PROCEEDINGS OF THE INTERNATIOMAL CONFERENCE
ON FIFTH GENMERATION COMPUTER SYSTEMS 1988,
edited by 1ICOT. @ 1COT, 1983

463

Generating Rules with Exceptions

Jun ARIMA

ICOT Research Center, Institute for New Generation Computer Technology,
4-28, Mita 1 -Chome, Minato-ku, Tokyo 108 Japan
Phone: +81-3-456-4365, Csnet:arimaTicot jp@relay.cs.net
Junet: arima@icol Junet

ABSTRACT

Commonsense knowledge varies according fo
the characteristics of the person who possesses it.
When we consider an intelligent system which
makes commonsense reasoning, we can not ignore
the cost of changing commonsense knowledge
according to the circumstances. Commonsense
knowledge must be acquired.

This paper describes the first step to
formalization of the whole process from aeqguiring
commonsense knowledge to doing commonsense
reasoning using it.

1 INTRODUCTION

When we lack information, commonsense
reasoning will often lead us to useful conclusions
by making use of defanlt assumptions that hold
generally. For instance, we can jump to the
conclusion, “Tweety flies”, given the fact, “Tweety
is a bird", using a default assumption, “Birds
normally fiy”. Major objectives of the research of
nonmonotonic reasoning are to formalize such
commonsense reasoning and to realize intelligent
systems that can use commonsense knowledge.
This kind of research usually starts from the
assumption that default assumptions are given,
However, defanlt assumptions vary widely
according to the nationality, class and
temperament of the person who possesses them as
well as depending on time and place. Changing
the set of defanlt assumptions in an intelligent
system according to the various circumstances in
which the system works would probably be very
expenszive, so we should also try to develop an
intelligent system that léarns commonsense
knowledge by itself, This paper attempts to
formalize the whole process from acquiring

default assumptions to doing commonsense
reagsoning using them.,

In formalizing the whole process of such
default reasoning, the problems that arise and our
solutions to them are as follows.,

(1) Representation of default assumption

Default assumptions change depending on a
(sub-)domain. Consider a bird-world which
congists only of birds. In this world, a default
agsumption with respect to flying will be such a
statement as “x normally flies (‘Fly(x))", then we
say, ‘Fly’ has positive directivity in the bird-world
in the sense that we assign ‘true’ as truth values
to ‘Fly(x) if possible.

Mow, consider a penguin-world which consists
only of penguins. In this world, the default
assumption will be “x normally does not fly
(‘- Fly(z)")", then we say, ‘Fly' has negative
directivity in the contrary sense, The directivity of
Fly" has to be changed according to each domain,

How do we represent such default
assumptions? For fhis purpose, we propose a
general form of {parallel} circumscription
(McCarthy 1980, Lifschitz 1985), partially
directional (Pd-)circumscription. Circumseription
makes the extension of certain predicates
{symbols) closer to the extension of ‘false’ (its
extension means empty set) as far as possible,
whereas Pd-circumseription makes the extension
of properties closer to the extensions of our
intended predicates in each {sub-)domain. Pd-
cireumscription is defined in the second section.

{2) Representation of criterion for directivity of
the concerning property

464

We must still choose positive or negative
directivity of the concerning property in each
.domain. How should we judge the direction? Our
treatment is very natural. If entities that are
shown to have the concerning property are much
more (much less) than entities that are shown not
to have the concerning property in some domain,
the directivity of the property should be positive
{negative) in the domain. That is, if many more
birds fly than do not, we consider that bird
normally fly, This is the key idea. :

For this treatment, we introduce an binary
order over predicate names, called the surpassing
relation, The surpassing relation represents
whether entities that satisly a predicate are much
more than entities which satisfy another
predicate. Depending on the relations, we select
the directivity of the concerning property. The
entities that are shown io have a property are
interpreted as elements of minimum extension of
the property under given knowledge.

The third section presents these details, and
then constructs our objective form which
generates default assumptions and makes
commonsense reasoning using them., We call this
form the majority generalization, which is
expressed a second-order formula. The fourth
section explores the possibility of eollapsing it
into first-order logic and the fifth describes how to
use it and how it works.

