PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPLUTER 5YSTEMS 198E,
edited by ICOT. © ICOT, 1988

355

ALGEBRAIC META-LEVEL PROGRAMMING IN PROLOG

Georges Louis
(glovis@prlb2. UUCP)

Marc Vauclair
(mvauclair@prlb2. UUCP)

Philips Research Laboratory Brussels
Avenue E. van Becelaere, 2 box 8

B-1170 Brussels

ABSTRACT

Meta-levid programming is used in Prolog when the
standard semantics are not suitable for the task at hand:
meta-interpreters are meta-programs that direct the exe-
cution of other programs and give them ‘non-standard’
semanties.

Meta-interpretation is inefficient, and program trans-
formation is often prefemred: from the initial program
meant to be meta-interpreted, a new program is produced
{compiled), whose execution produces the same result as
meta-interpretation.

Partial evaloation of the meta-interpreter is often pro-
posed as a technique for program transformation. The
meta-interpreter is partially evaluated by fixing the pro-
gram on which it would act. The resulting specialised
program performs at object-level the tasks the meta-inter-
preter would have produced at the meta-level.

In this paper, we introdoce a more direct approach to
program transformation: the compiled version of a pro-
gram is specified as a transformation of its syntactic tree.
Further, this transformation is viewed as an application
of the universal property of word algebras: each clause in
the source program is considered as a word constructed
on the set of atomic predicates taken as generators, and
the basic Prolog operators taken as signature. This view
yields well strectured translation programs, and provides
insight in the semantics of the translation irself.

1 INTRODUCTION

Meta-level programs treat other programs —called obfect-
level programs— as data, to analyse, transform, or simu-
late them. Meta-interpreters are meta-programs that di-
rect the execution of object-level programs. Programs ex-
ecuted under control of a meta-interpreter are thus given
‘non-standard’ semantics, suitable for the task at hand,
e.g. debugging or explanation generation for expert sys-
tems, which rely both on the construction and/or record-
ing of the 'proof tree’ generated by the execution of the
program —or sometimes on a more complete trace of the
program's execution including failures.

When compared to direct execution, meta-interpreta-
tion entails a logg of erficiency. First, analysis of the ob-
ject program is performed by the meta-interpreter. Sec-
ond, the execotion of each object program step is simu-
lated by several steps of the meta-interpreter. Third, if
optimisations are applied by the Prolog implementation

BELGIUM

(be it a compiler or an interpreter), such as indexing of
clauses, detection of deterministic calls, or optimisation
of tail recursive calls, these will now apply to the meta-
interpreter and not to the object-level program itself, and
will not take advantage of its peculiarities.

To regain efficiency, program transformation appears
as an attractive alternative to meta-interpretation: from
a given object-level program, the source of the transfor-
mation, & new program, the rarger program is produced
(compiled). Program transformation is then an alterna-
tive to meta-interpretation inasmuch as the execution of
the transformed program produces —at the object-level —
the results that the meta-interpreter would have produced
at the meta-level.

To obtain through transformation a program equivalent
to the meta-interpretation of a given object-level program,
it has been proposed to apply partial evaluation to the
meta-interpreter itself [Sestoft and Sendergaard 1988].

Partial cvaluation is a general program transfor-
mation technique whose benefits are well established
[Sestoft and Sendergaard 1988]. ' :

Partial evaluation is applied to a meta-interpreter by
fizing the program —but not the data— on which it will
act.

However attractive, this approach —meta-interpreters
plus partial evaluation— inherits the limitations of partial
evaluation. Partial evaluation is straightforward only as
far as the program can be given a pure ‘reduction’ (re-
placement) semantics, and several general problems are
still unsolved {e.g. the handling of cots). For partial
evaluation to deliver its benefits, the program, ie. the
meta-interpreter, must be carefully annotated. One also
observes that the most specific efficiency gain of partial
evaluation of meta-interpreters seems to be the remowval
of object-level program analysis, which is performed dur-
ing the partial evaluation process and not any more during
execution by the meta-interpreter,

In this paper, we introduce a more direct approach
where program transformation is specified explicitly as
an application of the universal property of word algebras:
the source program is considercd as a word constructed
on the set of atomic predicates taken as generators, and
the basic Prolog operators taken ag signature. Object
program analysis is done at transformation time and is
produced automatically. _

The benefit of the algebraic approach is twofold: view-
ing the transformation scheme in algebraic terms helps to



356

construct an abstract view of the transformation process
and proposes a useful strocture for the program that im-
plements it. Since the program transformation paradigm
is adopted from the onset, the efficiency is rather nam-
rally achieved —sometimes at the price of the dynamic
character of the resulting program.

The rest of this ppper is organised as follows. Sec-
tion 2 introduces the basic concepts of universal alge-
bra that will be needed for the rest of the paper. Sec-
tion 3 describes meta-level programming in the algebraic

framework of Section 2. Sections 4 to 6 present a oum-

ber of examples to illustrate several aspects of algebraic
meta-programming. More precisely, in Section 4, we
illustrate the basic differences which are penerally ob-
served between meta-interpreters and algebraic transla-

tion schemes. Sectiom 5 discusses meta-level informa- -

tion and introduces lambda expressions to deal with it
Section 6 presents a technigque to merge two or more al-
gebraic translation schemes into one. Section 7 presents
an example for which the semantic domain is not triv-
ial and is meant to show how the algebraic framework
provides help in mastering such complexity. Section 8
discusses efficiency aspects. Section 9 contains conclud-
ing remarks,

2 MANY-SORTED WORD ALGEBRAS

The use of concepts of universal algebra to specify com-
pilers is not new [Burstall and Landin 1969]. The appli-
cation of these concepts to program structuring, although
apparently litlle known, i presented in [Burstall 1980].
Algebraic concepts are also used to define language se-
mantics [Goguen et al. 1977].

