PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1588,
edited by ICOT. @ ICOT, 1988

373

THE USE OF ASSERTIONS IN ALGORITHMIC DEBUGGING

Wlodek Drabent

Institute of Computer Science,

Polish Academy of Sciences,
P.0O. Box 22,
00-501 Warszawa PRIN, Poland.

ABSTRACT

This paper presents a version of declarative
debugging that uses formal descriptions of properties
of the intended model of the buggy program. The
descriptions are called assertions and can be provided
as logic programs. The concept of assertion includes
the traditional oracle replies as a special caze
Assertions give an approximate specification of the
intended model: they need not fully specify the model
and may be provided incrementally. Such
specifications can significantly reduce the number of
user queries. An experimental debugging system
incorporating this idea has been implemented. The
system uses algorithms which do not require
instantiations of atoms by the user, and delays
querying the user for as long as possible. In this paper
we present the results obtained and the experiences
gained while diagnosing & sample of programs using
thiz sysfem.

1 INTRODUCTION

This paper shows how the idea of algorithmic
debugging (Shapiro 1983) ecan be augmented by a
coneept of assertion that generalizes the oracle replies.
A prototype debugging system based on assertions is
described and the results concerning its use on a
gample of buggy programs are reported. A more
comprehensive description of the algorithms used by
the system can be found in (Drabent et al. 1988).

Logical foundations of algorithmic debugging can
be found in (Ferrand 1987) and (Lloyd 1987). Our
basic notions, though slightly different, have been
strongly influenced by these papers.

Every (pure) logic program P has a model; see
&g (Lloyd 1987). P is often considered to be the
specification of the least Herbrand model Mp. On the
other hand, the program should properly reflect the
intentions of the user. These can be thought of as the
"intended model” and can be viewed as a subset Ip of
the Herbrand base. If I differs from Mp the program
is erroneous, The program P is said to be

- fncorreet iff Mp - Ip # ¢, Le. ifi it specifies some
element which is not in the intended model, and

Simin Nadjm-Tehrani
Jan Maluszynski

Dept. of Computer and
Information Science,
Linképing University,

581 83 Linkoping, Sweden.

- insufficient iff Ip - Mp # ¢, Le. iff some elements of
the intended model are not specified by the program.

In this paper we do not consider nenterminating
programs; we concenfrate on fracing incorrectness
and insulfliciency of a logie program.

The elements of Mp can be computed using SLI -
resolution. To discover an error and to localize its
cause in the program ome has to compare the results
of computations, including failures, with the intended
medel. However, the latter is generally not
formaliged. To solve this problem Bhapiro introduces
the concept of oracle (Shapiro 1983). The ground
oracle decides whether an atom is in the intended
model. The existential oracle decides whether there iz
a solution to a given goal and is capable of preducing
elements of the infended model which are instances of
the given goal. In practice, it is the user who answers
the questions concerning the intended model.

Shapire’s debugging system acquires knowledge
about the intended model through necessacy
interactions with the oracle. This knowledge consists
of?:

1. a finite subset of the intended model - YES answers
of the ground oracle and the solutions produced by
the existential oracle;)

2. a finite subset of the complement of the intended
medel - NO answers of the ground oracle;

3. a finite set of atoms satizfiable in the intended
model - YES answers of the existential oracle;

4, a finite set of atoms unsatisfiable in the intended
model - NO answers of the existential oracle.

The language of the oracles does not allow fo
specify infinite subsets of the intended model nor
infinite sefs of atoms satisfiable in the intended
model. The negative answers of the existential oracle
are not used for tracing ineorrectness although they
specify infinite subsets of the complement of the
intended model. This langnage is rather low level -
the knowledge about the intended model Is
communicated in form of examples. There may
therefore exist many queries concerning similar atoms.

574

Shapiro pointed out that incorporation of
fconstraints and partial specifications™ into the
algorithmic debugging scheme may reduce the
number of interactions with the user (Shapiro 1983,
p.79). This idea is formalized in (Drabent et al. 1988)
and is explored in this paper. In the approach
presented the user is allowed to provide the system
with formal specifications of some properties of the
intended model. These formal specifications (which
are called assertions) may be developed interactively
in the debugging process. The diagnosis system uses
this knowledge about the intended model to localize
errors. Whenever this is not sufficient for evaluation
of results of the computation the system queries the
user. The answer augments system knowledge about
the intended medel. This scheme includes as special
cases the answers used in Shapiro’s system. But
generally the language of answers is more powerful, If
the user is able to provide the system with some
general properties of the intended model, the number
of interactions decreases as it will be illustrated in
section 4.