2 PARTIALLY DIRECTIONAL
CIRCUMSCRIPTION

As we have already described the objective of
this paper and the problems that arise, we would
like to focus on explanation of our solutions in the
later sections. The main problem to solve in this
section is to provide a way to represent default
assumptions that are allowed to vary depending
on a sub-domain (sub-class). We can use
circumscription to provide such a way.

J.McCarthy provides circumscription
(McCarthy 1980, 1986) as a form of non-
monotonic reasoning, Formula circumseription is
one version of circumseription. It is a general
formulation in that a wif is minimized, whereas
the earlier form minimizes some predicates.
Formula eircumseription iz a powerful way to
express non-monotonic reasoning, but in order to
use it, we must specify many predicate

parameters. The wil to be minimized is the most
important one to be given because to give the wif
means o characterize reasoning by giving-
predicates the intended interpretation. However,
unfortunately, it is the most difficult, because
there are no constraints to decide it and the
problem is left entirely in our hands. Hence, how
to specify the wif iz a problem. In this paper, we
take the way of extending the earlier form, called
predicate circumseription.

Consider predicate circumscription, and
consider what character the formulation has.
Predicate cireumseription can malke the extension
of property P minimal. When we consider that it
makes the extension of P ¢loser to the extension of
"falge' ag far as possible, we can extend predicate
circumseription for our objectives. That is, what
we want is & formula which, according to the
characteristics of the sub-domain, can give an
extension of P so that the extension will be closest
to the extensions of our intended predicates. With
such a formulation, even if new information
contradicts an old theorem, the theorem would be
revised because the formulation does not fix the
extension of P to our intended extension, but
simply makes the extension closest to ours. Now
we get our form.

In this paper we simply write x instead of a
tuple of finite terms for brevity. By n-ary
predicate, we mean an expression, Ax.(a(x)),
where x iz a tuple of n variables and a{x) is a wif
in which % occurs free and no other variables
oceur free, That is, a prédicate is obtained from a
formula by A-abstracting all of the free variables
init.

Let P be a tuple of distinet predicate symbols,
P1,Pn, and ¥ a tuple of predicates, ¥1,,%n,
where Pi and Wi have the same arity. [¥/P]
means a substitution, representing
[P1LPL, -, %n/Pn] and usually abbreviated [¥].
We write a(x)[¥/P] for the result of replacing
simultanecusly each ocourrence Pi in a(x) by Wi,
And V. (P{x) = W(x)) means V=.(Plx) 2 W(x)) A
Ve[Pz} C Pz}).

Definition [partiolly directional circumseripiion
(Pd-circumsecription)].
Let P and Z be tuples of distinet predicate

. symbols and disjoint each other, and ® and A be

tuples of predicates. Let A be a formula. The
partially directional circumscription of P to A
inside ¢ with variable Z is

A[P,Z]

M p,e(Alpzl A

A VR(Pi(x) 2 (Pilx) = Ai(x)) D (pi(x) = Ailx)))
oA Yr(Di(x) D(Pi(x) =pix))), (2.1)

where Pi, Af, @i and pi are elements of P, A, &
and p respectively, This formula iz denoted by Pd-
circomf{ A;: P~ A/ & ;&)

It asserts that the extension of P cannot be
made closer to the extension of A inside an
extension of &, even if allowing Z to vary, while
they satisfy A, That is, intuitively, it can, under
A, give P the closest extension to A's extension
with allowing Z to vary in the ®-domain. In this
sense, we say P is directional to A inside O in A,

In this paper, L represents a tuple of property,
Ax.(false), with respect to which for all tuples of
entities the false value is assigned constantly, and
similarly, T represents a property, Ax.(—false),
with respect to which the true value iz assigned
eonstantly.

Proposition 1. :

1) Pd-circum(&; P~ L /T ;2) = Circum(A; P; 2),
where Circum(A; P ; Z) is the parallel
circumscription of Pin A,

2) If P consists of a single element, Pd-
circumscription is a specialized formulation of
formula circumseription.

Proofs.

1) By predicate caleulus.

2) Pd-circumscription is equivalent to the formula
circumscription that minimizes the wif = (®(x) O
(P{x) = Alx)).