The basic concepts of universal algebra needed in the
sequel will now be recalled.

To compare different algebras, it is convenient to define
a many-sorted signamre £ as a collection of sorts, § =
{s1,82,..}, and a set, the operator domain {2, with a
mapping a : I — 5% » §. The elements of £ are called
operators (more precisely operator symbols). Forw & 12,
alw) is the (generalized) arity of w; it indicates the sorts
of the arguments of w and the sort of its result,

A many-sorted F-algebra (for an introduction see
[Burstall and Goguen 1982]), Ap (A for short), is an S-
indexed family (the carrier of the algebra) of sets (de-
noted A, with s in 5) with a collection of functions in
correspandence with the operators of £2: for each w € 12,
the algebra has a comresponding operation wy. If w has
arity {[55, 42, ...], 8}, wyq maps 4, = 4, = .. 10 4,.

An homomorphism, h, between S-sorted ¥-algebras
Ay and By is an S-indexed family of functions k =
{h, 1 A, — B,|s € §} such that k(walar,...,a.)) =
Wy Ehtll:u"L vEey ﬁn;{an}} (w & 1, alw) = ([81, .00y 801, 51

Civen a signature, X, and an S-indexed family of sets,
X (with L,X, N 7 = ¢), whose elements are called gen-
eratorg, the many-gorted T-word algabra on X, Wg(X)
{2lso named the Y-algebra freely generated by X, is
the set of syntactically correct terms that can be con-
structed using generators in X and operators in £7. Given

an operator w of atity ([sy,...,5,], £) in {2, and n terms
Tiyeeoy Ty in We(X), of respective sors sy, ..., 5,,the
term w(Ty,...,T,) is taken as the result, of sort s, of the
application of w on the T}'s. Usual precautions, such as
the nse of a fully parenthesised form, the adoption of suit-
able operator priprities, or the definition of terms as trees
{as done in Prolog) guarantee that each term in Wx(X)
is uniquely analysable as the application of an operator
(the principal operator or principal functor of the term)
to subterms, This precludes operator overloading.

Many-sorted X—word algebras enjoy the following i
versal property:given a many-sorted T-algebra Ay and
a S-indexed family of sets of generators, X = {X,|s € 5},
any S-indexed family of functions f = {f, : X, —
A,ls € 5} has a unique homomorphic extension f* =
{fI: Wg(X), = Als € §}. f; is defined by induc-
tion on the structore of tenms: if term { is a generator of
sort s in X,, then f7(f) = f,(t)', otherwise, ¢ is of the
form w(Ty,..., T,) for some w of arity ([s, ..., 5,], 5) and
L) =walfo (D), . .., £ (TL)).

Thus, if a set of finite trees can be represented as
Wx(X) by an appropriate choice of I and X, a func-
tion over these trees will be specified by:

— a family of functions (f,, s € &) for the computa-

tions at the leaves;

— the operators of a D-algebra for the computations at
the non-leaf nodes;

- the cartiers of the Z-algebra for the ranges of the
values of the fanction being specified.

The universal property then uniguely defines the func-
tions over trees. For example, take (2 to contain only
operator + of arity ([ind,int], int), X to be the set of
integer numerals, Ay to be the integers with addition
corresponding to +, and f to be the function yielding the
vilue of a numeral. Wy (X) will then be the set of addi-
tve expressions, and £, the function yielding the value
of such expressions.

For language semantics in general, and transforima-
tional meta-programming in particular, the language sen-
tences will be viewed as words in Wg(X). Some lan-
guage constiucts (e.g. the atomic goals in Prolog) will
be selected for X, while others (e.z. logical connectives
in Prolog) will form f2, The specification of semantics
—or of the target of the transformation— amounts to the
definition of a E-algebra, and a (family of) mappings
from X into it.

If the language syntax is specified by a context-free
grammar, the simplest approach is to define operators
in the signature for the syntactic rules in the grammar,

"To be fommal, one should not identify ¢ as an element of X,
with ¢ as an element of Wy (X),, and use 5, : X, — Wn(X), s an
injection: f(n. () = f£,0). This rematk is not pore pedantry: it is
sometimes convenient in a program to represent ¢ in X, differently
from z in Wy(X),, and fonctions n, are then needed. In this paper,
we attempt 10 keep such formal defails (o & minimum, sometimes at
the price of full rigour. See [Burstall and Goguen 1982] for a fomal
treatment.



although it is often preferred to take an abstract syntactic
form as the basis of the definiion. Some syntactic rules
will correspond to operators, while the other ones will be
used to define the set of generators.

An algebraic translation scheme is thus a 4-tuple

(E, X, dp, f={f: X, = A,]s ¢ 5}

However, in general, the language to be given seman-
tics together with the range of applications determine the
choice of the signature and of the family of generators,
and in the sequel an {algebraic) translation scheme is
simply a pair (f, Ap) when ¥ and X are understood.
For Prolog, such a scheme will map constructs viewed
as words in Wg(X) into other constructs viewed as ele-
ments of Ay, thus specifying a translation from Prolog
to Prolog.

3 ALGEBRAIC META-LEVEL
PROGRAMMING IN PROLOG

In this section, the framework of Section 2 will be applied
to meta-programming in Prolog. There are two aspects to
it: the implementation of algebraic ranslaton schemes
in Prolog itself, and the definition of translation schemes
applicable to object-level Prolog programs.

Once a signamre and a set of generators has been
selected, an algebraic translation scheme can be imple-
mented by a Prolog program by defining:

— tw_AT(+V1,4V2,...,4¥n,-V)? to implement V =

wy(Vy, ¥4, ..., ¥5), for each w in the signature®,

= £(+5,+6,-V) to implement V = f(G) for 7 € X,
and = € 5.

