FROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 1COT, 1988

PARALLEL APPROXIMATION ALGORITHMS

Ernst W. Mayr*

Department of Computer Science
Stanford University, California 94305, USA

ABETRACT

Many problems of great practical importance are
hard to solve computationally, at least if exact solu-
tions are required. We survey a number of (NP- or
P-complete) problems for which fast parallel approxi-
mation algorithms are known: The 0-1 knapsack prob-
lem, binpacking, the minimal makeshift problem, the list
scheduling problem, greedy scheduling, and the high den-
sity subgraph problem. Algorithms for these problems
are presented highlighting the underlying techniques and
principles, and several types of parellel approzimation
schemes are exhibited. .

1 Introduction

Many problems of great praclical importance are com-
putationally very difficult and seem to require ever larger
computing power. Advances in modern circuit technol-
ogy have made parallel computation an intriguing pos-
sibilitv, pushing the limits of what ean practically be
computed. Also, the theory of computational complexity
has established that the complexity of a large number of
practically relevant problems, including many combina-
torial oplimization problems, is intrinsically related {in
the sense that if one of them can be solved in polynomial
time, so can all). Since so far, despite of immense efforts,
no efficient algorithm has been found for any of these so-
called N P-complete problems, many people take AP-
completeness as evidence that no practically feasible so-
lutions exist.

In & similar vein, the fact that a cerbain problem is
P-complete (i.e., complete under logspace reductions for
the class P of problems solvable in polynomial time)
is commonly interpreied fo mean that the problem
cannot be solved by efficient parallel algorithms. Quite
often, however, even though it may not be possible to
solve A"P- or P-complete problems efficiently in practice
{by sequential respectively parallel algorithms), good
approvdmations to the exact or optimal sclution can
indeed be found,

“The anthor was partly supported by NSF grant DOR-8351767,

Thus, there are at least two mobivations to study
parallel approximation algorithms. The first is to
speed up sequential, polynomial time approximation

schemes for some A'P-hard optimization problems of
practical impeortance. The other is to find good
approximate solutions fast in parallel for problems that
most likely cannot be solved exactly by efficient parallel
algorithms since they are P-complete. In this paper, we
discuss parallel approximation schemes for both types of
problems.,

We shall base most of our discussions onto 2 the-
oretical machine model for parallel computation called
the Parallel Random Access Machine, or PRAM (For-
tune and Wyllie 1878). In this model, there is an un-
bounded number of identical Random Access Machines
(or RAM's), and an unbounded mumber of global, shared
memary cells. The processors work synchronously, con-
trolled by a global clock. Fach processor can access any
memory cell in one step. The eoncurrent read exclusive
write variant of the model (CREW-PRAM) allows that
more than one procsssor read the same memery cell in
one shep, but it disallows concurrent writes fo the same
memory cell. The erclusive read erclusive write variant
(EREW-PRAM), on the other hand, forbids concurrent
access completely. Moest of the algorithms discussed in
this paper run on the second, weaker model.

The shared memory feature of the PRAM model is
somewhat idealistic. A more reslistic machine model
consists of a network of (identical) processors with
memory modules attached to them. The processors are
connected via point-to-point communication channels.
Each processor can directly access only cells in its own
memory module, and it has o send messages to other
processors in order to access data in their modules. To
respect technological constraints, the number of channels
per processor is usually bounded or a very slowly growing
function of the number of processors. Examples for such
networks of processors are ths Hypercube (Seitz 1985),
the Cube-Connected-Cycles network (Preparata and
Vaillemin 1979), or the Ultracomputer (RP3) (Plister
1985, Schwartz 1950).

The parallel complexity class NC of problems that
can be solved in time polylogarithmic in the problem size

on a PRAM using & polyno;nia.l number of processors is
commonly thought to characterize the class of efficient
parallel algorithms (Pippenger 1979). The class NC

iz robust in the sense thai it doesn change when
we replace the PRAM by one of the more realistic

models mentioned abowve., It is also guite easy to see
that AC s a subset of P. Since NC computations
can be simulated by sequential Turing machines using
only polylogarithmic space, membership of a P-complete
problerm in NC would imply that P is contained in
POLYLOGSPACE which iz eonsidered very anlikely.
This is why P-completeness of a problem is usually
considered as evidence that the problem cannot be
efficiently parallelized.