Our debugging methodology favours simple
specifications and convenient answering procedures.
This necessitates employment of algorithms whose
questions can be answered with YES or NO.
Therefore, we adopt a new algorithm in which the
oracle need not provide instances of a given atom that
are in the intended model. Instead, the user is
expected to recognize the solutions to a goal and to
identify a2 case where some answer i5 missing. A
pragmatic question is whether this type of interaction
eases the debupging process as compared with the
traditional approach where instantiation s required.
The results of the experiment described give a
preliminary answer.

The rest of the paper is organized as follows. In
Section 2 a language of assertions is introduced as a
natural generalization of the language of the cracle
and the use of assertions for algorithmic debugging is
diseussed. Section 3 deseribes the necessary oracle
interactions and gives a brief description of debugging
algorithms used in our prototype implementation. In
section 4 summarized results from a series of test
sessions using our algorithms and the Shapire
algorithms together with & discussion of the results
are presented. Section 5 includes comparisons with
related work. Conclusions and topics for future
research are presented in BSection 6 An example
debugging session is shown in the appendix.

2 ASSERTIONS

Here we show the extension to the communication
language of the algorithmic debugger. In addifion to
the simple YES and NO answers we provide the user
with a possibility to deseribe some properties of the
intended model. For this we introduce assertions as a
device to specify (not necessarily finite) sets of (not

necessarily ground) atoms of the object language. An
obvious choice is to use logie programs to provide
executable specifications of such sets using, as much
as possible, existing library procedures.

One may argie that assertions can be used for
full specification of the intended model. This would
amount to giving an alternative correct version of the
buggy program (Dershowitz and Lee 1987). Such a
solution is completely unrealisiic in most cases. It is
often suggested that while developing a new version of
an existing program the existing version can be used
as an oracle (e.g. Sterling and Shapiro, 1986). Taken
literally, this idea is also unrealistic becaunse it
requires that every procedure of the new program has
its counterpart with the same intended meaning in
the old program. Therefore our basic pragmatic
assumption is that the assertions used for debugging
are as simple as possible and only approximate the
intended model rather than specify It.

We suggest to use four types of assertions that
generalize the four types of answers given by the
oracles as discussed In section 1. The assertions
specify properties of the intended model (Ip) which
are of interest te debugging. Four fixed predicate
symbols are used to specify these properties in a logic
program denoted by As(Ip).

Note that As(Ip) is a meta-program specifying
sets of atoms of the language of object program P.
Therefore a suitable representation for the atoms of P
as terms of As(lp) has fo be defined. These
meta-programming issues are addressed in (Drabent
et al. 1988) where we adopt a ground representation
(Hill and Lloyd 1988) for the variables occurring in P.
If A is an atom with variables X,,.. X, , then its
image A' under our representation scheme is A with
X; substituted by VARYi) for 1 < i < n, where
"WAR? iz a functor not used in P.

We now give the definitions of the 4 types of
assertions:

Positive asserfions. These are used to define sets
of (not necessarily ground) atems walid in the
intended model. We specify positive assertions
using the predicate symbol true. If true(A’) is a
logical consequence of As(lz) and A’ iz an lmage
of A then for all substitutions #, A# € If.

Example 1.

Consider the imfended relation insert as in
(Shapiro 1983). It includes {as a proper subset) all
triples (X, L, [X/L) such that L is an integer list
whose first element is larger than X. This property
can be formalized as the following assertion:

truefinsert(X,[Y/(L],[X, Y IL])} —
integer{ X},
integer—list([¥/ L]},
X<V

(It is assumed that As(lp) contains procedures with
the obvious meaning for the predicate symbols of the
baody.)

Negative assertions. These are used to specify sets
of atoms not valid in the intended model. We
specify negative assertions using the predicate
symbol false. If false{A') iz a logical consequence
of As(lp) and A’ is an image of A then there
exists a substitution #, such that A# ¢ Ip.