A final predicate, val(+5,+W¥,-V} iz needed to imple-
ment V = f{W,),ie. the semantic function proper. The
clauges defining val are constructed from the signature
only: there is one clanse for each operator w in £2, which
defines the value of terms whose principal functor is w,
e.g. if the signature contains +/( [int,int],int), there
will be a clause;

val{int,W1+W2,V) := 1,
val(int,W1,V1},
val(int,Ww2,v2),
Ye_AT(V,V2,V).

There is a last clause to deal with the generators them-
selves:

ral(Sort,8,V) :~ £(Sort,E, V).

"Where the notation p(+F,-g) indicales that upon call, the argu-
meat for F is known (Dol an uninstantiated variable), ie P iz an input
parameter. Conversely, { is an outpol parimeter, ie. ils argument
is an uningtantiated variable,

Mhere i5 a not yet fally explored opportunity to han-
die operator overloading by the addition of an extra argu-
mient 0w h': w AY({[s1,...8n],8) ,+¥1,4%2, ... ,+¥n, -V}
iF alte) = ([a1, ey 8 5 20

557

The construction of the clauses for val from X can
be implemented by a straightforward Prolog program (a
signature compiler). Thus, to implement a translation
scheme, it iz only necessary to provide code for predicates
Yw_A' of arity n+ 1 for each w in £2, and # of arty 3
for the f,. .

Remark, that neither the cartiers nor the generators
have an explicit representation in the meta-program itself,
however, predicate £ should succeed when its second
argument is a generator, .

For the example of additive expressions introduced in
Section 2 above, (the implementation of) the translation
scheme is simply:

f{int,V,V7).
Pe_AT(VL, V2,V :- ¥ iz V1 + Va2,

We now discuss how translation schemes apply to Pro-
log programs. For most meta-level programs —all of the
examples in this paper anyway— the atomic goals in Pro-
log, together with clanse heads which are syntactically
identical to them, will constitute the set X of generators.

Since Prolog program phrases are terms (i.e. the gram-
mar is an operator grammar) and the syntactic sugar is
reduced to a minimum, the correspondence with the the-
oretical framework is straightforward and the signature
will consist of operators used in the syntax,

As the examples in the next sections will show, the
translation is most often performed clause by clauze. Ob-
serve thet facts as syntactic sugar for clauses whose bod-
ies reduce to true will not be handled comrectly by a
straightforward translation scheme, and should be sub-
mitted to val in their extended form, i.e. as clanses with
a true body.

When the problem at hand requires the translation to
apply to procedures, the input syntix must include an
explicit operator to bind clauses in procedures. For ex-
ample, symbal & could be chosen, and a procedure would
be written, &g :

concat([],L,L) :- true
&

concat ([K[T],L,[KITL]} :- coneat(T,L,TL).
In the rare occasions when the translation to be imple-
mented is defined for complete programs, vet another
operator must be introduced to bind procedures to one
another, e.g. #, .

Queries, which are clause bodies, must also be trans-
lated by val prior to their submission to the translated
program,

The many-sorted formalism is most useful when the
trarislation of heads and bodies should differ. Sorts for
heads and clanse bodies are introduced, stomic goals be-
ing penerators of sort b and heads being generators of
sort h. Of course, 4 is limited to these penerators. A
third sort, r, for clanses, will also be introduced, Ieading
to the many-sorted signature with sorts S and operator
domain {2 where:



558

5={h,b,r}
ﬂ={’$-r#{[h| h]. r).’,'f{[‘b. b]j .b:'rq--}q-

This signature will be used throughout the rest of the
paper.

Sorts must be assigned to generators. This cannot be
done without modifying the symtax or performing some
preliminary syntactic analysis. However, if it is assumed
that programs to be wanslated are correct, the lafi-hand
side operand of : - is known to be a head. Definition of
val is given by:

val(b,(01,02),7) :- !,
val(b,81,VG1),
val(b,82,V82),
1, _A(vad,vaz,vm.
val(z,(H :- Body),V) :- I,
val(h,H,VH),
val(b,Body,VB)},
i~ _AT(VH,VB,V).
val(Sort,d,¥):~- f(Sert,,v).

There will be definitions of £(h,...) and £{(b,...)
for fy and f,, respectively.

The translation scheme should of course produce Pro-
log programs. This means, for example, that when the
translation applies to clauses, the value of a elause should
be a clause (or maybe a list of clanses), so that the tar-
pet program ¢onsists of a collection of the translations of
all the clauses in the source program. Similarly, if the
translation applies to procedures, the respective transla-
tions of the procedures of the sowrce program will con-
stitute the target program. As intermediate resulis for the
elaboration of the target program, any convenient set of
terms cen be taken as the semantics of e.g. clause bod-
ies. Such terms will in general contain parts of the target
program under constroction. This means that carder A4,
for clauses should consist of clanses, while the carrier A,
can be arbitrarly selected.

Further sections will present specific illustrative exam-
ples. As usoal, we select simplified examples, for the
sake of clarity and brevity. We mostly restrict ourselves
to programs which consist of pure Hom clanses.

A number of notations are adopted to dencte Prolog
constructs: p (possibly indexed) ranges over predicate
symbols, T over terms, X over variables, § over atomic
goals, H over clanse heads, B over clause bodies, 7 over
programs, and ¢} over gueries,

4 NON-STANDARD UNIFICATION

The first example implements a variant of Prolog with
modified unification: we assume that predicate unify
succeeds if its two arguments unify according to some
non-standard specification of unification.
Each program clause of the form

#(T, 12,0 :-B

should be translated into

ﬂ{;ﬂ,fg,...} H
anify (i), A2,..),p(T1.T5,...0) .5

where the A;’s are new variables not occorring in the
original clanse. Thus, the clause defining the concatena-
tion of difference lists:

concat (X-Y,V-Z,X-2)
would be translated as:

concat (V1,V2,V3) :-
wnify(concat(Vi,V2,va),
concat(X-Y,Y-E,I-E)),
trae.

