PROCEEDINGS OF THE INTERMATIOMAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. @ ICOT, 1988

763

The Language FCP(:,?

Shmuel Kliger* Eyal Yardeni'

Kenneth Kahn?® Ehud Shapiro!

(Extended Abstract)

IThe Weigmann Institute of Science

Abstract

The language FOP(:,7] Is the outcome of attempts to
integrate the best of several flat concurrent logic pre-
gramming languages, incleding Flat GHC, FCF(],])
and Flat Concurrent Prolog, in a single consistent
framewerk. The result iz a language which la strong
enough to accomodate all useful concurrent logic pro-
gramming techniques, including these which rely on
atomic test unification and read-only variables, yet in-
corporates the weaker languages mentioned as subsets.
This allows the programmer to remain within a sim-
ple subset of the language such as Flat GHC when the
full power of atomic unification or read-only varlables
is not needed.

1 Introduction

Several concurrent logic programming languages were
defined and implemented in the past seven years, since
the Relational Langnage was proposed by Clark and
Gregory [Cla81]. Recently, most attention has focused
on the so called fat concurrent logic programming lan-
guages, since their simplicity and ease of implementa-
tion, compared with their non-fiat ancestors, comes at
a relatively low cost in expressive power, On one end
of the spectrum of flat concurrent logic programming
languages there are Flat GHC [Ued85,Kim&7] and Flat
PARLOG [Fos87] with non-atomic unification. On the
other and of the spectrum is Flat Concurrent Pro-
log [Mie8S](henceforth called FOP(?)), with atomic
read-only test unification. An intermediate language
is FCP(],1) [Sar86], with atomic test unification.

The advantages of the weaker languages are sim-
plicity and ease of implementation. However, thelr ex-
pressive power is deficient in several important re-
spects, In particular, necessary functions of compu-
tation control cannot be expressed in langeages such
as Flat GHC and Flat PARLO®G, since these lan-
guages cannot reflect on failure. Therefore, to make
them practical, these languages were extended with a
computation control primitive called a control meta-
call [Clag4]. In addition, sophisticated uses of atomic

3¥erox Palo Alte Hesearch Center

variables [Sha88|, atomic unification, atomic test uni-
fication, and read-only variables, are not available in
these weaker languages. Most notable are the short-
circuit technique for termination and guiescence de-
tection [Tak83,5ar88b|, which, in its full generality,
requires atomic variables, the duplex stream protocel
and multiple writer streams, which require atomic test
unification, and anonymous mutual exclusion and pro-
tected data-structures, which require read-emly vari-
ables. In additien, several meta-level functions, such
as live and frozen snapshots [Saf86,5ar88b|, and the
recording of traces for computation replay and debug-
ging [Lic87] cannot be easily incorporated in the pro-
posed meta-call constructs.

The advantage of the stronger languages is clear:
added expressive power. The disadvantages are of two
sorts: methodelogical problems and performance prob-
lems. Wea firat eonsider the methodological problem.

We call a unification which may affect the envi-
ronment fell unification, as opposed to sk unifica-
tion (input unification) which cannot [Sar88al. Both
FCP(|,l) and FCP(?) have tell unification as the de-
fault in head/goal unification, and require special an-
notations to specify ask unification. In FCP(|,1) this
annotation is attached to the head, while in FCP(T?) it
is usually attached to the goal. Additionally, FCP(?)
can have read-only annotations in the head, which en-
hances the functionality. This functionality has no cor-
respondence in the other languages.

This default rule seemed useful at first, since it is
closer to the original spirit of logic programming and
to the practice of Prolog. Experience, however, showed
otherwise. Most unifications in concurrent logle pro-
grams are ask unifications. If the default is tell uni-
fieation, and one has to go to special efforis to spec-
ify ask unification, then programmers tend fo write
programa with unintended behavior which, under cer-
tain circumstances, produce nnexpected bugs. A com-
mon guestion a frustrated FCP(?) programmer finds
himeelf asking is: “who the hell has instantiated this
variable?” If, on the other hand, the program mistak-
enly specifies ask unification instead of tell unification,
then bug detection is usually easy. The computation

764

typically deadlocks, and, by inspecting the deadlocked
resclvent, the programmer may easily find the fanlty
process. Hence we conclude that the defanlt rule in
Flat GHC, in which the head specifies ask unification,
is preferred over that of FCP(?) and FCP(],]).

Although both FCP(?) and FCP{|,|) share the de-
fault of tell unification, they havea different method of
specifying ask unification. FCP(|,]) specifies ask uni-
fication statically, by annotating terms in the head as
input. FCP(?), on the other hand, specifies ask uni-
fication dynamically, by annotating arguments in the
call. In comparing the two, it is clear that in most cases
statie specification of input, as Is done in all other
languages except FCP(?), 18 preferred over dynamic
specification. The former is clearer, more medular, and
easier to implement efficiently. Ask unification can be
compiled more efficlently than tell unification using
the decision tree compilation technique [K1i88a). With-
out global analysis, which infers that the callsr always
places read-only variables in the appropriate position
[Tay88,GalB8], an FCP(?) program would compile less
efficiently than a corresponding program in a language
with ask unification. On the other hand, there are spe-
cial applications and programming technigues which
enjoy the full power of read-only unification, which ia
inherently dynamic.