Many of the algorithms and resulfs in this paper
have appeared elsewhere, as given in the reference
sechion. We have tried to present different types of
parallel approximation schemes, with the amount of
resources depending in different ways from the problem
size and the required accuracy. Similar to the notion of
(fully} polynemial approzimation schemes in sequential
computation, we define an AC approzimation scheme to
be a family of algorithms parametrized by €, the required
accuracy, such that, for & fixed to any value = 0, the
resulting algorithm i in A'C. Such a family of algorithms
is called a full NC approzimation scheme if the running
time of every algorithm in the family is bounded by a
polynomial in the logarithms of the input size and 71,
and the number of processors each algorithm uses is
bounded by & polynomial in the input size and =1,

In this paper, we have also tried to categorize par-
allel approximation algorithms in the literature by the
underlying approach, thus extracting some commonality
for some of them and exhibiting some more widely us-
able techniques. Of course, we do not, and cannot, claim
any completeness since research into parallel approxima-
tion algorithms is quite active and a certain selection
had to be made. The remainder of the paper is orga-
nized as follows: Section 2 discusses approximation algo-
rithms based mainly on discretization; we present a full
NC approximation scheme for the 0-1 knapsack problem,
and MC approximation schemes for binpacking and the
makespan problem. In section 3, we discuss the parallel
complexity of list scheduling which has a full NC approx-
imation scheme based on scaling the execution times of
the tasks. Section 4 presents parallel approximation al-
gorithms based on combinatorial properties. Here, we
discuss cases where the achievable accuracy of approx-
imation is bounded away from 1 umless, say, P = NC.
Section 5 contains some concluding remarks and open
problems.

343

2 Discretize to Approximate

2.1 The 0-1 Knapsack Problem

In this section, we study several parallel approximation
algorithms where the principal underlying paradigm is
the reduction of many possible values to a few, depending
on the required quality of the appreximation. The first
preblem we discuss is the 0-f krapsack problem: We are
given n items of weight w,...,w, > 0, with associaled
profits py,. .., pe > 0, and a bound C. We are supposed
to pack a subset of the jtems into & knapsaclk of capacity
O (i.e., the total weight of the packed items must not
exceed (), in such & way that the profit associated with
the packed items is maximized. The knapsack problem is
2 well-known combinatorial optimization problem. It is
N'P-complete, and we therefore expect its exacl solution
to be practically infeasible {Garey and Johnson 1974).

Among the problems discussed in this section, the
knapsack problem seems to have the mosi structure
and thus allow the most efficient scheme for finding
an approximate solution. A number of approximation
algorithms has been presented for it and the related
subset sum problem in the literature, many based on
ideas in (Ibarra and Kim 1975). We also refer the
reader to {Lawler 1975), (Peters and Rudolph 1984), and
(Gopalakrishnan et al. 1986). All these algorithms find,
for & given ¢ > 0, a feasible packing of the knapsack
whose associated profit is at least {1 — ¢) times the
optirmuam.

We use the following notation. For 5§ € {1,.. .yn},
w(f) = Ficsw; is the total weight of the items givea
by 5, and p{8) = ¥icsp; their total associated profit.
Aset S C{1,...,n} is called feasible if w(5) < C. P*
is the optimal profit over all feasible solutions, and 5* a
feasible set of items resulting in profit P=.

The most efficient approximation schemes for the 0-
1 knapsack problem (whether sequential or parallel} are
based on three main ideas:

1. Let S be any subset of {1,...,n}, and let Cs be
the sum of the weights of the items from 5 in
some optimal solution for the given instance of
the knapsack problem. Then the subset of items
from S picked in an optimal solution maximizes
the associated profit subject to the condition that
its total weight is at most Cs. Thus, assuming that
we know (s, we can independently optimize on 5.

2. The pessible profits are discretized lo a “small”
grid of possible values. For all these values, and
for appropriate subsets of all the items, optimal
solutions are computed acccording to 1.

3. Let 5,5 C {1,...,n} be such that
P(5) 2 p(5") and w(S) < w($").
Then, in any selution 5’5" with 57 disjoint from

344

S and 5, & can be replaced by 5, increasing the
vesulting profit without inereasing the weight., We
say that § doméinafes 5.

We now disenss the arguments underlying the dis-
cretization approach. Assume without loss of generality
that the items are numbered in non-increasing order of
profit density, i.e.

Bylty »la
wy g Uy

and that all w; < . Find the maximal k < n such that
W+ Fug <O

By assumption, & > 1, and either £ = n in which case
the optimal profit P* is cleatly 37, py, or kb < n and

. k k41 .
P=Ym<P <Y pis2P
] iml

since the first % + 1 items maximize the profit density
but exc?ed the capacity, and since wiey < O and thus

Pe = P
Given an accuracy € > 0 we round all profits p; to

the next lower integer multiple of 5-5

. e-Pyn-p
Pi = T _P.-.‘J .

e P
Theorem 1 Let P* be the optimal profit for the knap-
sack problem with weights wi and profits §;. Then

(1—¢).P* < B* < P '