The code for the translation consists of the definition of
predicates ', _NSU* (N30 for ‘non-standard wnification”
is the name of the semantic algebra), * :~_HSU*, and £:

i= true.

', _NSU'{Uoall,Goal?, (Goall,Goal2)),
Yi=_NSU! (Head,
Body,
{Templata :-
unify(Template,Head),Body)) :-
functor(Head ,Name ,Arity),
functor(Template,Name,Arity).
f{_,Goal,Goal).

For comparison with the algebraic approach, the meta-
interpreter is:

demao (true) .

demo{{Goall,Goal2)) :-
demo{Goall), demo(Goal?).

demo(Goal) ;-
functor(Goal,Name ,Arity),
functor{Template, Name, Arity),
clause(Template,Body),
unif?(ﬂunl,Tampluta},
dema (Body) .

Observe that the code

funstor(Goal,Name , Axity),
functox(Template,Name ,Arity)

creates term Template with the same principal functor
{i.e. the predicate symbol) as term Goal and with fresh
varizbles as arguments, to access clauses in such a way
that standard vnification is not performed between terms
in the clause head and terms in the poal under inter-
pretation. Non-standard unification, defined by predicate
unify is applied later instead.

As they stand, the meta-interpreter and the translation
scheme are roughly equivalent in complexity. Compar-
ison of the meta-interpreter with the translation reveals
differences which are generally observed between the two
approaches.

In both cases, there is a slight limitation on the uni-
fiers which can be used, as it Is implicitly assumed that
two goals with different predicate symbols never unify.



This restriction can be lifted for the meta-interpreter
{at the price of efficiency): remove the construction of
Template, to access all clawses of the program. The
modification is deeper for the translation appreach: in
the translation scheme, program clauses are manipulated
at translation-time, and are thos fixed at mun-time; to ac-
cess clanses at run-time, each goal of the form (7,
Tz, ...} should be translated into

clanse{ Xy, g,
wify{Ay, pl(T, T2, ...0).
call{Xg)

where Ay and X are new variables,

This translation applies to atomic goals in bodies and not
to heads. The clanse defining £ in the previoes translation
scheme, should be replaced by:

f(h,Head, Head).

£(b,Goal, (clause(Head,Body),
unify({Head,doal),
call(Body))).

and *:-_NSU’ should just reconstruct a clause:
*1=_NSU'{Head,Body,(Head:-Body)).

The general observation is that simple meta-interpreters
can handle dynamic programs, ie. programs that are
partially constrocted at nn-time, e.g. by asserting new
clauses or constructing new goals dynamically and calling
them. This is possible at the price of some efficiency loss
which can be recovered at the price of some complex-
ity by introducing filter code to benefit from static cases.
Conversely, simple translation schemes produce reason-
ably efficient programs but must be made more complex
to apply to programs with a mose dynamic character,
This is not surprising, since it reflects the usual trade-off
betwesn interpreters and compilers.

The algebraic translation is capable of handling cuts quite
easily, since (and when) the translation process does not
alter the general structure of the program, hence does not
alter the locality of cots. It is sufficient to define £ to
translate cuts by cuts,

On the other hand, a meta-interpreter handling cuts would
be faitly complex.

5 COUNTING LOGICAL INFERENCES

The second example is taken as a simple instance of a
program that records information on its proof tree. Start
from a program, P, to which a query @ = p(T, T,
...t is submitted. The intention is to armive at a new
program, call it ‘PP]. which is equivalent to P (it delivers
the same answers), but computes the length of each proof
necessary to arrive at each answer. The quu:ir.sfo.r'Ppl
will accommodate a new vasriable for the proof length.
A first possibility is to modify Q as follows: Q.
(T, 7, .0 T xpl mlhamutablenpuatordl:ﬁm
tion for ‘77

359

Each atomic goal in 7 will be modified to construct
Ppi: f(G)=G 7 P1. The semantic domains PL, and
FPLy (PL for “proof length’ is the name of the semantic
algebra) consists of Prolog terms of the form:

lambda( [Count] &)

where Count is an arithmetic expression yielding the
Iength of the proof of G,
Function ,p;, combines two such terms as follows:

lambda([C.11,G;) ,,, lambda([C_2],h)
= lambdal[C_1+C_ 2], (0, 0:)).

The choice of lambda as functor name is justified
since this construct indeed resembles A-expressions, -
reduction can be defined as follows:

beta(Lambda, Argument , Raduct} -
copy_tearm{Lambda,
lambda (A.rguman.‘t ;Reduct]}) .

The copy is necessary if the given lambda expression is
subject to several S-reduction: otherwise, the first reduc-
tion would instantiate its variables and it would become
impossible to apply other reductions to it

Observe how predicate beta generalises f-reduction:
whereas the S-reduct is obtained by substitution

(AP.EXA) =5 E[P — 4],

beta specifies the unification of parameters with argu-
ments. The A-expressions here behave in that respect as
Prolog predicates, and the unification can instantiate ar-
guments. It is also possible to invoke \-expressions as
(anonymous) Prolog predicates:

call(lambda,Arguments) :-
beta(Lambda, Arguments,Boal),
call{Geal).