Proposition 1 says that parallel circumseription
(which predicate circumseription is a gpecial form
of) is to make some predicates directional to false
in a whole domain.

3 MAJORITY GENERALIZATION :
A FORM OF GENERATING RULES
WITH EXCEPTIONS

Now, we have a tool for representation of
default assumptions, In this gection, we explore
the way to generate adequate assumptions, and
then a form of generating rules with exceptions is
proposed.

465

Consider a property, to fly (predicate, ‘Fly’). For
any domain, we can consider the following three
cases; the individuals of the domain 1) generally
fly, 2)generally do not, or 3) otherwise. The case
that all individuals fly (do not fly) is a special case
of 1) { 2)). It would be adequate to generate
assumptions which have the positive directivity of
‘Fly' in the case of 1) and negative in the case of 2).
In the case of 3), it would not be adeguate to
generate assumptions. To represent such cases,
we still need some preparations,

We assume that the syntax of the underlying
language includes names for predicates, That is, if
a is a predicate, let our language include a
constant term, a, as the predicate name. Now, we
introduce a comparative relation over predicate
(names), called the surpassing relation which is
denoted by "> >". When 'a > > }' holds, we say
that o surpasses B. [is intended meaning is that
the number of entities that satisfying property, q,
is much greater than the number of entities that
satisfy the other, . Based on this intended
meaning, let the following sentence hold with
respect to the predicate and its predicate name.

For all predicates a, and y (and for their
predicate names):

I a>=pAE=>=72@==7) (3.1
I —~a=>a) (3.2}
m {(a>>pAVelalx) 2rx) 20 >> fX3.3)
IV (o>==pPAVe(r(x) 2p=) Dla=>7i34)

The following two formulas are not essential, but
here, we consider these as axioms.

V aa®LlI(az=1) (3.5)
Vi baz®T2(l=>a), (3.6)

where ¢ = denotes ¥x.(o(x) = Mx)) anda + B
denotes —'Wx.(a(x) = B{x)). The conjunction of
these formulas (3.1)~(3.6) is represented as
“Surp’. ‘Surp'is handled as an axiom,

Other axioms with respect to surpassing
relation '> >"may be given by using a funetion to
count up entities that satisfy certain conditions
and by using some adeguate evaluate functions
for '>>=", or may be given directly based on our
intuition.

Now we introduee a formulation on generating
rules with exceptions (default assumptions). Its
intnitive idea is that, in a certain domain &,

466

entities normally have a certain property P if, as
far as we know, there are much more entities that
satisfy the property than do not. And we assume
that ‘a set of entities that we know to satisfy a
predicate P corresponds to the minimum
extension of P which satisfy given knowledge, To
brief description, the formula,

AL PNV (Alp] 2 Vx. (P (x) D plxh), (3.7)
is represented by ‘Minp(P 7.

Minp(P)) means that | P has a extension of P
which iz smaller than the extension of any
predicate p satisfying the conditions satisfied by
‘P, That is, intuitively, P has the minimum
extension of P. In this sense, we say | F) is the
minimum candidate of P in A when Ming(P)
holds. Conversely,

AITPT) A V. (Alp) 2 V. (p() O TPI(x))). (3.8)

is represented by Maxp(lP1)' and we say the
maximum candidete of P in A when Maxp(iP1)
holds.

Then, the majority generalization of P inside @
with variable Zin A is

AlP]

AR, TP Minp(P) A Mazp(TPT)
AAR(PEIALP (X)) = = hx (B(x)A-TP(x)
O Pd-circum(A;P~T/®;Z))

AP, TP Minp(y P) A Maxp(TPT)
A (DEIATPI)) > > Az (P(x)AP (x))
2 Pd-cireum(AP~ L/Dd;Z)).(3.9)

This formula is denoted by "Major{d; P/ D; ZY, We
use this majority generalization with axioms on
the surpassing relation, that is, we consider
deduction from ‘Surp A Major(A; P/ ®; Z).

