constraint logic
programming languages schema[12] in particular unifi-
cation schema. DAG has structure sharing property as
objective one, On the other hand, PTT can treat the
structure sharing property through only meta level no-
tion of sharing variables. However, it is not clear whether
structure sharing is an essential linguistic relation or not.

486

Since a PTT might be infinite, CIL can represent more
complex structure than what a (finite) DAG can do. In
particular, the PTT domain may be suitable for rq:i-
resenting and processing circular situation proposed by
Barwise[f] in conjonction with lnguistic analysis.

6.2 Partially Tagged Trees

We fix aset LABEL hereinafter. An elementin LABEL
is called a fabel (ay,...,a,) stands for the string of labels
y, ey . In particular, {) stande for the emply siring,
The lengih of the empty string is zero.

We define concefenation, =, between sirings as usual
by the following equations:

(#z=1=,

z4() ==z, .
{1, e tin) # {bry s B} = {81, en @a By oy B

We often identify each label a with the string (a) if the
context is clear.

A tree is a non-empty set T' of finite strings which is
closed under prefix. That is, f z+y € T then z € T
Each element in T is called 2 node of T'. Note that every
tree has the empty strng ().

Let T and z be a tree and a node of T. We define
T/x to be the set of nodes y of T such that x &y is in
T. Clearly, T/z is a tree. If y = z + a for some label a, y
is an immediate successor of z. A node in a tree T may
have mfinite branches. That is, for some node z of T, =
may have infinitely many immediate successor nodes in
T. A node z of T 15 a leaf node if © has no immediate
successor in T It is clear that for any family of trees
bath the intersection and union are also tree. For a node
x and a tree T, z# T denofes the minitnum tree which
includes ¢ =y for any node y of . We write 27 for z+ T

simply.

Definition 1 (PTT) A partially ingged tree (PTT) is
an ordered pair (T, f) of a tree T' and o portial function
I essigning values to some of leaf nodes of T'. The PT'T
({0}, &) te called trivial.

Let = (T, f) and z be a PTT and & node of T. The
expression #/r denotes the PTT, (T/z, g), where g iz a
tag function defined by the equation giy) = flz=y).

Let = {T]_,,‘f]_} and iy = {T;,f;:l be PTTs. The P&.LI‘
t=(T1UTy, fiU fi) is called the merge of ¢, and £, iff ¢
is a PTT. The merge of t; and t; is written #; + ;. We
dEﬁ.'I].Efl EEIET]_ CT: and _f]_ sz.

It is easy to check that the set of PT'Ts iz a commu-
tative, associative and idempotent semigroup with the
trivial PTT as the identity with respect to the merge
operation,

Whenever we write © = y in what follows, it is pre-
supposed that ¢ is defined.iff y is defined.

ett=t. (UNIT)

t+e=t. (UNIT)
{(ti+da)+ta=1t 4 (ta+4:) [(ASSOCIATIVE)
ht+ta=t+h (COMMUTATIVE)
t+i=t {IDEMPOTENT)
(=1 {(UNIT)

(ef)t = aifit) {ASSOCIATIVE)
alty + 1) = aty + aty (DISTRIBUTIVE)

ﬂ'l:ti + o1y] =aoly 4 ... 4 aly + .
(DISTRIBUTIVE)
A zet of PTTs is called consistent iff any pair of ¢ and
' in the set has the merge ¢ 4 i

Proposition 1 A consistent set of PT'T's has the least
upper bﬁui.l-d with respect to the order < |

Also it is clear that the PTT domain is chain complele
with respect to =,

6.2 Partially Specified Term

Let VARIABLE and ATOM be disjoint sets. Ele-
ments in VARIABLE and ATOM are called & variable
and & constant respectively. Let us LABEL be as set
of labels as was introduced in the previeus section. We
assurne thal these three sets are disjoint to each other
for simplicity. The following auxiliary symbols are used:

{1/, 0)-

A partially speeified term [PST) is defined induetively
as follows:

(1) aconstant is a PST,
(2} a variable is a PST,

(3) the set of the form {{a;/p),..., (2. /pa)} 15 2 PST
for any finite n = 0 and distinct labels a;, ..., ap,
provided that all elements py, ..., py, are PSTs.

A PST can be regarded as a finite PTT, which may have
variables as a fag. So, the definitions of ap and p/o is
defined just as in the case of PTT. The notation pfo
should not be confused with an ordered pair in a PST.

6.4 Theory of Partial Equation

We characterize the CIL unification in terms of equal-
ity axioms. Then, a set of equations between ferms, a
unification problem is to compute the least super set of
the given set which iz closed under the axioms.