In a tranclation scheme, the semantic domain often
consists of object-level Prolog constructs (e.g. atomic
goals are translated as goals). These object-level con-
structs are then combined into more complex constructs
by further operators. Such a combination generally de-
pends on meta-level information which should annotate
the component construct, and A-expressions constitute a
general mechanizsm to carry such meta-level information
about object-level constrects in their body. Uninstanti-
ated variables are frequently needed as meta-level infor-
mation to express dependencies among the components
used to form a new construct.

In some cases, it is necessary to postpone part of the
computation of meta-level goals themselves, until more
context for their application is known, and A-expressions
can be used as anonymons Prolog predicates for that pur-
pose.

To apply this technique in full rigour, predicate *, _PL?
in our example would be



560

!, FL*(Lambda_1,
Lambda_2,
lambda([P1_1+P1_2], (Body_1i,Body_2)))
i~ beta(Lambda_1, [P1.1],Bedy_1),
beta(Lanbda_2, [P1_2],Bedy_ 2).

However, a simplified form of F-reduction without
copy is sufficient, since \-expressions are only S-reduced
once. The translation scheme thies reads:

', _PL*{lambda([F1_1],Body_1),
lambda( [P1_2] ,Body_2),
lambdal [P1_1+P1_2],

(Body_1,Bedy_21)).

Clauses are constructed to count an inference for their
own application:
'ie_PLY(lambda( [P1_h] Head),

lambda([P1.b] ,Body),
(Head:-Body,P1_h iz P1_b+1)).

f(_,Gecal,lambda([P1] ,G0al 7 P1)}.

There is a slight difficalty with built-in predicates, of
course. A simple solution is, if built<ins count for one
logical inference, to add the following clauses to the def-
inition of £:

£(b,true,lambdal[0] ,true)):= |,
£(b,Beilt_in,lambda([1],Built_in}) :-
built_in(Built_in), !.

Adopting this solution for built-ins, the reverse proce-
dure:

roverse([1,[1} - !.

reverse([X|Tail] ,LiatX) :-
reverse(Tail,Liat),
append (Liat, [X] ,LiatX).

is translated into:

roverse{ [1,[1) 7 PL - {, PL 45 0 + 1 . (1)
roverse( [X|Tail] ,LiatX) 7 P1 :-
reverse(Tail,Liat) 7 P1_1, _
append{Liat, [X],LiatX) 7 P1_2,
Pl is PL_1 + P1_2 + 1.

The translation produced by this scheme —call it the
naive approach—suffers, however, from a major draw-
back: a single predicate symbol remains in the tar-
get program: 7 (apart from the built-ing). This im-
plies that clause indexing will be rather ineffective and
that efficiency will suffer. A similar observation has
been made in the case of partial evaluation of meta-
interpreters [Sterling and Beer 1986]: after partial evalu-
ation, the meta-interpreter stll consists only of predicate
demo, whose first argument is the goal to be proved, and
other arguments carry meta-level information. The so-
lution proposed Is to “push™ the meta-level arguments
as new arguments to the goal itself. A similar solution
applies here: in an atomic goal of the form

P(ﬁr ?-I: ..-} 7 tt’pls

Ap is a meta-level variable, and should be “pushed”

as a new argumént of predicate p: p(T .Tg...,,ﬂfpl}.
This idea translates simply In our case: it is sufficient to
redefine the last clause for £ so that meta-arguments are
pushed: :

£(_,G0al,lambdal[P1] ,Newloal)} :- (2}
push_args(Goal, [P1] ,Newiloal).

push_args{Goal, Args,NewGoal) :-
Goal =.. List,
append(List,Args,NewLisgt),
Newloal =.. NewlList.

Mete-arguments are pushed at the end of the object-
argument list, becanse most Prolog implementations in-
dex program clauses on the predicate name and the first
argument (or first few arguments). This decision might
well be critical for the efficiency of the compiled pro-
gram, and should be considered carefully as it may some-
times be more efficient to push meta-level arguments be-
fore object-level ones.

Using the technique of meta-argument pushing, the
reverse procedure becomes;

roverse([],[1,P1} := !, Pl iz 0+ 1 . (3)

reverse([X|Tail] ,LiatX,P1} :-
reverse(Tail,Liat,P1_1),
append(Liat, [X],LiatX,P1_2),
PL ig P1_1 + P1_2 + 1 .

Once again, the built-in predicates need special atten-
tion, as meta-agguments should not be pushed for them,

Note that meta-argument pushing shifts the program
towards a more static character: since all goals defined
in the program get new arguments, programs that manip-
ulate such goals would have to be medified rather desply,
in a way that is beyond the expressiveness of a transla-
tion scheme, at least in general. This observation applies
to meta-interpreters as well,

In the case of meta-interpreters, it has been proposed
to perform meta-argument pushing via a program to be
invoked after partial evaluation [Sterling and Beer 1986].
Such a separate transformation, an argument pusher can
also be defined here, if convenient: here is an argument
pusher to go from the ranslated clavses (1) to clauses
(3

', _AP? (Goall,Goall, (Gomll,Goal2)),
':=_AP?(Head,Bedy, (Head:-Body)).
I(_,Metaloal ,NewGoal) :-

HetaGoal = ObjGeal 7 Metalrgs

~» push_args{0bjlcal ,Metalrpa,NewGaal)
i NewGoal = MataGoal.



We are thus faced with two approaches to meta-argu-
ment pushing:

— the direct pushing approach (clauses (2)),

— the naive approach followed by the meta-argument
pusher.

Usually, it is convenient to express a complex irans-
formation scheme as a combination of simpler trans-
formations. Once again a similar observation applies
to meta-interpreters, for which it has been proposed
[Steding and Beer 1986] to obtain a complex meta-
interpreter as & combination of simpler ones called
JNavours.