Az @(x) A LPy(x)) expresses the minimum set
of entities that exist ingide @ and satisfy P. Ax.(
$(x) A —IPYx)) expresses the minimum set of
entities that exist inside @ and do not satisfy P.
That is, (3.9) declares that under A, P should be
directional to T inside & (P has the positive
directivity inside @) if there are more entities
that satisfy P than not inside @ so far as we know,
And conversely, (8.9) also declares that P should
be directional to | inside @ (P has the negative
directivity inside @) if there are more entities
that do not satisfy P than satisfy inside @ so far as

we know. Of course, it means that entities that
satisfy € (do not) have a property P normally, so it
isa declaration that anything that has a property
@ should be considered (not) to have the property
Pifthere iz nothing in knowledge A that prevents
it from doing so.

Example 1; .

In a database, DB, three birds: Tweety, Jack
and P-suke, are registered, and the information,
“P-guke cannot fly” is given. This may be
represented as follows:

Bird{tweety) A Bird{jack) A Bird{p-suke)
A = Fly(p-suke). (E1.1)

Alse, assume that enough information on
surpassing relation *>>’ is given, for instance,
asgume the following knowledge:

Ax(z=tweety) << Ax.(x=jack s/ x=p-suke)
Adx (x=jack) < < hx (x =p-suke s x=tweety) .
Moz (x=p-suke) < < Ax.(xz=tweety v x=jack).

{(E1.2)

Let A be such information mentioned above and
consider Surp A Major(A; Fly / Bird). In this case,
L clearly satisfies the condition of (Fly, as the
minimum candidate of Fly', and Ax.(—x=p-suke)
for TFly1 as the maximom candidate of ‘Fly', that
is, Minpiy(l) and Minpiy(Ll) hold!, Therefore,
using (E1.1),

Ax{ Bird(x) A | Flyi(x)) = 1, (E1.3)
Ax.(Bird(z) A ~TFly(z)) = Ax.(x=p-suke).
(E1.4)
Now from (3.5)
Ax(z=pesuke) >> L (E1.5)

follows. So, using (E1.3), (E1.4), (3.3), (3.4) and
Major(A; Fly / Bird), it gives Pd-circum(A ; Fly ~
L /Bird), thatis,

AlFly]
AVp.(Alp] A Vx.(Bird(x) O (= Fly(z) 2 = p(x)))

I How to compute these generally is beyond the scope of
this paper. However, the next section will partly solve the
problem,

O Ye(Bird(x) D (Fly(x) = p(x)))).
(E1.6)

Here, substituting L for p, we obtain

Y. Bird(x) O —Fly(x)). (ELT
Recall the three cases mentioned in the first part
of this section. The above case corresponds to case
2) and (E1.7) is a result of the negative directivity
of Fly’.

Also, (E1,7) shows generalization of knowledge.
From (E1.7) and (E1.1) we can sse that both
Tweety and Jack may be unable to fly.

Now, we add new information to the DB,
“Tweety can fly (Fly(tweety))”. Then Fly, is
hx(x=tweety) and FFly1 is unchanged. Under
this circumstance, we cannot obtain either *Ax.(
Bird(x) A (Fly(x)) = > Ax.(Bird(x) A ~TFlyW{x)y
or ‘hx.{ Bird(z) A ~TFly(x)) == Ax.(Bird{x) N
LFly (z))". Hence, (E1.7) is not a theorem of the
DB any more. This case corresponds to ease 3).
However, if the DB also knows “Jaek can fly (
Fly(jack))", the theorems of DB will change more
dramatically. In this case, using (E1.2) Az
Bird(z) A Fly(x)) == A Bird(x) A —TFly(x))
follows, that is, this case corresponds to c¢).
Therefore, the directivity of ‘Bird’ changes and
using Major(A A Fly(tweety) A Fly(jack); Fly /
Bird),

Wx.(Bird(x) > (Fly(x) = ~x=p-suke) {(E1.8)

is obtained. This means “P-suke is the only bird
that cannot fly,” and P-suke comes to be
considered {o be abnormal with respect to flying
inside the bird-world.