Note that YES and NO answers given by the ground
oracle can be seen as singleton positive and negative

asgertions respectively.

Positive exstential asserttons, These are used to
specify sets of atoms satisfiable in the intended
model. We define positive existential assertions
using the predicate symbol poser. If posez{A’) s a
logical comsequence of As(lp) and A’ is an image
of A, there exists a substitution # such that Af =
Ip.
Example 2.

The intended dsort predicate of (Shapiro 1983)
has the property that whenever it is called with the
first argument being a list of integers and the second
argument being an uoninstantiated variable then there
exists an instance of this call which is in the intended
model. This can be formalized as the following
assertion:

posez(isort{X,'VAR(Y]))) « integer—list(X).

Negative existential gesertions. These are used to
specify sets of atoms unsatisfiable in the intended
model. We defline negative existential asserfiomns
using the predicate symbol negez. If negez{A’) is a
logical consequence of As(Ip) and A’ is an image
of A then for ail substitutions 8, Af & Ip.

Positive {negative) existential assertions generalize
YES (NO) answers to Shapiro's existential queries. It
is worth noticing that warion= notions of types for
logic programs discussed in the literature e.g. (Zobel
1987), (Mycroft and O'Keefe 1984), (Nilsson 1983),
can be seen as negative existential assertions (if an
argument in an atem iz of a wrong type then the
atom should be unsatisfiable }.

At every stage of development the program
As(Ip) should describe the intended model. A
necessary condition for that is that it describes some
model. This is not the ease if, for example, both
truefd’) and folse{4°} are logical consequences of
As(Ip). The responsibility for providing consistent
assertions is on the user [aa it is the case with Shapiro
oracle answers}. The implementation discussed in the
next section (partially) checks the consistency of
As(Ip) (Drabent et.al 1988).

573

DIAGNOSING ERRORS WITH
ASSERTIONS

In this section we first set out the questions posed
by the diagnosis algorithms and the way they are
answered using assertions. Then we outline the
principles of the diagnosing algorithms and comment
on some design decisions adopted in our prototype
system.

{1) Universal guestions:

This type of question is asked by the incorrectness
diagnoser:

*Is the atomic formula A valid in the intended
model? (i.e. are all it ground instances members of

Ip7)
The insufficiency diagnoser requires answers to two
additional types of questions:

{2) Existential guestions:

"ls A satisfiable in the infended model?” (i.e. is there
a ground instance of A which is a2 member of 1.7)

(8) Incompleteness questions:

The algorithm needs the information whether certain
solved goals have produced all the expected answers
in the intended madel. This is obtained by asking:

"For the atom A, is there an instance AP € Ip such
that A# is not an instance of some member of the set
{A®,, .., A8} 7" (Substitutions @, ... , #, are (all
the) computed answer substitutions for «—A and P).

The systemn 1uses the knowledge explicitly
represented in As(lp) for answering the above
questions before gquerying the user. Moreover, some
queries to the user may be avoided by exploiting the
information that iz implicit in the assertions. For
instance, it may happen that truefA’) is a logical
consequence of As(lp) but posexf4d’] is not (where A’
is the image of an atom A in the ground
representation scheme). However in this case the
answer to the existential question for A is YES and
guerying the user iz unneceszary. If A is an instance
of some B then also the answer to the existential
question for B is YES. Such properties are used by

our question answering procedures,

To znswer a universal guestion the system refers
to the positive, negative and negative existential
assertions of As(Ip). Similarly, the positive existential,
negative existential and positive assertions are used to
answer an existential guestion. The details are given
elsewhere (Drabent et al.1988),

If & question cannot be answered by referring to
As(Ip) then the user is queried. He may choose to
answer with YES/NO, or to extend As(Ip) by adding
new clauses. The YES/MNO answers to. the
incompleteness questions are to be provided by the
TEET.

576

The knowledge implied by user YES/NO answers
should be accumulated. For universal and existential
questions this is dene by adding new assertiens to
As(Ip).