6 FLAVOUR MIXING

The only way to combine two meta-interpreters presently
described in the literature is to apply them one after the
other, i.e. to use a second meta-interpreter to interpret
the first one (or the partial evaluation of the first one
w.Lt. a given object program). This is exactly what has
been done above: the direct pushing translation scheme
haz been obtained as the successive application of the
naive translabion scheme and the argument pusher, How-
ever, there are other posgibilities. We present a new
flavour mixing technique below for the algebraic trans-
lation schemes, but similar techniques could be devised
for meta-interpreters.

First let's consider the above example in more ab-
stract terms: consider two translation schemes (f), 4;)
and {f3, Az). The combination of the example (proof
length followed by argument - pushing) amounts to the
computation of f7 oio f where function ¢ irivially injects
terms of A; inte W(X). Note that i is not an homomor-
phism, thus £} o0 f§ #(fi oo f2)"; indeed, such gen-
eral algebraic properties seldom hold for the translation
schemes encountered in practice. As another (counter)
example of a general property of linle use, recall that
the Cartesian product of D-algebras is itself a D-algebra,
This property cen only help us to combine two unrelated
translation schemes into one, to produce two independens
translations at once, while the obvious need is for a sin-
gle translation combining the information obtained from
two translation schemes.

To get this result, the structure of the translation it-

self must be analysed to amive at useful combinations of

translation schemes.
Suppose that a translation scheme specification is of
the form
lembda(AM;,G1) ,4 lambda(Adz,0:)
= lambda(M, (Bi[M;, Mz, M],
G G2, e
Bl[:'ﬁl » ME IM]}J

lambda( My, H) : —4 lambda(Mg,B)
=H i~ (Bs[Mwn, Mpl, B, BalMy, Mp])

Jald) = lml'hda(m, push(G ,ﬁp:l}

ol

where A1 ranges over lists of meta-level terms (terms
in which the only variables are meta-level ones), A,
denotes a subset of M, push(G, M) denotes the push-
mgofimm:r'v_{a.suew arguments to goal G, A, ||
M; denotes the concatenation of two such lists, and
BLMy, Ma,...] indicates that the compound goal B in-
stantiates only vadables occurming in M, Mg, ...

Two schemes of this form with independent meta-argn-
ments will easily combine into a single one:

1MMI{M| |;H‘;,g|} A’

lambda (M || X175, C0)

= lambda(M || AL,
(By[Ad, Mz, M), Bi[A,, A5, A1),
G'J&t - ; .
Byl M, My, A1, B, , 75, FA'T))

lambda( My || Moy, H) @ = aenr

lambda (Mg || My, B)

= H i~ (Bs[Mx, Mg), B[Fy , Myl,
B

Byl Mg, Mg, B[ My, 'EL]..}

faear(@)
= lambda(M | A, push(G, A4, | M)

For example, combining the proof length transiation
scheme with a proof tree constrection translation scheme
[Stesling and Beer 1986] produces the following transla-
tion scheme:

forernoors(!)
= lambda([0,!],push(t, [13)

fpupnanm{tr“ °)

= lambde{[0,trnel, push({true, [13)
fPL-FRMF.n{g:’ .

= lambda([P1l,Proof] ,push{F, [F1,Procf]}}

Frrmnoors ()
= lambda([P1l,Procf,d], push({, [P1,Proof] }}

lembda([Pl_1,Procf 11,01} .. .cncor
lambda([P1l_2,Preef_21,0:)
= lambdal [PI_1+P1_2,Pranf],
(true,

true,

g1 gﬂ.r

true,

Proof = and(Proof_i Prun:E 1)

lambdaf [P1_h,Precf_h,Code_h] ,H) :
lambda( [F1_b,Procf_b] ,B}
= H := trus,trus,
B,
Pl_.h i= F1l_b + 1, ’
Proof_h = role(Code_h,Proof_b)

T PP ROGE

This form of combingtion solves the problems encoun-
tered with the successive application of meta-interpreters
[Stesling and Beer 1986] or of translation schemes, which



562

preduce erroneons results. If the proof length counter is
applied after the proof constructor, the steps of the proof
construction will be counted, and the length computed
will be too large; if the proof constructor is applied af-
ter the proof length counter, the steps of the counter will
appear as part of the proof of the initial program.

The resulting translation for the example is:

reverse([],[],P1_h,Proof_hL) :-
true,
true,
ty
Plh i= 0 + 1,
Proof_h = rule{reverse([],[1),!).
reversel [X[Tail] ,LiatX,P1_h,Proof_h) -
true,
trua,
true,
true,
roverse(Tail,Liat ,P1_1,Proof_1),
append{Liat, [X],LiatX,P1l_2,Procf_2),
true,
Proof_b = and(Proof.i,Proof_2),
Pl.h is P1_1 + P1_2 + 1,
Proof_h = rule(reverse([X|Taill .LiatX),
Proof_b).

7 NORMAL FORM

It is sometimes convenient to transform a Prolog program
into an equivalent one with some specific properties, a
normal form program. In this section, such a transforma-
tion is presented as an example of a translation scheme
acting on procedures, and not simply on clauses, as in
the examples before. This is also an example of meta-
programming for which meta-interpreters do not apply.
The construction of the semantic domain is not trivial,
but the example shows how the algebraic view induces
some useful structure,

The normal form presented here can be characterised
as follows:

1. The clauses reduce to one of the following forms:

H = true (4)
H =G (5)
H -0 . G {6)
MG ; & N

2. The atomic goal in clause () is the only point where
there can be a direct failure by lack of a clause to
unify with, Hence, the conjuncts and disjuncts in
clause (6) and (7) will never fail directly.