4 CONSIDERATIONS ON A FIRST-
ORDER FORMULATION

An discontented point of the majority
generalization is on computational aspects which
originate from its expression by second order
logic. Let us try to collapse it into first order logic,
givihg some constraints to given formulas A, The
way this paper treats the problem is to restrict &
to being a formula, called the symmetrically
solitary formulz, that has (speaking intuitively)
both the only minimal model (that is, minimum
model) and the only maximal model (mazximum
model) with respect to P,

4a7

Theorem I.a.

Let A be a given formula and (P be a tuple of
predicates such that no predicate in P oecurs in
(P, and that A[Pj] A V= Pi(x)D Plx)) follows
from A, then

Wp{ Minp[p] = Yx.(p(x) = [Pi(x)}). (4.1)

Proof.

From the assumption, A B A[P 1A W=, (P lx)
2 P for some [Py So, Alp] = V. ((Pi(x)D
Px))[p] (Bee (Kleene 1971)). Here, no predicate in
P occurs in | P, therefore, | Pilpl=P.. So, Alp] —
Ye.(Py(x) 2 oplx)). Therefore, -
YpAlploVe.(P (x) D p(x)). From thisand A
AlLP)), Minp[P,]holds.

(Right to Left) Obvious from the fact that
Minp[P)] holds.

(Left to Right) Assume that Minp[p'] holds for
some p'. From the fact that Minp[Pl holds,
Wp.[AlplDV=.(Pi(x) O p(x))) holds. Substituting
p' for p, Alp'1O¥=.(Pi(x) 2 p'(z)). From the
assumption that Minp[p'] helds, Afp'] follows,
Therefore, Vx.[Pi(x) 2 p'(x)) holds. Similarly,
We(p'(x) O | Pi(z)) holds.

Theorem 1.b. .

. Let A be a given formula and FP? be a tuple of
predicates such that no predicate in P oceurs in
TP and that A[TP1] A V.(TPWx)D Px)) follows
from A. Then .

Vp.(Maxp[p] = ¥x.(p(x) = FP(x))). (4.2)
Proof. Similar to that of Theorem 1.a.

Theorem 1 shows that if we can find (P and M7
that satisfy the condition of theorem 1, we can
leave out second order formulas, Minp[|P;] and
Maxp[[P1] , and the guantifier ¥\ P, TP, from
(3.9). How to find such | Pj and P, for a certain
class of given formulas, A, can be easily shown.,

Lifschitz shows that if A[P] is transformed into
a certain class of formula, called solitary formula
(Lifschitz 1985), circumscription of P can be
collapsed into & first order sentence. Though we
need some refinement, we can basically use his
regults.

Definition [symmetrically solitary formulal,

A formula, A is an symmetrically solitary
formula with respect to P if A can be transformed
into the following form,

468

U A Ye(Lx) 2P} AV(Px) 2 Gx), (4.3)
where no predicate in P occurs in U, L{x) or G(x).

Lemmal.

Let a formula, A, be a symmetrically solitary
formula with respect to P, U A V=.(L{x) D P(x)) N
Y. (P(x) 2 G(x)}. Then, L is the minimum and Gis
the maximum candidate of P, that is,

Minp[L] A Maxp[(] (4.4)
holds.

Proof.
L and G satisfies the condition of Theorem l.a.
and Theorem 1.b. respectively,

Theorem 2.

Let a formula A be a symmetrically solitary
farmula with respect to P such that U A W (L{x)
2 P(x)) AYr(Plx) D Gix)). Then,

Major{A; P/ &) =
A

AL Az ®lx) A L) == ke Blx) A - G(x)
2 W (Bix) 2 (Plx) = G{x))))

ARz (D) N D GE)) = > doe(dP(x) A Llx))
JVx.(@(x) D (Px)=1L(x))}) (4.5)

Proof. Using Propesition 1 and the result
which Lifschitz shows (Lifschitz 1985), we obtain

Pd-circum(P~ L/ T) = A A Vx.(P(x) = L{z)).

Using expansion of this result and Lemma 1, we
abtain this theorem.

Proposition 2,

Let A be & symmetrically solitary formula with
respect to P and @ be a predicate which does not
contain P, Then, the majority generalization of P
inzide & without variables is also a symmetrically
solitary formula,

Proof. If both A and B are symmetrically
solitary formulas, A /A B is also a symmetrically
solitary formula. From this fact and Theorem 2,
we obtain this proposition.