- Concerning the performance problem, it has been
claimed that a language with atomic unification re-
quirés a much more complex runtime execution mech-
anism compared to a language with nen-atomic unifi-
cation. We think this is not the case. First, to make
Flat GHC and PARLOG practical, a control meta-call
hae been added to these languages. The dlstributed
implementation of this construct requires distributed
termination detection, which greatly reduces the froe-
dom of the implementation, and hence reduces the gap
between non-atomic and atomic unification. Secondly,
performance analysis of the distributed unification al-
gorithm developed for the execution of languages with
atomic test unification shows that in the common ape-
cial cases of unification, such as single-producer single-
consumar stream communication and incomplete mas-
sages, the overhead of the mechanisms required to en-
sure the atomicity of unification is negligible compared
to the other costa [Tay85,Tay87]. There are no compa-
rable sfudies of languages without atomic unification.
However, the complexity of the algorithms developed
at ICOT for the correct distributed implementation of
the control meta-call in KL1 (Flat GHC with meta-call
and atomic variables) and in Flat PARLOG [Fos88]
suggesta that the difference in performance between
the two approaches would not be asignificant. More
specifically, 1t seems that a program which does not
require atomic unification would exhibit 2 similar mes-
gage paseing performance whether executed as, say, an
FCP(?) program or as a Flat GHC program (assum-

ing atomic variables [Sha88]), uaing the corresponding
distributed unification algorithmas.

Therefore we attempt to define a language which
will satiafy the following requirements;

* The langnage should be as expressive as
FCP(?), preserving the atomic unification prop-
erty of the language, tell unification before com-
mit and the read-only protection mechanism. These
features enable programming techniques, like the
short-cirenit, protected data etructures and test-
and-set, which cannot be naturally implementad In
the other fat languages which lack these features.

¢ The language should encovrage a convenlent and
efficient programming atyle, 28 the other flat lan-
guages do.

s The language should have a clean and easily imple-
mentable operational semantics.

In this paper we introduce two languages, FCP(:)
and FCP(:,?), addressing the above requirements. The
basic concept of the FCP(:) language was suggested
by Saraswat, and incoporated in the language cc(l,|)
[Sar88a]. The main idea in the language ec(],|), which
ia a descendant of the language FCP{|,]), is to separata
the guard part to an ask part, which only tests the
environment, and a tell part, which can also atiempt
to affect the environment. A clause In this language

 has the general form:

Head +— Ask :Tell | Body.

For a clause to commit, both ita ask and tell parts
ehould succeed. Saraswat’s motivation in defining
cc(},]) 18 quite different from ours, namely to develop
a concurrant constraint programming language, whose
constraints can be generalized beyond the equality
constraints used in concurrent logic programming.
Mevertheless, we find the proposal to separate the
guard of a guarded clauee in this way sultable for our
purposes as well, which is to define a conerete concur-
rent logic programming language that naturally gen-
eralizes languages without atomic unification, and can
incorperate read-only unification.

The language FCP(:) attempts to solve the first
problem, namely, that of the default unification be-
ing ask, while maintaining the power of atomic test
unification. FCP(:) differs from cc(},[) in three main
agpects: the guard predicates of the language, the syn-
tactic restriction on FCP(:) clauses and the fairness
requirements.

There are some well known paradigms of dis-
tributed programming that are realizable in concur-
rent logic programming by using read-only variables.
Read-only variables can be used to achieve various
forms of dynamic synchronization not achievable in the
weaker languages mentioned. The paradigms are: fest-
and-set, anonymous mutual-exclusion, multiple-writer

stream, distributed gueues and protected data sfrue-
tures.

The remainder of this paper is organized as follows,
In Section 2 we deacribe a unified framework for defin-
ing the syntax and the abstract operational semantics
for the flat concurrent logic programming (FCLP) lan-
guages, Using this framework we define the language
FCP(:) in Section 3 and the language FOP(:,7) in Sec-
tion 4. Finally in Section 5 we give a detailed and for-
mal definition of the guard predicates of FOP(,7). A
fully abstract denctationzl semantics for FCP(?) can
be found in [Ger8s].

¥We assume the reader is acquainted with the con-
cepts of logle programming (see [L1o87]). For complete-
ness, definitions of some of these concepta are given in
appendic A

2 Flat Concurrent Logic Program-
ming Langunages

In thia sectlon we define the Flat Concurrent Logic
Programming (FCLP) family of languages.

2.1 The FCLP Syntax

A flat concurrent logic program is a set of guarded
Horn clauses of the form:

H‘—G].,.”,Gnlﬂl,-n,ﬂm mlﬂ-zﬂ.

where H is called the head of the clause, &1,...,Gn
the guardand By, ..., Bn the body. The guard consista
of predicates from a pre-defined set of predicates called
the guard predicates. In case n = 0, the commitment
operator (!|') can be omitted and the guard ls empty,
i.e. the goard ia troe.

The differences between the syntax of the d]ﬂ‘erent
flat concurrent programming languages le in:

* The structure of the guard and the guard predicates
themselves.

s The syachronization construecka.

» Syntactic restrictions.

2.2 FCLP Operational Semantics

The differences between the operational semantics of
each of the FOLP languages are captured in two com-
ponentes:

& The definitions ¢f the guard predicates.
The effect of trying to reduce a goal with a clause.

Definition: Let ¥ be the countable set of the variables
in a first order language L and £ its signature; 5t =
EL|JEE, where EL is the set of predicates and B}
the set of constants and functions symbols. Also let P
be a program in L and E¥ its signature. Then

T65

» G5 = At{V,Z") is the set of all atoms over V and
BE,
e CF is the set of clauses in L.
s S5 s the set of substitutions over V and E7.
Given a flat concurrent logle programming lan-
guage L, we define the semantics of a program in L
using a claunse-try funetion, or fry function for short.
A try function generalizes the notion of goal-head unl-
fication of logic programe. We define:

The Try Function

Definition: Let TRY = 2°°|J {{fail}, {suspend}}.
A iry function, fryr, for a language L has tha type:

tryp : G5 » C§ — TRY.