Proof: Only the first inequality requires proof. Let
5+,8* C {1,...,n} be such that 5(5*) = P* and
p(S*) = P*. Since there are at most n items in a solution,
and since P~ is optimal, we have

Er

5

P = (5 = #(5") = p(S") - |57]-
0

— 2 (1-gP

For the 0-1 knapsack problem with weights w; and
profits §;, all feasible solutions hawve a profit value
which is one of the fiztst m = || integer multiples
of % For all of these m values, we compute {if they
exist) feasible solutions on items 1,.,.,n by recursively
computing feasible solutions on items 1,...,|3] and en
[2] +1,...,n, and combining these solutions. According
to the first fundamental property stated abowve, we only
keep, for each profit value that occurs, & feasible solution
with minimal weight: This solution dominates all other
solutions with the same profit value, which therefore can
safely be discarded. It is clear how to compute the array
of possible profit values, together with a minimal weight
solution set for 2 given profit, in the base case of one
item. In the recursive step, two such arrays of length
m are easily combined forming their “cross-product™

and ﬁlinﬁnat-ing solutions which are dominated by other
feasible solutions with the same weight.

Clearly, there are logn levels to the recursion. Ewery
combining step (and the base step) can be carried
out using m? processors of an EREW-PRAM, in time
O(log m). Since at most § instantiations of the recursive
procedure are ever carried out in parallel, we obtain

Theorem 2 Given ¢ > 0 and an instance of the 0-1
knapsack problem, a solution with & profit af least (1 —¢)
times optimal can be found in time O(log n(log n+log 1))
on an EREW-PRAM with % processors.

In (Gopalakrishnan et al. 1986), an interesting
variation of the combining step is shown that allows to
trade a factor of ‘/‘E in the number of processors for a
log n factor in time.

2.2 The Binpacking Problem

Anpther classical optimization problem is binpacking:
Given n items of size 0 < 5;,...,8, < 1, these ifems
are to be packed into as few bins of unit size as possi-
ble. Again, this problem is N'P-complete (Garey and
Johnson 1974). The binpacking problem apparently has
less structure than the knapsack problem since it is not
clear how to treat disjoint sets of items independently.
However, “efficient” parallel approximation schemes for
the binpacking problem ate also based on discretization.
The algorithm presented here is a rather straightforward
parallelization of the algorithm given in (Fernandez de
la Vega and Lueker 1981).

Let € > 0 be given as the required accuracy, and
let B(A) and B* denote the number of bins used by
algorithm .4 and in an optimal solution, respectively, for
a given instance B of the binpacking problem. We shall
discuss a parallel approximation algorithm .4 that finds
a golution with

B(A) < (1 + €)B* for B* — co.

First, we temporarily remove all items of size < &
Let n' be the number of remaining items, and assume
without loss of generality that their sizes are sy < 52 =
vrr £ 8. Also, let m = [e7%], m' = |71, k= [n'fm],
and r = n' mod k. We divide the n' items into (roughly)
m sets, the firet, Sy, consisting of the r smallest of the
s; (ties broken arbitrarily), then 53, Si,..., Sm, each
consisting of the & next larger elements. Note that Sg
may be empty. Using parallel selection (Vishkin 1987),
the sets 5; can easily be determined in time C{logn) on
an EREW-PRAM with ne=* processors.

Let u; be the maximum of the sizes in 5, and let
Ui; consiet of |5;| copies of wy, for ¢ = 0,1,...,m. We
approvimate the original bin packing problem (without
the items of size < €} by the one given by the items
in the sets Uy INy,..., Uy, and we solve this problem

exactly, as follows. Since the U; together contain at most
m + 1 distinet values, and since each of these values is
> g, each bin ean only be packed in a limited number
of ways: Call a packing of a unit size bin to be of type
t = (fo,t1,-. . 1) If it contains t; items from U; (of size
ug). Of course, Tilotan < 1 and T0¢; < m'. Thus,
there are at most
m+m'+1Y} _ (m+m-’+1
m+1 - m'

different types. We also define a parfial packing to be any
vector {pg, P1, - - ., Pn) consisting of nonnegative integers
#i = k. The number of different partial packings is
bounded by (k+ 1)™*,

We define an auxiliary digraph, which we eall the
strueture graph sssociated with the problem, in the
following way. The nodes of the digraph are the partial
packings. There js an arc from a partial packing p to
a partial packing p’ whenever p' — p is the type of a
packing of a unit size bin. Nole that, for fixed ¢ the
size of the structure graph i polynomial in n. Alse, it
is quite easy to see that an optimal packing of the given
iterns ean be read of a shortest path in the strueture
graph from node (0,0,...,0) to node (v, k,..., k). Ooan
EREW-PRAM, and for fixed ¢ > 0, this optimal packing
can be determined in O(log® n) time, using a polynomial
number of processors. The constants involved, however,
are rather big: for the time, there is an ¢~* factor, and for
the number of processors, the degres of the polynomial
also contains such a factor.