Example 1 (reviewed):

A iz a symmetrically solitary formula with
respect to Fly, because A can be transformed into
the following form,

U A¥x.(L 2 Fly(x))
AYx(Fly(x) D -x=p-suke),

(E1.B)
where ‘Fly' does not ceeur in U, Using Lemma 1,
Mingyy (L) A Maxpiy(Ax.(—x =p-suke)) (EL.9)
holds. Then, from Theorem 1 and ‘Sury’,
Major(A; Fly /Bird) =
A

Ao Bird(x) A L) = = Az Bird(x) N x =p-suke)
2Vx.(Bird(z) D(Fly(x) = = x =p-suke)))

A dx(Bird(x) Az =p-suke)>> hx.(Bird(x) A\ 1)
2 ¥.(Bird(x) 2 (Fly(x) = L)) }

= A AWz (Bird(x) 2 - Fly(z)). (E1.10)

So we can mechanically obtain the sentence,
“birds can not fly", from the majority
generalization of Fly and Surp,

5. AN APPLICATION TO IS-A
HIERARCHY

Consider a simple example of an is-a
hierarchieal system,

Example 2.
Let A he

Sparrow = Bird (E2.1)
M Penguin = Bird (E2.2)
M Bird = Animate (E2.3)
/M Reptilian = Animate (E2.4)
A ¥x.(Sparrow{x) 3 Bird(x)) (E2.5)
AVePenguin(x) O Bird(x)) (E2.6)
A Vx.(Bird(x) 2 Animate(x)) (E2.7)
A ¥x.(Reptilian(x) > Animate(x)) (E2.8)
A 3z(Sparrow(x) A Penguin(x)) (E2.9)
A = T (Bird(x) A Reptilian(x)) (E2.10)
AVx.(Sparrow(x) 3 Fly(x)) (E2.11)
M Vr(Pengoin{x) 2 - Fly(xh (E2,12)
AV (Reptilian(x) 2 = Fly(x)) (E2.13)
M Sparrow > = Penguin (E2.14)
M Reptilian > > Bird, (E2.15)

where the intended meaning of binary relation =
isis-a’.

MNow, let us consider majority generalization of
Fly inside each class of this hierarchical system.
As we define the interpretation of Fly using the
majority generalization inside each class, the
obtained definition of Fly inside a class must
influence the definition of Fly inside other classes
that are obtained later. Therefore, the order in
defining has significant meaning. In an is-a
hierarchical system, we define Fly from lower
class to upper (from leaves to root), and we can
obtain natural results. For ingtance, in this
example, if we define Fly inside Animate
previously to ingide Bird, we obtain

¥x. (Animate(x) A —Sparrow(x) 2 —Fly(=)).
(E2.18)

However, rather than (E2.16), we prefer
Wz, (Animate(z) A - Bird(x) 2= Flyiz)) (E2.1T)

as a result in which we generalize a rule with
respect to Fly inside Bird previously and then
using the rule obtained we generalize it inside
Animate. (This result is illustrated latter,) Hence,
we use the majority generalization in the
following way:

Major(Major(--Major(A; P/C1)- ; P /Cn.1); P /Cx),
(5.1)

where 7(Ci = Cj) (1=j =i = n)- (5.1)is denoted
by ‘Major(s; P/ Cq, -, Cp.1, Cul'.
Thatis,

Major{A; P/ C1,+ , Cp1, Cn) = Major(Gn; P/ Cn),
(5.2)

where Gy = A, Gy = Major(Gi.1; P/ Ci.1). This
formula, Major(A; P/ Cy, -, Cpo1, Cpl, is called
the prioritized majority generalization.