Let G € G5, C € C5 then iryr(G,C) s a set of
substitutions, the set {fail} or the set {suspend}.
The try fanction must satisfy four properties:

(a) Try substitutions are equal up to renaming:
V8, 8" € tryc(G,C).0 s 8.

(b} SBuspenslion ls not stable:
suspend € tryc (G, C) =
.suspend & tryr ((39,0).

(¢) Failure is stable:
fail € trys(G, C) = Vé.fail € trys(G9, C).

(d) Try substitution ls monotonic:
(7 € tryc(G, C)A§ € trys(G",C)AG" is an
inatance of G) =+ G"¢" is an Instance of G#
Notes:

1. Condition (b) implies that a suspended clause try
may be resumed in the futurs, if appropriate addi-
tiomzl bindinga are provided by the environment.

2. Condition (¢) implies that a failed c]ausa need not
be tried agzin.

Definition: If the try fanction of a language L satisfies
the following property (&), then [is called monotonic:

{e) Success is monotonic:

8 € trye (G, C) == V8'30".8" € try. (G0, C)

Transition System

Given a try function tryr for 2 flat concurrent logic
programming language L, we associate with every pro-
gram P of L a fransition system IIf = (3,T) that
conasiats of o set of slales § and 2 set of transitions T,

The get of states 5:

766

Let B = Af{V,EF)" be the set of sequences of goals
(resolvents) over ¥ and EF, and © C 55 the set of
substitutions over V and £}. Then

§={(R;0) | Re Ru{tt, ff,dl} and § € 8}.

The set of transitlons T:
There are four types of transitions; which are functions
from § to 2%, We use s -+ &' to denote &' € 7(s).

Reduasg

1. Reducer. {Agy..., Ajyeee, dpj) ———
{[-411.“.,E[,...,B&,...,A.Jﬂ';ﬂd ﬂ’}
if 8 € trye (A, C) for some renamed clause C of P
with body By,..., B that doea not share variables
with {A1,..., A5 .00, Ani8).

Fail
2. Fallz. {Atseee)Aiyerny dng) —s (f:6)
if fail € tryc(A;, C) for every renaming of every
clause C in P.

31 Ha]-tlf-l- {!r“’ saw .‘Tﬂ‘. 9} {:! H_:I'

Dasdicokyp
4. Deadlocky. (Ai,...,Aq;8) ——— (di; 8)

if Reducer., Failp, and Haltr, do not apply.

Definition: Given a state s £ §, a state s’ € § follows
2 if3r € T such that s 5 4",

Gamgu tation

Deﬂ.nltlnn. A transition r i3 enabled on a state &, if
fo' |25 5"} 520,
Definition: A state s is terming if no transition is
enabled on s.

By definition a terminal state of the form (#£:8) is
called a success siafe, (F30) is called a failure siate and
(dl;8) is called a deadlock state.

Definition: A computation ¢ is a (finite or infinite)

sequence of states: 2, 81, 82, ... HeES
satisfying:
Initiation — Let ¢ denote the empty substitution.

Then g0 € {(R,¢) | RE R}.
Consecution - Wi =0,1,2,...
ay 5 Fiti.
Termination ~ ¢ iz finite and of length & if and only
if 23 Is a terminal state.
Any prefix of a computation is called a partial com-
putation.

3r € T, such that

3 The Language FCP(:)

We introduce here two new languages, FCP(:) and
FCP(:,?), using the above framework. A program in
these languages cin perform tell unification as part of
the test for the clause selection. If the test unification
fails, it should leave no trace of its attempted execu-
tien; in other words, test unification should be atomic.

3.1 Syntax

An ask-tell clause is a gnarded Horn clause of the form:
H "-'-Al, ..,,A,-. Tln .,Tm | B;,“ ,,Et

m, n k = 0, where H s called the head of the r:lausc.
Alyerrydn 1 Thy000 3T the guard and By,..., H the
body. Each A; is an ask guard and A,,..., 4, Is called
the ask port, while each T; s a fell guardand T4, ..., T
is called the fell part.

In case m = 0, the % is omitted and the guard has
only an ask part. In case n = m = 0, the commitment
operator is also omitted and the guard is empty, Le.
the guard ia true.

The guard consists of predicates from a pre-defined
set of predicates called the guard predicates. The guard
predicates are divided into ask predicates and fell predi-
cates. The ask and tell predicates are defined In Section
5 of this paper.

The only function symbols in the langonage are tu-
ples {, ..., with arity greater than or egual to
one. The constants are strings, integers, reals and nil.
Sometimes we denote the term (f, #1, f2, ..., ¢,) by the
term f(t1,1z,...,2a), and the term {X, ¥) by the term
[X|¥).

Deflnition: A guord goal is a goal whose predicate is
taken from the pre-defined set of predicates (the guard
predicates), and an ask {#ell) goal is a goal whose predi-
cate is taken from the pre-defined set of predicates (the
ask (tell) predicates). The set of ask goals over ¥ and
Iy is denoted by ASK and the set of tell goals over V'
and Ky is denoted by TELL.

The set of legal clauses of FCP(:) s defined in ap-
pendix B. The syntax restrictions on this language en-
surea that no new term is generated during the execu-
tion of the head unification and the ask part. It also
enables a static analysis to determine the order of ex-
ecution of the ask part’s guards in an optimized com-
pilation. By applying the static analysis on a clauae,
& transformation can be done In which the unification
goals are folded inte the head. Howaver, this transfor-
mation can be done only on unification goals, and not
on other guard goals.

3.2 Operational Semantics

The operational semantics of FCP(:) is defined by ita
try function using the framework described above for
the FCLP operational semantics.