Two diagnoaing algorithms are nsed:
{1) Incorrectness diagriosis

Our incorrectness diagnoser employs a modified
version of Shapiro’s algorithm (Shapiro 1983). The
original algorithm finds an incorrect clause by
systematic traversal of a ground proof tree whose root
is not in Ip. In actual computations of logic programs
the proof trees constructed need not be ground. The
algorithm is extended here for nonground trees by
exchanging the original ground oracle questions by
universal questions (universal questions are a
generalization of ground oracle anes sinee validity of a
ground atom means its membership in Ip).

We use the top down version of Shapiro’s basic
algorithm as presented in (Sterfing and Shapiro 1986)
with this generalization. The gueries posed by the
algeritht are dealt with in the manner deseribed
above. The input to the algorithm is an atom A for
which the program gives a wrong answer {this means
a success instance of A which is not valid in Ig). The
algorithm returns a (not necessarily ground) instance
of a clanse in P such that the atoms in the body of
the clause are valid in Ip and the head is not.

{8) Insufficiency diagnosis

Our insufficiency diagnoser uses the algorithm
formally introduced and proven correct in (Drabent et
al. 1988). In contrast to the Shapire’s algorithm it
does not require providing correct (Le. valid in Ip)
instances of a given atom. The input to the algorithm
is an atem for which the program does not preduce
all the expected answers in the intended model Ip
[and does mot loop). As a result it gives a not
completely covered atom; this means an atom A for
which there exists an instance A® in I; such that ne
clause nstance of P with all ita body atoms in Ip has
A# as its head. For a given goal +B (where B is the
input) the algorithm examines the corresponding
top-level procedure calls executed by the program.
Existential questions are asked about calls that failed
and incompleteness questions about calls that
succeeded. Then the algorithm is called recursively
with an atom for which the corresponding answer is
YES. If all the answers are NO then A is returned as
a not completely covered atom,

A prototype system employing assertions in the
diagnosis of incorrectness and insufficiency has been
implemented in Prolog. Our implementation of these
algorithme delays queries to the user for as long as
possible. For the Incorrectness diagnoser, this means
that the solved goals at each level of the proof tree
are first subjected to assertions, If no assertions detect

a false atom, then user queries are made about the
remaining atomns at this level.

The insufficiency diagnoser first attempis to use
assertions for answering the existential questions for
top-level calls of a given goal. Only if this does not
determine an atom for which a recursive call of the
alporithm should be made, the user is gueried, first
with the remaining existential questions then with
incompleteness questions.

Assertions made during a debugging session can be
copied onto = file for future use.

4 EXPERIMENTS WITH THE
DIAGMNOSIS SYSTEM

In what follows we summarize the results
obtained from diagnosis of & sample of programs using
our implementation. The alms of the experiments
were twofold: to establish the extent to which the use
of assertions redoces interactions with the user, and
to compare the two different approaches to
insufficiency diagnosis: with and without instantiation
of the atoms by the user.

To test the first aspect the sample programs were
suhjected to diagnosis by different systems: our
system with some assertions, our system without any
assertions, and an Iimplementation of Shapire
algorithms (Sterling and Shapiro 1986). The number
of queries made for a given diagnosis task were then
compared. Columns 2, 4, and 6 in the table below
summarize the results of this test on the program
sample.

Note that the (Sterling and Shapire 1986)
programs do nof record the results of queries, nor da
they always generate the result of calls to built-in
predicates. In order to get 2 fair comparison we have
excluded the repetitive questions and the queries
about system predicates from the counts of gueries
when using these programs.

Obvicusly the number of assertions provided by
the user and the extent to which they specify the
intended model can considerably affect the number of
queries put to the user by our system. The number of
assertions is indicated in column 7.

To test the second aspect, L.e. the relative ease
with which the queries are answered by the user, we
compare the number of instantiations made by the
user when using the Shapiro algerithms, with the
number of incompleteness guestions asked using our
gystem. These figures are presented in columns 3 and
5 of the fable and are included in the total pumber of
queries for each systemm (colurnns 2 and 4
respectively). The number of incompleteness questions
is the same for versions with and without assertions.