3. Each procedure of the program consists of a single
clause. As a consequence, the choice points of the
program are localised at the semicolons.

Programs in such a form are simpler to handle than pro-
grams in the general form, e.g. for compilation,

First, the normalisation will be described for programs
where all atomic goals refer to predicates for which there
is a procedure in the program itself. This excludes the
invocations of built-in predicates,

As an anxiliary operation, the simplificarion of goals
is defined as follows:

- simplification applies to atomic goals, to conjunc-

tions of atomic goals and disjunctions of atomic
goals, which constitate the class of simplifiable
goals. & will range over simplifiable goals.
The simplification of a goal implies its replacement
by a possibly different goal, and the production of
new clauses, meant to be pant of the normal form
program. To simplify goals, a supply of ‘new’ pred-
icate symbols not occurring in the program must be
available,

— the simplification of atomic goal ¢ is &, and no
clanses are produced.

— the simplification of (G, () is its replacement by
LA, .. with g a new predicate symbol and the
A; all the variables occurring in G and G, A new
clauss is produced:

el ) - G G

— the simplification of disjunctions is similar: (g, ;
2) is replaced by g (), ...), and the new clanse
is :

el ) - Gy Gs.

The nommalisation of clause bodies amounts to the
normalisation of disjunctions and conjunctions. A nor-
malised body will always be a simplifiable goal. Hence,
it is only necessary to define the nommalisation of con-
junctions and disjunctions of simplifiable goals.

Again, this will imply both goal replecement and the
production of new clauses: the normalisation of the con-
Jjunction of simplifiable goals is the conjunction of their
respective simplifications, with the new clauses produced
by these simplifications. Algebraically, the domain A,
for the semantics of clause bodics will consist of pairs
(§,C), where S is a simplifiable goal and € a set of
clanses. Nommalisation can be deseribed as follows:

fH)=H

f@ =g, 1)
(S1,C1),, (52,C2) = (S}, 89, (C1 U C2 U € U CH)
(51,C1X,, (52,C2) = ((S4; 82), (C1 UG U CL U CY)

where the 5] are the respective translations of the S; with
the production of clauses Cl{(i = 1,2).

The nomalisation of a clause p(7), ...) :- & witha
normalised (hence simplifiable) body, is a list of clauses:



e(Ty, ) :—,, (5,0)
= [{pld),. .. )e=p' (X, .. 00,
' (T,...):=8) 1 C]

where ' is a new predicate symbol and C the set of
clauses produced by the normalisation of 5.
Finally, the semantics for & is as follows:

[plX,...) == 5) 1 C] &,
[{plXi,...) :- &)Y | C1]
= [(plA,...p:=Se: 8 | Cucue

where Sp and S are the respective simplifications of &
and &', producing (together) the list of clanses C". Notice
how the vardable in the heads of first clauses (hence in
bodies) are made identical by unification. Observe that
the semantics of clauses indeed produce lists of clavses
whose first clause has a simplifiable body, as requested
by the definition of &.

The translation above critically depends on the hypoth-
esis that all atomic clauses of the initial program invoke
predicates for which there is a definition in the program.
Every program-defined predicates g is defined by a clause
plX, .0 := & which will unify with any goal invok-
ing . In this way, the second characterization of the nor-
mal form is satisfied. To Lift this restriction it is sufficient
to modify the specification for functon f as follows:

foltrus) = (true,[1)

file(Ti, ...))

= {Fr{ﬂn- . -}:E#{XI:_H D=l . 231}
ifG# true

where o' is a new predicate symbol.
8 EFFICIENCY COMPARISONS

For Prolog programs, efficiency comparisons are diffi-
cult in general, This difficulty stems from several fac-
tors particular to Prolog. Those factors concur to ren-
der time measurements highly imprecise. Among others,
no proper instrumentation is readily available to measure
Prolog programs in terms of time and space usage; Prolog
implementations are heavy consomers of virtual memory
management; scheduling algorithms allow only a discrete
gampling of clocks whose resolution is commonly rather
poor,

Nevertheless, a number of tests have been performed
on a dedicated SUN 375 (with § Mbytes of central mem-
ory and 32 Mbytes of swap space) running Quintus Pro-
log Release 2.0. The only parameter measured was the
execution time (CPU time) for finding all solutions of
a goal with no output apart from the timings. All tests
have been run hundreds or thousands of times* in order to
minimise statistical errors and to ease the determination
of overhead costs of the benchmarking itself.

The gain of the algebraic approach over the meta-
interpreters approach has been measured as the ratio be-
tween the execution time of a query by a meta-interpreter

The number of runs has also been determined in sich a wiay that
no garbage collection occurs during execation.

363

along with an object program and the execution time
of the same query executed by the program output by
the corresponding algebraic translation scheme. Both the
meta-interpreter and the translated object program have
been compiled with the Quintus Prolog compiler’. If a
sufficiently powerful partial evaluator was available, the
ratio between the target program and the partially evalu-
ated meta-interpreter could become close w 1.

These tests has been conducted on a lot of different ap-
plications (unification with oceur check (gains between 1
and 3), unification with term rewsiting (gains > 100},
proof tree length evaluation (gains between 1 and 6},
positive and negative proof trees extraction {gains = 5),
extensions with freeze/2 predicate {pains = 1}, ...) ap-
plied to some of the Prolog programs of the Quintus Pro-
log benchmark suite and other programs of our own.

Some results are given in table 1. The ratios obtained
are highly variable and may range from 1 to more than
1000 apparemtly depending on several factors, such as
the specific application, the sophistication of the meta-
interpreter, the choice of the library functions for the
anxiliary predicates, the optimisations made by the Pro-
log compiler. For example, on most of the test daa for
the “oceut check™ Havour the ratio was between 1and 2;
thig is due to the fact that most CPU time is spent by uni-
fication itself. In some rare cases the ratio was lower than
1, but in these cases, the reason for such deficiency has
been traced back to some peculiarities in Prolog imple-
mentations that favour some Prolog constructs over other
apparently equivalent ones; this can introduce a factor of
more than 2 in the ratios!