A clause try in FCP(:) can be decomposed into two
gtepa: the validaiion step, in which the arguments of
the goal are teated without changing the gozl, and the
salisfaction step, in which the tell part Is satisfied with
posaible effects on the goal [Sar88a). If the validation
step needs more information in order to succeed then
the clause try suapends,

The Try Functlon

Firat, we have to define the semantizs of the guard
predicates (the ask and tell predicates). The seman-
tics of the guard predicates is given viz an evaluation
function.

Defnition: The svaluation funclion,
w: ASK — {true,false suspend}

is a function, which for every guard goal G € ASK,
#{G) can return frue, folse or suspend. The function
can be extended to operate on a set of guard goals. The
evaluation funclion of a set of ask goals s ia defined

by

Erue VG e Ga, n(G) =true
r(Ga) = { Jalse if 3G € Gs 8.t. 7(G) = false
suspend otherwlse

The definition of the evaluation function for each ask

guard of FCP(:) is given in the full paper. Some special
examples are given Section 5.

Notations: Given a clause C and a substitution 8,
Askf (Tellf) denotes the set of ask (tell) goals result-
Ing from applying the substitution # on the set of goals
in Ask (Tell).

The arguments of each non-unification tell guard
are statically divided inte input and. output argu-
ments. The guard computes a partial function from
the input arguments. The value of the function is uni-
fied with the corresponding output arguments. If the
function is defined on some input, the result of the
tell guard is defined to be the result of the unifica-
tion implied by the guard. In order to make the func-
tions of the tell part total we restrict their domain by
adding preconditions to the ask part. Each tell guard
may have preconditions that appear in the ask part
to ensure that it is well defined. For example, the tell

guard make fuple(l + 2, X) creates the tuple {, ..}

and unifies it with X. The precondition is that 142 ia
a positive Integer valued arithmetic expression.

Definition: Let G be a tell guard of the form & =
I{xh”*lxﬁlyll”*l?i]l where X;’s are the input
arguments, ¥;"s are the output arguments and f :
Termas® — Termas' ia the function computed by G.
The unification fmpled by G I the unification

(Yiyeoos Vi) = F(X1,-. ., X2)

For most of the tell guards { = 1. In the example above
X ia the output argument and the implied unification

BX={,,3
Deflnition: Let:
1. Tel =00, ...\ Uy Oy 20y O where:

o Vi1 €i<n ;= (Ty="Tn)

767

e Vil <i< m0; # (L = Tu) with implied
unification

{Yi’h ---:YHE} = fa’[Xn‘J,,.. . ,Xﬁ‘]

L T= {TI.I.:--- -3 Ta1, ¥, -- -rYﬂ‘l}

3! T= {Tiir--!:Tnilfh-- -:fm}
where ¥; is a shorthand of {¥i1,...,¥a,) and fi is
a shorthand of fil vy ek,).
then et
mgu(Tell) = mgu(T, T').
Definitions: Given a goal & and an FOP(:) clanse
Head + Ask : Tell | Body.

s Let & = (38.(Headd = G) A w(Askd) = true).
T is called the wvelidation condition of the goal G
and the clause C.

e Lot & = (34.(Head® = GF) A m{Askd) = true).
Definition: The try function for FGP[.:] is a function

lrymp(;] :§5 ¥ 05 — TRy.

guch that:
trypce) (G C)
o WA o mgu(Telld)
34 Jfai H-®v{TA fail € mgu(Telld))
suspend otherwise

where # 1a a moat general substitution that satisfies W.
Mote that suspend € trypepiy (G, C) if © A T,

The try function is well defined. It can be shown
that the conditions are pairwise disjoint and their
union covers all the pessible goal and clause relations.

3.3 E‘mmPIEE

In this section we present examples of techmiques in
FCP(:) that require non-empty tell parts and there
fore cannot be written directly in a langnage like Flat
GHC.

Mutual exclusion

Let p1,.. .,Pn be processes wishing to participate in
a single-round mutual exclusion protocel, with unique
{dentifiers Iy,...,Ju. Add to each process an argument,
and initialize all processes with this argument bound
to the variable ME. Each process p. competing for a
lock attempts nondeterministically to bind ME to its
identifier Ji, or to check that ME is already bound to
some f#l;.

The skeleton of each process s aa follows, assuming
ita first argument is bound to ME and second to Itz
unigue identifer.

p(ME]L...) + true : ME =1 ...Jock granted ...
p(MEL...} « ME#I| ... lock denied ...

768

Single-ronund mutual exclusion can be achieved in
Flat GHC using 2 stream merger [Sha8g).

The duplex stream protocol [SaréT]

Consgider a stream producer and a stream con-
sumer, wishing to participate in the following interac-
tion, When the consumer reads the atream, it wants to
read all the messages produced so far by the producer,
The proeducer produces messages asynchrenously, but
wizhes to know whenever all messages it has produced
go far have been coneumed. This can be achieved us-
ing the following duplex stream protocol. The pro-
ducer places a message M on the stream wrapped as
write(M). The consumer, when reaching the uninstan-
tiated tail of the atream, places on it a resd mes-
gage. From the consumer's point of view, success-
fully placing a resd on the atream indicates that it
haa read all messages produced so far. From the pro-
ducer’s point of view, failing to place a wrile{M) mes-
sage, due to the existence of a read message, 1s an
indication that all previcus messages have been con-
sumed. This ia realized by the following code, where
produce(M, Ms, My ,Statua) places the message M on
My, reiurning the remaining siream Mpy', and Sts-
tus=new if zll messages previous to M have already
been read, Status=old otherwise. consume{Ms, Ms' ,Rs)
returns in Rs the messages ready in Mz, and in M
the remaining stream.

produce(M,Ms Ms' Status) +—
true : Ms=[write(M)|Ms'] | Status=cld.
produce(M,[read |Ms],Ms' Status)
Ma=|write(M)|Ma'] Status=new.

consume{[M]|Ms],Ms' Rs) +
consume' [[M|Ms], 0", Rs).

consime’ (Ms,Ms',Rs) «—
true : Ma=[read|Ma'] | Rs=[).
consume' ([write(M)|Ms],Ms',Ra)
Rs=|M|Ra'], consume’(Ms,Mz',Rs").

consume is two-staged so that it will not place a read
message on an initially empty stream.