Axioms of Partial Eguations:

In what follows, z, y, 2, z;, and y; are variables, ¢ is &
node, f and g are functors, « and v are any expressions
and p and g are P5Ts. An etomic formula is of the form
u b

(1) =Mz
if by then y Mz,
fxbdyand y 4 2 then x M 2,

(2) if f #g then ~f(, ...} M g(=r - .0)-

(3) p™p.
if pit g then g p.
(There is no Transitive law.)

(4) i fluny.oyua) ™ Fflvg, .. vy) then wy ™ ooy and .
and 1, M u,.

{8) if p M g and both p/o and /o exist then plo
qfe

{6) if = W p and = Wy then y X p.
{T)fz®pand z Mg then p™ g

Let 5 be a set of atomic formulas. The closure of S
is the set of atoms which is derivable from 5 by thess
axioms. The thres axioms of {1) say that the restriction
of the binary relation M to the variables is an equivalence
relation between them.

6.5 Satisfiability

An assignment is a partial function which assigns PTTs
to variables, The definition of assignment can be ex-
tended to PSTs as usual. We define satisfiability relaiion,
k=, between assignment and a formula in the language.
In the following, dem(a) is supposed to be enough large
to include all the relevant variables:

(1) &=z vy iff alz) = aly).
(2) o= et qiff e = alg).
(3) & 2™ piffolp/d) = alz)/F for any § such that

pf& is a variable.

(4) @ | p ™ g iff o |= p/a W g/a for any label a such
that pfa and g/a exist,

It is easy to see that = is well-defined and exists. Also,
= s extended, as vsual, to more general case in which
dom(a) is not enough large. That is, e Feifa’ e in
the sense above for some extension o of a.

Definition 2 (PET) A set of atoms of the language is
called a PET if it satisfies the arioms of partial equality.

Theorem 2 Any PET 15 salisfiable,
This is proved in Mukai[l8].
Let I1 be a directed family of PETs, {T3}aer, that is,

for any T, and T, there is Ay € [auch that T, C T,
and TA-: c TJ-a'

Lemma 1 For {Ti}aer as above, Uyer Th is @ PET.

487

Lemma 2 The closure of § 65 the least PET which con-
tains 5.

Theorem 3 (Compact) For any constraint O = {p; M
G1gey P P g, }; if :mr;rﬁniéc subsel afi? issaii—sﬁni!;!c

then O is satizfiable.

Proof. Let F' = Ugpouoy Fa, where, pow'(X) is the set
of finite subsets of X, and By is the closure of d. Since
d is satisfiable Ey is a PET. Further, since {Eq}sepowc)
is directed, F is a PET. Therefore, from Mukai[18], F is
satisfiable.

The relation | is extended to lopical consequence as
ueual, which is used in the following theorem.

Theorem 4 (Satisfaction Complete) Let T be the the-

ory of partial equalily, 1.2, a set of atomic formulas, then
S(T | 3-p M g) implies T = ¥p ¥ g,
where p and g are any PSTs.

i By the equivalence of satisfiability and unifiability in
our theory and PTT domain, the proof is easy.)

Exarnple 1 {a/{d/1},b/{df2}} ¥ {a/X,b/ X} This con-
straint iz not satizfiable, that is, for any assignment o it
iz not the case that)

o k= {o/{d/1}, b/{d/2}} ™ {a/ X, b/X}.

Theorem 5 The following conditions (1) and [8) are
equivalent:

(1) p and g are unifiable.
(8 for some o, a|=pHy.

6.6 Unification

Mow, unification over the PTT domain is formalized

simply s the closure operation defined above, The input
is a sel of atomic formulas (i.e., of the form p M g) The
cutput is the closure of the input, or FAJLURE if the
clogure contains a conffict,
There is a UNION-FIND like algorithm of unification[18).
The algorithm preserves satisfiability between input and
output when computation is successful. Also, a set of
constraints is satisfiable if and only if it is unifiable.

T Concluding Remarks

Logic programming has been strengthened for linguis-
tic analysis in an elegant way by introducing a new canon-
ical demain called PTT domain. However, there remain
many problems to be studied further, Original moti-
vation of PTT was to give a computational model for
parametric types and objects in situation semantics. A
further interest in this direction is ta find more implicit

488

representations for this domain, Seo far, only compat-
ibility relation between PTT has been studied. Also,
properties of mixed uses of PTT and Herbrand term re-
mains te investigated. An example iz to uze the depen-
dent type theory for instance to compile PTT constraint
to Herbrand term constraint for mere efficient compu-
tation. As mentioned in the introduction, relationship
between ZFC/AFA domain and PTT domain is an inter-
esting and important theoretical question for foundation
of logic programming.