In selecting the sample programs we were limited
o pure logic programs. This limitation was somewhat

relaxed by inclusion of programs which make use of
some Prolog buili-in predicates (arithmetic, elc.).
Such predicates are assumed correct and are not
subject to examination by the diagnosing algorithms.
The diagnosis was also unaffected by one safe use of
Prolog negalion on a correct predicate. The sample
comsists of & problems suitable for student exercises.
The first program is the standard buggy "quicksort®
(Shapire 1982). Programs 2 and 7 are buggy versions
of "substitute” and *wolf, goat and cabbage” from
(Sterling and Shapiro 1986). The sample also includes
2 student programs which should compute the ways
that a rectangle can be covered with a series of
squares of given sizes (programs 3 and 4). Program 5
produces a list of [coordinates of] unary squares
contained in a rectangle whose dimensions are given.
Program 6 iz a buggy "4Queens” program and the
eighth program is to solve the famous "Missionaries
and Cannibals” problem. The example session for
diagnesing the gsort program is included in the
hpp-e‘nﬂix.

4.1 Discussion

Our experiments with the diagnosing system
showed that reduction in queries put to the user can
often be achieved by specification of simple properties
of the intended model. However, at times it was not
obvious whether it is worthwhile to give an assertion
in reply fo a query. It may for instance be difficult to

577

formulate an assertion and/or a given assertion may
not be applicable for future gueries. Frograms 3, 6,
and T represent some such cases. The assertions
formulated when testing the other sample programs
were both easy to make and applicable to more than
one query. This is not the case in general.

Our suggestion is that every time a universal ot
an existential question is asked, the user should
consider whether an assertion can be easily
formulated to deseribe a relevant property of the
intended model in gquestion. Such an assertion may or
may not be applicable to subsequent queries in the
same session. But it is a correct specification of some
property of the intended model which may be used to
reduce the number of queries when the program is
further developed.

T'or a given incorrectness error, a reduction in the
number of queries asked using our diagneser (in
comparison with Shapire’s) ¢an only be achieved by
introduction of appropriate assertions. However,
assertions introduced earlier, eg. for diagnosis of
insufficlency, may result in a decrease in number of
queries while detecting incorrectness. The diagnosis of
the geort program in our sample incloded one such
case,

Although it may net be easy to answer
incompletensss questions if the solutions to a goal are
many and made up of large terms, answering these

error types present in the program: insufficiency/ incorractness.
atoms subjected to queries by the Fhapirc algorithms.

atoms instantiated by the user.

gueries asked by our system when no assertions are given.

incompleteness questions asked by our system.

{8) queries by our system when some assertioms are given.
{7) The number of assertions formulated.
Shapire our algotihms our algorithms

Frogram algorithms without assertions with asaertions

(1) (2) (2) (4) (5) (6) (7
1.gsort ina/inc 14 T 18 0 B 4
2.substitute ins T] & 1 2 2
3.aql ins 14 5] 10 2 = -
4.8q2 ins/inc 21 9 26 i3 19 2
E.rectangle ina/ime 13 5 10 o B 3
6.queens ins 15 & T o - -
T.wge ins 1B 4 =} v} = =
B.M&C ins 29 B iB o 14 1

Table: The number of user interactions on a test sample

578

questions are considerably. easier than giving all
correct instances of some goals (Shapiro 1983) (or
instantiating whole clauses (Sterling and Shapiro
1986)). In many of our test cases it turned out to be
very convenient that the user is not required to
provide any goal instances. This was particularly the
case in programs 3, 4 , T and 8.

Our experience shows that the present
formulation of incompleteness guestions can lead to
user mistakes. To avold such mistakes it may be more
appropriate to query completeness of a set of answers
instead of fncompleleness of it.

During diagnesis of insufficiency providing a valid
instance of an atom for which the actual program fails
may considerably reduce the search space of the
algorithm. This can be done in the present prototype
implementation by simply starting the diagnoser with
the goal instance ag an argument. In any case, the
decision whether a binding iz to be given or not
should be left to the user. Our algorithms can be
easily extended with that option.