4 The Language FCP(:,7)

FCP(:,?) extends FCP(:) with the notien of read-
only variables. We assume, in addition to the set
of standard (henceforth called writable) variables, an
additional isomorphic set of read-only variables, The
read-only operator 7 iz an lsomorphic mapping from
writable wvariables to read-only wvariables. For any
writable variable X, X7 is called the read-only vari-
able corresponding to X. The read-only operator is
extended to terms, where it iz the identify function. A
read-only variable X7 Is a variable that can be asked
but cannot be told a value. It receives a value T'7 ifand

only if itz corresponding writable variable X receives
the value T" (or T'T).

Trying to tell a value to a read-only variable canses
a euspension, The read-only annotation is only a top
level protection, ie. if X7 is instantiated to 2 term T
then the sub-terms of T are not protected unless they
are explicitly read-only annotated.
Defnition: A substitution, #, is admissible if X786 =
X? for every variable X. Let A0MYS denote all admis-
sible subatitutiona.
Definition: The read-only extension, 7, of an admis-
gible substitution #, is the moat general substitution
satisfying:
1. f7 iz an instance of 8, Le. Xd; i3 an instance of X9

for every X.

2. By is idempotent, i.e. fp o 8y = f4.
3. X7P8r = [X8:)? for every writable variable X,

Defnition: The read-only mgu, mguy, of two tarma T
and Tq is defined by:

mguy '[Tl.: T:]
if # € mou(Ty,Ta) | ADMS
3+ fail if T and Ty are not unifiable
suspend otherwiae
4.1 Syntax

The syntax of FCP(:,7} is the same as that of FCP(:)
with the additional *?* (read-only) symbol. A read-only
symbol may be appended to variables. A variable an-
notated with the read-only symbel is called o read-only
variable. Only the tell part and the body of a clause
in FCP(:,?) may contain read-only variables.

4.2 Operational Semantica

As for FGP[']. we define the operational semantica of
FCP(:,7) using the above scheme for defining FCLFP
langrages. The definitlons are similar to those of
FCE(:) with the modifications needed to incorporate
read-only unification. The definition of the evaluation
function in FCP(:,?) Is the same as for FCP(:) Hence,
we redefine here only the try function for FCP(:,T).
Definitions:

Given a goal @ and an FCP(:,?) clause Head +—
Ask : Tell | Body.

o Let ¥ = (3¢ € ADMS(Headd = G) A w(Ask#) =
frue).
o Lot & = (I0.{Headd = G8) A w(Askd) = true).

Defnition: The iry function for FCP(:,?) is a function

trypopi,n : G5 X C§ — TRY

such that:

tryporu,n(G, C)
foo HTA o mgur(Telld)
3 Fadl H=Bv({¥A fad e myuy(Tellf})
suspend otherwise

where # is a most general substitution that satisfies T.

Iote that the definition of the try function of
FCP(:,?) is different from the definition of the try fune-
tion of FCP(:) only in the case of success.

4.3 Examples

In thie section we present examples of the program-
ming technigues achievable in FCP(:7), due to the
read-only variable.

Test-and-aset

A wvariable X ia tested to actually be a wariable
and then set to a non-variable term. This iz done by a
clause of the form:

test_and set{X,T) + true : X=Y1, Y=T | true.

This clause try will succeed only if X Is a variable, in
which case it will set X to the term T.

Note that the order in which the unification goals ce-
cur jn the guard is immaterial, according to the defi-
nition of mguz(Tell).

Anonymons mutual-exclusion

A multiple-writer stream, which preserves measage
multiplicity even in the presence of unifiable messages
can be defined, vsing the above test-and-set technique,
as follows:

write(M,Ms,Ma') +
true : Ms=[X7|,Ms'], M=X | true.
write(M,[|Ms] Ms') +— write(M,Ms,Ms').

The third argument Ms' can be used to place subse-
guent meesages on the stream. It ensures that the next
message 8 placed after the previous one, so a wrifer
can ensure that its own messages are ordered.

A stream imposes total order on messages. The chan-
nal data-structure [Tri87] generalizes this idea for a
partially ordered set of messages.

Protected data-siroctures

Another important application of read-only vark
ables is to protect processes communication across
trust boundaries. Consider an operating system pro-
cess interacting with a possibly faulty user process via
an Incomplete message protocel, or by incrementally
producing some data structure. If the user process
does not abey the protocol, and instead of waiting for
the operating syetem process to bind some variable it
binds this varibale itself to some erronecus value, it
may cause the operating system process to fail.

769

Read-only variables allow a simple solution. An
operating system component which produces a data-
structure incrementally can protect the incomplate
part of the data structure from outaide intervention.
This is done by making it read-only to its consumers,
and keeping the writable access to it to oneself, This
i achieved by placing a read-only variable X7 in every
"hole' In the data structure, and keeping X to ome-
gelf. For example, protected-stream producer can be
defined as follows:

p(Xs)...) +— Xs=[Message|Xs'?], p(Xa',...).