Acknowledgments

The author would like to thank Prof. J. Barwise, Dr.
J. Goguen, Dr. C. Pollard, and Dr. J-L. Lassez for their
earlier comments to the data domain of PTT introduced
in the paper. Also I would like to thank Dr. K. Furukawa
for his encouragement to the work.

References

(1] P. Aczel. Non-well-founded sets. CSLI lecture note
series. 1088,

[2] H. Ait-Kaci. 4 Lattice Theoretic Approach to Com-
pration Based on ¢ Caleulus of Partially Ordered
Type Structures. PhD thesis, Computer and Infor-
mation Science, Universily of Pennsylvania, 1984,

[3] H. Ait-Kaci and R. Nasr. LOGIN: A logic program-
ming language with built-in inheritanee, J. of Logic
Programming, Vol.3, No.3, 1986.

[4] J. Barwise. The situation in logie- III: Situations,
sets and the axiom of foundation. Technical Report
(C5L1-83-26, Center for the Study of Langnage and
and Information, 1985,

[5] J. Barwise. Notes on a model of & theory of sit-
uations, sets, and propositions. Technical report,
{CBLL 1987, Manuscript,

[6] J. Barwise and J. Eichemendy. The Liar: An Essay
on Truth and Circuler Propositions. Oxdord Univ,
Press, 1987.

[7] J. Barwise and J. Perry. Situations and Attitudes.
MIT Press, 1983.

[8] J. Bresnan, editor, The Mental Reprsentation of
Orammatical Relation. Cambridge, Mass.: MIT
Press, 1982,

[9] A. Colmerauer. Prolog II: Reference Monual and
Theoretical Model Groupe Intelligence Artificielle,
Universite d’Aie-Marseille TI, 1982,

[10] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. Cemputing
Surveys, 17(4), December 1985.

18] E. Sugimure H. Miyoshi and K. Mukai.

[11] J.A. Goguen and J. Meseguer. Order-sorted algebra
I: Partial and overloaded operators, ecrors and in-
heritance. Technical repert, SRI International and
CSLI, 1935,

[12] J. Jaffar and J-L. Lassez, Constraint logic programe
ming. Technical report, IBM Thomas J. Watson
Recearch Center, 1986.

[13] J. Jaffar and S. Michaylov. Methodology and im-
plementation of a clp system. In Mnternational Con-
ference on Logic Programming, 1987,

[14] 5.M. Shieber F.O.N. Persira L. Karttunen and
M. Kay. A compilation of papers on unification-
based grammar formalisms parts 1 and [I. Techni-
cal Report CSLI-86-48, April 1986,

[15] R.T. Kasper and W.C. Rounds. A logical seman-
tics for features structures. In Proceedings of the
24th Annual Meeting of the Association for Compu-
tational Linguistics, 1986.

Cone-
straint analysis on Japanese modification. In Nat-
wral Language Understending and Logic Program-
ming. North Holland, 1987,

[17] K. Mukai, Horn clause logic with parameterized
types for situation semantics programming. Techni-
cal Report ICOT-TR-101, 1COT, 1935,

[18] K. Mukai. Anadic tuples in prolog. Technical Report
TR-238, ICOT, 1987,

[19] K. Mukai. A system of logic programming for
lingunistic analysis. Technical Report To Appear,
ICOT, 1088,

[20] K. Mukai and H. Yasukawa. Complex indetermi-
nates in prolog and its application to discourse mod-
els. New Generation Computing, (3(1985)), 1985.

[21] F.C.N. Pereira. Grammars and logics of partial
information. In Proceedings of the Fourth Inter-
national Conference on Logic Programming. MIT
press, 1987,

[22] F.C.N. Pereira and S.M. Shieber. Prolog and
Natural-Language Analysis. CSLI, 1087,

[23] Carl 1. Pollard. Toward anadic situation semantica,
Menuscript, 1985,

[24] G. Gazdar E. Klein G.K. Pullum and LA. Sag. Gen-
eralized Phrase Structure Grammar. Cambridge:
Blackwell, and Cambridge, Mass.: Harvard Univer-
sity Press, 1985,

[25] G. Smolka. A Feature I.a:;:gic with Subsorts. LILOG-
Report 33, IBM Deutschlend GmbH, May 15958,