It may hdppen that a program is both incorreet
and insufficient. An example s 2 program giving a
wrong answer and missing a correct one. In such cases
it is more convenlent to perform incorrectness
diagnosis first. The incorrectness diagnoser usually
searches a smaller search space, does nof ask
incompleteness - gquestions and produces more
informative answers: an incorrect clause instance
refers to a wrong clause while 2 not completely
covered atom refers to a whole procedure. A
particular case is when one of the atoms displayed by
an incompleteness question is not valid in Ip. Then it
is convenient to interrupt the insufficiency diagneosis
and start diagnosing incorrectness with such an atom.
This usually leads to a faster and more informative
result.

5 COMPARISONS

The types of assertions introduced originate from
the analysis of the logical nature of answers given by
the oracles of Shapiro. They alse have their
counterparts in the algorithms of Ferrand (1987) and
Lloyd (1987) where the oracles are represented by the
predicates walid and unsatisficble {and to certain
extent impossible (Ferrand 1987)). But oracles have
complete knowledge of the intended model while
assertions only approximate it. A given atom may
belong to none of the setz spacified by true and false
while the validity oracles of Ferrand and Lioyd can
always decide its validity. However, the oracles are
outside the system, while the assertions constitute a
part of the system (which is incrementally developed
during the external interactions),

The algorithms of (Sterling and Shapire 1986),
(Ferrand 1987) and (Lloyd 1987) require that the
oracle iz able te deliver elements of the intended

model. If the oracle is the wuser, this type of
interaclion may create difficulties and increase the
probability of giving wrong answers. One of our
objectives has been to free the wser from this burden.
A similar appreach is presented in (Pereira 1986).
However, that work seems to rely on procedural
semanties of Prolog, while ourz has a clean logical
foundation and the algorithms are proved correct and
complete.

Another difference concerns the results produced
by the debugger. Since we do not enforce the user to
produce bindings during the debugging process the
final result may come out less instantiated than in the
other systems. The incorrectness diagnoser returns a
clanse with the body valid and the head not valid in
Ip, while in most of the other approaches the head is
unsatisfiable in Ip. The insufficiency diagnoser refurns
a not completely covered atom while in most of the
other approaches it i3 an uncovered atom (For
definitions and comparisons see Drabent et al. 1988).

The last difference to be mentiomed concerns
input to the algorithms. Usually it is supposed to be &
wrong (not valid in Ip) instance of a goal produced by
the program (in the case of incorrectness) or a finitely
failed goal satisfiable in Ip. (in the case of
insufficiency). The algorithms used here allow a
broader class of inputs. In the first case it is a goal for
which a wrong answer is produced. In the second case

it is & goal for which some answers are missing.

An earlier work using assertions within logic
programming is (Drabent and Maluszynski 1987).
Here assertions are used to prescribe a predicates call
and success patterns. Preassertions in this sense
describe all the predicate calls that are possible: those
which succeed and those which fail. The described
form of procedure calls is not expressible in terms of
declarative semantics and is therefore, in general, not
related to the assertions introduced in this paper.
Nevertheless, it iz possible to make use of such
assertions in the debugging process by detecting
inadmissible call patterns. We believe that this can be
a peneralization of Pereira’s queries relating to
admissibility of a goal {Pereira 1988), [Pereira and
Calejo 1988).

6 CONCLUSIONS

We have demonsirated the use of assertions in
algorithmic debugging. Assertions provide a formal
description of some properties of the intended model,
thus "approximating” it. They give a flexible
framework for its formal deseription. On one end of
the spectrum the yes/no oracle answers provide
rudimentary but easy to produce information about
the intended model. On the other end the full formal
specification of the intended model can be used, if so
desired. The system’s knowledge is incrementally built
up from users assertions. Assertions can be seen as

generalizations of the simple oracle answers and
include them as special eases.

A prototype debugger using assertions has been
implemented. Our experiments show that even the
use of rather simple assertions may dramatically
reduce the number of oracle interactions as compared
with the Shapiro debugger. The new imsufficiency
diagnoser leads to simplified user interaction even in
cases where no assertions are given.

The debugging process may .starf with a
non-empty set of assertions. It is the user who decides
the extent to which the intended model is described.
Muodifications of the initial assertions may be
preserved from session to session. In this way the
debugging process gives as a side effect an
interactively developed formal description of some
properties of the intended medel.