5 Ask and Tell Guards

The set of guard predicates is the same in FCP(:,7) and
in FCP(:). The guard predicates are divided into two
gpets of predicates: ask predicates and tell predicates.
The ask predicatea appear only in the ask part of an
FCP(:,?) clause and are used for testing arguments
of the global environment. The ask predicates do not
write on the global environment, i.e. they do not bind
variables of the goal, and do not allocate any new local
variables. The tell predicates appear only in the tell
part of an FOP(:,?) clause and can assign values to
goal variable or generate new variables.

We specify here the two sets of predicates. Foreach
predicate we define its syntax and operational seman-
tics. The list of the guard predicates is derived from
the Logix user manual [Sil88].

An FCP(:,7) expression consists of variables, con-
gtants, arithmetic or boolean operators applied to ex-
pressions or one of a fixed set of functions applied to
expressions. The set of functions is arbitrarily chosen
and ean be extended by functions like sfne, cosine or
boolean operations on bit strings, etc. The question
of how to allow user programs to extend the set of
arithmetic functions remains open. value(E) denotes
the arithmetic value of an expression E. The computa-
tion of the expression, denoted by comp(E), succeads,
given the arithemetic value of the expression, if all
the operands of the expression are valid, fails if one
of the expression®s operand is invalid, fails causing an
arithemetic exception if such an exception occurs and
suspends otherwise, The full definition of these notions
appears in the full version of this paper [Kli88h| due
to space limitations.

5.1 Agk Guards

In this subsection we list the ask predicatea of
FCP(:,?). For some predicates we define their opera-
tional semantics, i.e. when the predicate suceéeds, fails
or suspends. The operational semantics is defined us-
ing the evaluation function. Firat, we define the notion
of monotonicity of an ask goal

770

Definition: Let & be an ask goal and = an evalua-
tion function. @ iz monofonic with respect to m if the
following holds:

1. Buccess iz stable : w{GF) — Vi.xr(G8).

2. Failure is stable :
7(G) = false — Vo.7(GF) = falae.

3. Suspension is not stable :
() = suspend — .w(G¥) # suspend.

Hence, for a menotonic guard &, it is enough to
define the condition for its success; once defined the
rest is deducible. & fails if there is no instance of G
for which it succeeds, and suapends stherwise.

All the ask predicates of FCP(:,7), except the pred-
fcate unknown, are monotonic with respect to their
evaluation function. Hence, for each ask goal & we glve
the condition for its success, i.e. the condition that im-
pliea 5(G) = true.

Table 1 contains the list of the ask predicates
of FCP(:,1), divided into five categories: unification
predicates for checking if two termaare equal, type
checking predicates for checking the type of an ar-
gument, arithmetie predicates for arithmetic com-
parisons of arithmetic expreasions, term comparison
predicates for comparing different types of terms and
term Inspection predicates for checking subargu-
ments of terma. The full definition of the predicates’
syntax and semantica is presented in [K1i88h].

5.1.1 The unknown Guard

The guard unknown Is not o monotonit predicate.
The guard never suspends, it either saucceads or faila,
and success iz not stable, i.e.

w(unknown{ X)) = true -4
Vi.r(unknown(Xd)) = truee.

unknown(X) -
succeeds if X is 2 variable.
succeeds or falls if X is non-variablel.

5.1.2 The otherwize Guard

otherwise -
suceeeds when all textually previous clauses fall.
suspends otherwise.

5.1.2 The var Guard

The guard var is not a monotonic guard. The guard
never suspends, it either succeeds or fails and success
I8 not stable.

1The fairness condition grarantees that if X is bound to
nen-variable term then eventuslly s{unknewn{X]) =
Jalza,

var(X) -
suceeads if X is a variabla.
falls if X is non-variable.

The guard var is not defined as part of FCP(:)
or FCP(:,?) since most of the programing techniques
achieved by this gmard are achievable by using the
read-only varfable andfer the nnknown guard. Im-
plementing the guard requires locking the variable be-
ing checked, thus causing an unnecessary overhead.
However, the guard war can be used to achieve some
of the programming technigues that are otherwise
achievable cmly by the read-only variable. These tech-
niques include test-and-set, anonymous mutual exclu-
sion, multiple-writer stream and distributed queues.
An alternative construct called snform, which alse
achieves these capabilities, was proposed by Saraswat
[Sar88e].

The Guards
equal =
inequality £
integer(:)

real(-)

number(-)

string(:)

constant(-)

tuple(-)

known(-)

arithmetic aqual =i
arithmetic not equal \=
less than

lass than or equal
greater than

greater than or equal
term less than

tarm leas than or egqual

arg('yy)

‘Category
unification

type checking

arithmetics

term
comparison
term
inspection

[!
A AV YA A N

Table 1: Ask Guards

5.2 Tell Guards

In this subsectlon we list the tell guarda of FCP{:,?).
All the tell puards, except for the nnify guard, have
praconditions. The pre-conditions, which are added to
the ask part, have to succeed in order for the tell guard
to succeed. For each tell guard we specify its precon-
ditions. A tell guard that has preconditions implicitly
adds them to the ask part. In fact, by adding those pre-
conditions we implicitly associate with each tell guard
an input relation, ie. the input mode of the guard's
arguments is statically defined.

Example: The tell guard X := ¥ + Z has the precon-
dition: number(Y), number(Z). Hence, the clausg

p¥,8) —true: X:=Y¥Y + 2

is equivalent to the clanse
oY, Z) + number(Y), number(Z) : X =Y + Z |...

If (number(Y), number(Z)) succeeds then the implied
unification is

{X = value(Y) + value(Z)}.

The notion of monotonicity iz the same for the
ask guards and the tell guards, ie, both ask guards
and tell guards are monotonic with respect to their
evaluation funetion if success and failure are stable
and suspension Is not stable. Like the ask guards, it
is sufficient for monotonic tell guards to define when
they succeed and what s the set of unifications implied
by the tell guard.