? CONCLUDING REMARKS

An algebraic framework for meta-level programming is
presented. Its main aspects are illuswated by a num-
ber of examples. Comparisons are made with meta-

OmL.

Since algebralc meta-programs are program transfor-
mation schemes, an efficiency gain w.r.t. meta-interpre-
tation should be expected and is indeed observed in most
cases. Thus, from an efficiency point of view, algebraic
meta-level programming appears as a viable altermative
to the partial evaluation of meta-interpreters.

Partial evaluation is a promising technique whose ben-
efits are well established. However, it is not yet well
understood, and its application remains complex. This
renders the algebraic approach of this paper attractive at
least on a temporary basis. Even with powerful partial
evalnation strategies, the natural limits of undecidability
and complexity will impose the exploitation of program-
mer's knowledge about the program under partial evalu-
ation, e.g. via its annotation prior to partial evaluation.

*As in  [Sterling and Beer 1986][Sterling and Shapiro 1987],
seme authors seem to define the efficlency ratlo by comparing an
imterpreted mefa-interpreter with a compiled version of its pantial
evaluation.

SRatios In parentheses indicates the additional gain of arpument
pushing.



564

Table 1.

Vanilla | Occur check | Proof® Description

unify unify length ~
rev 1.54 T 108 [ 160 (=« 217y [ MNaive reverse of 30 elements
lips 5.50 1.83 | 2.38 (x1.11) | 200 deterministic propositional calls
lipsconj | 11.00 2.65 | 4.66 (x1.18) | Lots of propositional conjunctions
lipsback 4.50 1.79 | 1.12 (% 1.03) | Heavy backtracking
SUCT 1.72 1.07 | 164 (x2.07) | Factorial of s{s(z(z(0))))

There might well remain cases where this knowledge will
be better expressed explicitfly inside the algebraic frame-
work,

Algebraic translation schemes are structured specifica-
tions which yield structured implementations. The inher-
ent complexity of thinking at two levels of abstraction is
of course not overcome by such a structure, bat it is felt
that the discipline imposed by the algebraic view is an
incentive towards clearer expression.

The following features help the stucturing of algebraic
translation schemes:

— Syntactic analysis of the object-level program is im-

plicit in the signature.

— Lambda expressions provide means to convey meta-

level information annotating the components of an
object-level construct.

~ There is no efficiency penalty for the final program
if the global translation task is decomposed into a
number of translation schemes applied in succession.
The intermediate results need not be executable Pro-
log programs, and can thus consist of annotated Pro-
log text. One interesting case of such a multi-staged
transformation is to have a final peephole optimisa-
tion phase on the final result of an algebraic trans-
lation scheme,

One important difference between algebraic meta-pro-
gramming and meta-interpretation is in the handling
of dynamic programs. Clearly, algebraic translation
schemes are not well adapted to dynamic programs e.g.
programs that modify themselves. On the other hand, it
is often possible to translate programs containing cuts, a2
notably difficult task for meta-interpretation.

Finally, algebraic translations schemes inherit the lim-
itations of program transformation in general: when the
task at hand becomes really complex, the size of the gen-
erpted program reaches the threshold of complexity that
the underlying Prolog implementation can handle. Such
a case has been met in practice, and overcome by the
prior normalisation of the program.

A number of tools have been written to automate the
implementation of translation schemes. Among them,
a full Aedged signature compiler which produces a com-
plete translation program, and a benchmarking tool which
helps to overcome the difficultes induced by the lack of
predictability of today’s Prolog implementation, which
handle seemingly equivalent constructs quite differently

from one another, and whose program optimisation strate-
gies are rather difficelt to control. Using these tools, a
number of non-trivial applications have been done, like
positive and negative proof tree extraction.

REFERENCES

[Burstall and Landin 1969]
E. M. Burstall and P. J. Landin. Programs and
their proofs; an algebraic approach. In B. Meltzer,
D, Michie, and F. Michael Swann, editors, Machine
Inselligence 4, chap. 2, pp 17-43, Edinburgh Univer-
sity Press, 1969.

[Burstall 1980] _
E. Burstall. Electronic category theory. In
P. Dembinski, editor, Mathematical Foundations of
Computer Science 1980, 9th Symposium held in Ry-
dzyna, Poland, Springer-Verlag, 1980.

[Burstall and Goguen 1982]
R. Burstall and J. Goguen. Algebras, theories and
freeness: an introduction for computer scientists. In
M. Broy and G. Schmidi, editors, Theoretical Foun-
dations of Programming Methodology, pp 329-349,
D, Reidel, 1982.

[Goguen et al. 1977)
I. A. Goguen, J. W. Thatcher, E. G. Wagner, and
I. B. Wright. Initial algebra semantics and continuous
algebras, JACM, 24(1):68-95, January 1977,

[Sestoft and Sendergaard 1988]
P. Sestoft and H. Sgndergaard. A Bibliography on
Partial Evaluation. SIGPLAN, 23(2)%:19-27, Febrary
1983.

[Sterling and Beer 1986]
L. Sterling and . D. Beer. Incremental flavor-mixing
of meta-interpreters for expernt system construction. In
Proceedings 1986 Sympositum on Logic Programming,
Salt Lake City, Utah, pp 20-27, IEEE, 1986.

[Sterling and Shapiro 1987]
L. Stering and E. Shapire. The Arr of Prolog. MIT
Press, 1987.