8.1 Future work

An important extension of the method presented
in this paper is to inchude such features of Prolog as
the cut, negation, setof etc. Qur intention is that they
should be treated as declaratively as possible. Further
experiments with Prolog pregrams are needed te
better understand the debugging process, to fully
evaluate the presented approach and to develop
pragmatics of declarative debugging with assertions.

For constructs like assert, refraet and
input-putput that depend wvery strongly om the
execution algorithm, it may be impossible to include
them into the declarative debugging framework. It
may turn out that only methods based on operational
semantics are applicable.

Another subject of future work Is fo discuss
testing of logic programs and correcting of errors. The
objective would be a testing-diagnosing-correcting
methodelogy. It should be baszed on declarative
features of existing logic programming languages and
may be a complement to metheds of systematic
construction and verification of programs. Although
proving programs correct seems to be 2 mare

important target, programs still need debugging and -

providing sound methods and tcols for this = a
significant research task. '

AKNOWLEDGEMENTS

This report has been partially supported by the
National Swedish Board for Techmical Development,
project number: 87-02026P, and a stipendium by The
Royal Swedish Academy of Engineering Sclences
(IVA). The first author was supported by Polish
Academy of Sciences.

579

REFERENCES

Dershowitz, N., and Lee, Y., (1987) Deductive
Debugeing, Proceedings of the Symposium on Logic
Programming - San Francisco : 288-306.

Drabent, W., and Maluszynski, J., (1987)
Tnductive Assertlon Methed for Logic Programs,
Proceedings of the International Conference on
Theary and Practice of Software Development
(TAPSOFT), LNCS 250, Springer Verlag : 167-181.

Drabent, W., MNadjm-Tehrani, 8., and
Maluszynski, J., (1988) Algorithmic Debugging
with Assertions, Hesearch Report LiTH-IDA-R-88-04,
(An abridged version appeared in: proceedings for the

Workshop on Meta-Programming in Logic
Programming, Bristol: 365-378). :
Ferrand, G., FError Diagnosis in Logle

Programming, (1987) an Adaptation E.Y.
Shapire’s Method, Journal of Logic Programming
1987(4): 177-108,

Hill, P.M., Lloyd, J.W., (1988) Analysis of
Meta-Programs, proceedings of the workshop on
Meta-Programming in Logic Programming, Bristel:
27-42.

Lloyd, J.W., (1987) Foundations of Logic
Programming, Springer Verlag, Second edition.

Mycroft, A. O'Keefe, R.A., (1984) A
Polymorphic Type BSystem for Prolog, Artificial
Intelligence 23 : 205-307.

Nilsson, J.F., {1983} On the Compilation of a
Domain-based Prolog, in: Mason, R.E.A.(ed),
Information Processing 83, North Holland: 293-298.

Pereira, L.M., (1986) Rational Debugging in Logic
Programming, Proceedings of the frd International
Conference on Logic Programming, LNCS 225,
Springer Verlag : 203-210.

Pereira, L.M., Calejo, M., (1988) A Framework
for Prolog Debugging,in: Kowalski, R.A., Bowen,
K.A., (ed), Proceeedings of the Fifth International
Conference and Symposium on Logic Programming,
Seatle: 481:495.

Shapiro, E.Y., (1982) Algorithmic Program
Debugging, Proceedings of the Sih annual ACM
Symposium on Prineiples of Programming Languages.

Shapiro, E.Y., (1983) Algorithmic Program
Debugging, MIT Press. .b2 Sterling, L. and
Shapiro, E.Y., (1986) The Art of .Prolog, MIT
Press.

Zobel, J., (1987) Derivation of Polymorphic Types
for Prolog Programs, in: Lasses, J.L., (ed),
Proceedings of the Fourth International Conference
on Logie Programming, Melbourne: B1T-838,

580

APPENDITX

The following example session demonstrates
diagnosis of 4 errors present in the standard buggy
quicksort program (Shapiro 1982). The other 2 errors
in the standard buggy gsort are automatically
detected by the Quintus Prolog parser. inc/1 and
ins/1 are the incorreciness and insufficiency
diagnosis procedures respectively. The assertions
introduced by the user make use of library procedures
integer_list/1, sortedf1, not_sorted/i, and
perzutation/2 for which the definitions are not
given here. The wser replies to queries consist of
¥(ves) n{no) and aassert an assertion).