Table 2 contains the liat of tell guards of FCP(:,7)
divided into four categories: unification guards for
unifying two terms, arithmetic goards for unifying
the arithmetic value of an expression with a term,
term creation guards for creating terms and type
conversion guards for converting terms of one type
to another. The full definition of the guard’s syniax
and semantics is presented in [Kli88b].

Category The Guards
unification unify =
arithmetlc assignment =

mazke_tuple(-,-}
string_to_dlist(-,,)
list_to_string(-,)
tuple_to_dlist(-,,")
list_to_tuple(-,)
convert_to number(-,)
convert_tostring(-,-)

term creation
type conversion

Table 2: Tell Guards

6 Discussion and Conclusion

In this paper we have described a formal framework
for defining flat concurrent logic programming lan-
guages. We use this framework for defining the lan-
guages FOP(:) and FCP(:,7). The language FCP(:,7)
extends FCP(:) with read-only unification. Thus, in
addition to the programming techniques of Flat GHC
and FCP([,1), all the techniques of FCP(?) that rely
on read-only variables are available. The added ex-
pressiveness comes at a cost: while Flat GHC and
FCP(:) are all monotonic languages [Sar87] (except
for the unknown/1 predicate), FCP(;?) ls not. As we
have shown, this language attempts to integrate the
beat of several existing flat concurrent logic program-
ming languages. The novelty of FCP(:?) lies in ita
ability to accomodate all useful concurrent logic pro-
gramming techniques, including those which rely on
atomic test unification and read-only variables, while

171

at the same time providing the fexibility to remaln
within a more simple subset of the langrage when the
full power of atomic unification or read-only varlables
is not needed. In addition, the authors believe that
FCP(:,?) can be implemented efficiently using the de-
clalon tree compilation technique, which has already
been proven to be an efficient compilation method for
flat concurrent logic programming languages [K1ig8al.
Our future work will attempt to verify thi=s assump-
tion.

Acknowledgments

We would like to thank Michael Codish, Peter Ger-
atenhaber and Bill Silverman for their commenta on
previous drafts.

References

[Cla81] K.L. Clark and 8. Gregory, “A relational lan-
guage for practical programming®, Proc. Conf. on
Functional Programming Languages and Computer
Architectures, ACM , pp. 171-178, October 1981.
Also Chapter 1 in [$ha87]

[Clag4] K.L. Clark and S. Gregory, “Notes on Sys-
tems Programming in PARLOG", Proc. Inferna-
tional Conference on Fifth. Genaration Compuler
Systems, pp. 200-306, ICOT, 1984

[Fos?) L Foster and 8. Taylor, “Flat PARLOG: A
basis for comparison®, Technical Report CS87-13,
Department of Computer Science, The Weizmann
Institute of Science, 1987.

[Foag8] L Foster, “Parallel Implementation of PAR-
LOG®, To appear in Proc. Internalional Gonference
of Parallel Processing, 1988.

[Galg8] J. Gallagher and E. Shaplro, “Using safe ap-
proximations of fixed points for analysis of logle
programs®, META#S, Proc. of the workshop on
Meta-Programming in Logic Programming, pp. 185-
198, June 1988, .

[Ger88] R. Gerth, M. Codish, Y. Lichtenstein and
E. Shapiro, “Fully abstract denctational seman-
ties for flat concurrent prolog®, Proc. Third Annual
Sympoasium on Logic in Computer Science, pp. 320-
333, IEEE, 1928,

[Houss] A. HourhE. Shapire, “A sequential abstract
machine for Flat Concurrent Prolog”, Chapter 38
in [ShagT].

[Kim&7] ¥. Kimura and T. Chikayama, “An abstract
KL1 machine and its instruction set®, Proc. Sym-
posium on Logic Programming, pp. 468-47T, IEEE,
1987. '

[Kligga] S. Kliger and E. Shapiro, “A Decision Tree
Compilation Algorithm for Flat Concurrent Fro=-
log™, Procceedings of the Fifth International Con-

772

ference and symposium on logic programming, K.
Bower and R.A. Kowalski (eds.), MIT Press, pp.
1315-1335, 1988,

[Klisgh] 8. Kliger, E. Yardeni, K. Kahn and E.
Shapiro, “The Lenguage FCP(:,7)”, Technical Re-
port C888-07, Department of Computer Science,
The Weizmann Institute of Science, 1987,

[Lic&7] Y. Lichtenstein and E. Shapire, *Concurent al-
gorithmic debugging®, Technical Report CS87-20,
Department of Computer Selence, The Weizmann
Institute of Science, 1987. Alwo Proc. of the ACM
Workshop on Parallel Debugging, 1988,

[Lluﬂ?l J. Lloyd, Foundations of Logie Programming,
2" ed. Springer-Verlag, 1987,

[Mie8S] C. Mierowsky, 8. Taylor, E. Shapiro, J. Levy
and M. Safra, *The design and implementation of
Flat Concurrent Prolog”, Technical Report CS85-
09, Department of Computer Science, The Weiz-
mann Institute of Science, 1585,

[S8af86] 8. Safra and E. Shapiro, “Meta Interpreters
for real®, Informafion Processing 88, pp.271-278,
North-Holland, 1986. Also Chapter 25 in [Sha87].

|8arB6] V. A. Saraswat, “Problems with Concurent
Prolog®, Tachnical Report OMU-C8-88-100, Com-
puter Science Department, Carnegie-Mellon Uni-
veraity, 1956,

[8ar87] V. A. Saraswat, “Merging Many Streams Effi-
ciently: The Importance of Atomic Commitment®,
Chapter 16 in [Sha87).