Example 2 (continued): .
From the definition of pricritized directional
peneralization,

Major(A; Fly/ Bird, Animate)}
= Major(Major(A; Fly / Bird); Fly/ Animate)
(E2.18)

Here, A iz a symmetrically solitary formula with
respect to Fly, so, using Theorem 2 (the minimum

469

candidate of Fly in A is Sparrow and the
maximuom candidate of Fly in A is
Ax.—(Penguin(x) v Reptilian(x))), we can easily
obtain the result,

Major{A; Fly / Bird) =
A

A(Ax.(Bird(x) A Sparrow(x))
== hx (Bird(x) A (Penguin(x) v Reptilian(x)))
2 Wx(Bird(x) D
(Fly(x)= = (Penguin(xh,/Reptilian(x)})))

Afhx(Bird(x) A (Penguin(x) v Reptilian{x))}
= = hx.(Bird(x) / Bparrow(x))
O W (Bird(x) D
{Fly(x) = Sparrow(x))})

= A AVx(Bird(z) A ~Penguin(z) O Fly(z))
(E2.19)

Similarly, the minimum candidate of Fly in
Major{A; Fly / Bird) is Az.(Bird{x) M
= Penguin(x)) and the maximum candidate of Fly
is Ax.—(Penguinix) v Reptilian(x)). Therefore,

Major(A; Fly / Bird, Animate) =

A
AVz{Bird(x) A = Penguin(x) 2 Fly(x))
AvzlAnimate(z) A = Bird(x) 2 ~Fly(z)XE2.20)

holds. (See (E2.17).)

Now, we add a new axiom ‘Bird(tweety)’ to A
and assume that we want to know whether tweesty
can fly or not. This new axiom gives no change to
above results, (E2.20). Obviously, we can not
obtain the answer to the question from (E2.20). In
this case, we must intreduce predicates which are
allowed to vary. We consider the majority
generalization of P inside Ci with allowing all
predicates that represent subelasses
(descendants) of Ci to vary. That is, in this
example, we consider .

Major(Major{A: Fly / Bird; Penguin, Sparrow);
Fly / Animate; Bird, Reptilian).(E2.21}).

With respect to ‘tweety’, it is sufficient fo see
Major{A; Fly / Bird; Penguin, Sparrow)[E2.22)
Similatly, it yields

Pd-circum(A; Fly~T/ Bird; Penguin, Sparrow),
(E2.23)

470

and

Va.Bird(x) O Fly{x)) A Fly(tweety) (E2.24)

follows. This shows that this formalization
generates a default assumption and makes
default reazoning using the assumption.

6 CONSIDERATION AND REMARKS

We have considered formalization of the whole
process from acquiring commonsense knowledge
to doing commonsense reasoning using it and
proposed a form, called the majority
generalization. We have also comsidered the
possibility of eollapsing the form into a first-order
- formula and show an application. We will try to
apply this idea to the acquisition of various types
of commonzgensze knowladge,

This research may suggest a new view to the
field of concept learning (Mitchell 1977). One aim

of concept learning is to obtain some properties

which, for some set of entities, all entities have in
common. Here, more generally, we can consider a
certain type of learning, in which one aim is to
obtain some properties which, for some set of
entities, most entities possibly have in common,

We hope this research extends the sphera of
interest of researchers in non-monotonie
reasoning and serves as a new stimulus to
machine learning.

ACENOWLEDGEMENTS

I would like to thank Dr. Koichi Furukawa and Dr,
Masayuki Numao for their vseful comments. Also, 1
wish bto express my gratitude to Dr. Kaszuhiro Fuchi,
Director of the I[COT Research Center, whe provided me
with the opportunity to pursue this research.

REFERENCES

[1] Kleene,5.C.: Introduction to
Metamathematics, North-Holland, 1971, CH.
VII.)

[2] Lifschitz,V.: Computing cirewmseription, in:
Proceedings of Ninth International Joint

Conference on Artificial Intelligence, Los
Angeles, CA (1985) 121-127.

[8] MeCarthyJ.: Circumseription - a form of
non-monotonie reasoning, Artificial Intelligence
13 (1980) 27-39,

[4] McCarthy,J.: Application of circumscription
to formalizing common-sense knowledge,
Artifieial Intelligence 28 (1986) 89-118,

[5] Mitchell T.M.:Version Spaces: A Candidate
Elimination Approach to Rule Learning,
Proceedings of Fifth International Joint
Conference on Artificial Intelligence,
Cambridge, Mass. (1977) 805-310,