The buggy gsort is listed below:
fgsort([].[1). Yerror 1
geort {[X|L] ,LO) :-
partition(L, X, L1, L2),
gsort(L1,L3), '
gsort(L2,L4), .
append{[X|L3],L4, LO). Yerror 4
partition([XIL], ¥, Lt, [XILZ]) :-
partition{L,¥,L1,L3).
partition([XIL], ¥, [XIL1], L2) :-
¥ =< K.
partition(L,Y,L1,L2).
partition([]._X.[1.[1).

farror 2

ferror 3

append{ [X|L1], L2, [X]L3]) :-
append(L1,L2,L3).
append([],X,X).

| #- gaort{[2,3,1.5],L).

no

| ?- ins(gsort([2,8,1.6].L)).

Is gsert{[].B) satisfiable? a.

|: posexigsort(L, *VAR*(_))):-
integer_list(L).

This atom is not completely covered:
qsort([1,E)

% The session continues after amending the program
%by inserting the clause gsort(f],f]).

| ?7- gsors({[2,3,1,6].L).
L= [2,3,1,5]

yes

| 7= inc{gsort([2,3,1,61,L)).

Is gsort([2,3,1,5],02,3,1,6]) true? a.

| : negex{gsort{_,L}J}:-
integar_liss(L),
not_sorted(L).

Iz append([3],[1,5].[3,1.56]) true? y.

Is gsort([1,5]1,[1,56]) true? a.

l: truel(gsort(Ll,L2)):-
integer_list(L1),
integer_list(L2),
permutation(Ll,L2),
sorted(L2).

Is partition([1,5],3,[],[1.6]) trus? m.

Is partition([5],3,[].[5]) true? y.

This iz an incorrect clause:
Pﬂti‘biﬂn{[i rE‘] lal []] [1.5]} Ho
putitiﬂn([E] lsl [] " [E]} .

L = [2.3,1,5]

%The user includes a test in the first clause of
Hpartition and the session conirnues:

| 7= listing(partition).

partition([AIB],C,D,[AIE]) :-
A>C,

' partitisn(B,C,D,E).

partition([A|B],C,[AID],E} :-
C=<h,
partition(B,C.D,E),

partition([].A,[1,01).

}"Eﬂ-

| ?- qeart([2,3,1,5],L).

no
| 7= ina(gsert([2,3,1.5],L)).
Is partition{[3,1,6]1,2,B,C) satisfiabla? a.
I: posex(partition(L.X, VAR*C_), VAR’ (_))):=
integer_list(L),
integer(X).

This atom is not completely coverad:
partition([1,5],2,B,C)

%iNow the test in the second clause of partition is
fireversed to correct the procedure

| %= gaort([2,3.1.6],L).
L = [2l1I3h5] H

ne

| 7= inc(geort([2,3,1,5].L)).

Is append([2,1],(3,6],[2,1,3,5]) true? y.

Is partition([8,1,6],2,[1],[2,5]1) true? y.

Thiz is an incorrect clause:

geort{[2,8,1,6],[2,1,5,6]) :-
partition([3,1,5].2,0(11,[5.51),
gsort{[1],[1]),
geort([3,6],[3,58]),
append([2,1],(3,5],[2,1,3,5]).

%The user corrects the call to append in the second
%elause for geort and the last error i removed:

| 7= gaert([2,3,1,5],L).
L =1[1,3,3,FE]

% The system has aceumulated some properties of the
Hintended model of the program in the form of
Sassertions.

| 7- listAssertions,

posex{gaort (A, "VAR" (B)}) :-
integer_list(A).

posex(partition(A,B, 'VAR" (C),"VAR' (D))} :-
integer_list (A},
integer(B).

negex{gacrs (A,B)}) :-
integar_liast(B),
not_sorted(B).

true (append([3],[1,5],[2,1,51)).

true (gsort (4,B)) :-
integer_list(A),
integer_list(B),
permutation(A,B),
sorted(B) .
true(partition([E],3,[], [51)).
true(append([2,1],[3,61,[2,1,3,51)).

true(partition([3,1,51,2,[1],[3,61)).

false(partition([1,E],3,[1.0[1,81)).

581