[5arB8a] V. A. SBaraswat, “A somewhat logical formu-
lation of CLP synchronization primitives®, Proc-
ceedings of the Fifth International Conference and
aymposium on logic programming, K. Bower and
H.A. Kowalaki (eds.), MIT Press, pp. 1208-1314,
1988,

[Sar88b] V. A. Saraswat, D. Weinbaum, K. Kahn and
E. Shapire, “Detecting stable properties of net-
works in concurrent logic progammimg langauges”,
FProceedings of the Seventh Annual ACM Symposium
on Principles of Distributed Compuling, pp. 210-
282, 1988.

[Sar88c] V. A. Saraswat, Concurrent Constraint Fro-
gramming Langudges, Ph.D. Thesis, Carnegie-
Mellon University, 1988,

{Sha83] E. Shapiro, “A Subset of Concurrent Prolog
and ita Interpreter”, Chapter 2 in [Shag7].

[Sha8?] E. Shapiro, ed., Concurrent Prolag, Collected
Fapers, The MIT Press, 1987.

[8hags] E. Shapiro, “The Family of Concurrent Logic
Programming Languages®, Department of Com-
puter Science, The Weizmann Institute of Sciance,
1988,

[81188] W. Siverman, M. Hirsch, A. Houri, E. Shapiro,
*The Logix System User Manual, Version 1.3%,
Chapter 21 in [Shag7].

[Tak83] A. Takeuchi, “How to solve it in Concurrent
Prolog”, unpublished nofe, 1083,

[Tay85] 8. Taylor, 8. Bafra and E. Shapiro, *Paralla]
implementation of Flat Concurrent Prolog®, Inter-
national Journal of Parallel Programming, Vol. 15,
No. 3, pp 245-275. Also Chapter 39 in [Sha87].

[Tay87] 8. Taylor, R. Shapire and E. Shapire, “FCP:
Initial Studiea of Parallel Performance™, Techni-
cal Report ©587-19, Department of Computer Sei-
ence, The Weizmann Institute of Science, 1987,

|Tay88] S. Taylor, Porallel Logic Programming Tech-
nigues, Ph.D. Thesis, Department of Computer
Sclence, Weizsmann Institute of Science (submit-
ted).

[T¥i87] E.D. Trible, M.S. Miller, K. Kahn, D.G. Bo-
brow, C. Abbott and E. Shapire, ®* Channels: A
Generalization of Streams”, Chapter 17 in [Shag7].

[Uedss] K. Ueda, “Guarded Horn Clauses”, in E.
Wada (ed.) Logic Programming, LNCS 231, pp.
168-179, Springer-Verlag, 1986. Also Chapter 4 in
[ShasT].

A Definitions fand Notations

Al Substitution, Instance, Composition
and Most General Unifier

Notations: Let

+ WYV denote a set of wrifable variables.

RV denote a set of read-only variables.

e V denote WY URY.

s Terms(V) denote all terms over the variables of V
(within some fixed Herbrand universe).

o vars : Terms(V) — 2 denota the function giving
the set of variables appearing in term.

Deflnitlonr A substifution s a function § : V —
Terms(V), which Is the identity function almost ev-
erywhere. .
Representation: A substitution is usually repre-
sented by its finite sot of non-identical pairs, Le, lot

dom(f) = {X € V| 8(X) # X}
then # is usually represented as the set:

{X « 8(X) | X edom(8)}.
Notation: For a term T and a subetitution 8, 8(T) ia
denoted by T¥.
Definition: Let T and T’ be termes. T is an instonce
of T if there is a substitution # such that T = T4.
Definition: Let # and §' be substitutions. The compo-
silion operation on substitutions #e #' is a substitution
such that for every term T,
T(¢ o 8") = [T8)§".

Definition: A renoming of variobles ma term T ia a
gubstitution:

{Uy = Voo U =Vl Wi, 1 i<, U, Vi€V

where (Vi 7]Vi # V¥; and
(vars(T\{Us,...,Un}) [HViseeuVa} =0
Two terma Ty and Ty are equal up o renaming, denoted
by T, ss Ty, i there exists a renaming substitution §
guch that Th# = Ts.
Definition: A substitution # is a unifier of Ty and Ty
T8 = Tab.
Deflnition: A substitution is a most general unifier
of Ty and Ty if # is a unifier of 7% and T and, for every
other unifier §' of T; and Ty, there Is a substitution §"
such that #' = # o 8",

Let § denote a set of substitutions. We define the
function mgx,

mgu : Terms(V) x Terms(V) — 2° J{fail}
Le. mgu(T,,Tz) returns the set of the most general
unifiers of Ty and T if they are unifiable, and {fail}
otherwise.

B FCP(:) syntax

Definition: The set C of legal clauses of FCP(:) is the
minimal sat ¥ satisfying:
1. Hetrue:T| B X whereT € TELL".
2. H—A:T|BPeXl=>H+ AG:T|BeX
if
G € ASK Avars(G) C vars({ H, A}).
3, H—A:T|BeX=H+ AG:T|BeX
if

& = (t1 = t2) A dom(mgu{t1,12}) C vars({H, A}).
4, H—A:T|BeX=-H+— A4,G:T|BeX
if
@ = arg(T, I, 5) Avars({T, I}) C vars({H, A}).
5. H—A:T|BeX=H+ AG:T|BeX
if

G=(1=\=12)A
(vars(t1)|J vara(t2)) € (vars({H, A}Y) U(.)).
6 H+ A,y Ajyen sy AntT|BET =%
 He AjyereyAryeenydn :T| BEX
7. H+ true, Ag,..., 4n: T | BEX =
H+ Ay, An:T|BEX

773