To ecomplete the packing, we still have to deal
with the items smaller than &, which were discarded
initially. They are su41,...,84. Assume that the
packing cbtained so far uses g bins, and that the space
still available in these bins is'#,...,8,, The idea for
the following algorithm is to fill these bins, in order,
to at least 1 — £, using the small items, also in order.
In addition, we append n — g empty bins to the list of
partially filled bins. Thus, d,41 = ... = 6, = 1. Note
that n bins certainly suffice to pacl all of the items.

Using a parallel prefix routine (Ladeer and Fischer
1980) we determine the partial sums ¥i.; su4j, for
i = 1,...,n —n'. We then define another auxiliary
graph, whose vertices are labelled by the pairs in
{1,...,n} x{1,...,n —n'}. Consider a vertex labelled
{h.j). Assuming that s.; is the first of the small
items to be placed into bin & by the (sequential) filling
procedure alluded to above, we compute how many of the
small items, starting at 5,45, are needed to fill bin & to at
least 1 — e, Using binary search on the prefix sums, this
can be done in O(logn) time with n/logn processors.
We thus obtain the index n'+ j* of the first item that will
go into bin k<1, or we find that all itemns fit into the first
h bins. In the first case, we create, in the anxiliary graph,
an arc from vertex (k, j) to vertex (k+1,5"). All such arcs
can be computed in parallel, using n®/logn processors.

545

Since every vertex in the auxiliary graph has outdegree
at most one, we can then use tree traversal lechniques
(requiring O(n?) processors and O(logn) time) to find

the maximal path starting at vertex {1,1). The second

component of the label of each vertex on thie path gives
the start of the segment of small items that are packed
into the bin given by the first component.

Theorem 3 Let ¢ > O be fized. There is a parallel
algorithm 4 that solves any binpneking problem B such
that

B{d) < (1+€)B* for B* = co.

Lei n be the input size of B, Then the algorithm runs in
time O(log®n) on an EREW-PRAM with a number of
processors bounded by o polynomial in n.

Prooft Consider the algorithm .A given above, We
still need to establish the quality of the approximation
it computes. For this analysis, we distinguish two cases,

First, we assume that the routine filling in the small
items ends up filling to at least 1 — ¢ all but possibly one
partially filled bin. If B denotes the given instance of

-the binpacking problem, we have

(B(A)-1)(1—¢) < } 5 < B,
im]
and henea 1
BlA) = :E + 1.

For the second case, the filling rontine packs all small
items into the first ¢ bins. Let B denote the problem
instance given by the sets U, Uy, ..., Un. Further, let Iy
comsist of |5;| copies of the minimum size element in 5,
again for i = 0,1,...,m, and let B denote the problem
instance given by the D;. When run on B, algorithm 4
will also produce an optimal solution, and we have

B = B(A) < B" £ B(A) = B" = B(4).
Now, since the items in U}, for i = 0,...,m — 1, can
replace the items of Dy, in this packing for B, the
optimal packing for B uses as most k = || bins more
than B(A). Also, since all items in B have size at least
€, we must have B* > en'. By the definition of %, we
thus conclude

B(A) = B(A) £ BlA)+n'e* < B(A)+eB* < (1+€)B".

Thus, if we replace the required accuracy e by 3_t11-_ﬁ
in the algorthm, we get for both cases

B{A) =(1+4¢€)}B" for B" — co.

0

In (Karmarkar and Karp 1982), sequential approxi-
mnation schemes are presented whose complexily and for
performance is considerably improved. These algorithms

546

rely on a subroutine solving a linear programming {LP)
problem. LP in general is P-complete (Dobkin et
al. 1879), and it 38 presently not clear whether sufficient
restrictions apply in the above case so that an NC algo-
rithm can be found.

In section 4, we shall briefly discuss a different kind
of approximation scheme for binpacking problems, one
that approximates the first fif decrecsing heuristic for
binpacking.

2.3 Minimizing the Makespan

A third class of problems with parallel approxima-
tion algorithms based on diseretization is given by the
makespan problem: An instanece of thizs problem con-
sists of n tasks with positive (integer) execution times
t1,. .., 15, and some number m of identical parallel pro-
cessors. Each task is fo be assigned to one of the pro-
cessors. Lhe execution time for a processor iz the sum
of the execution times of the tasks assigned to it. The
goal is to minimize the makespan, the maximum of the
execution times of all the processors. Again, this prob-
lemn is a well-known A"P-complete problem (Garey and
Johnson 1974). Parallel approximation algorithms for
the problem have been given in (Mayr 1985) and (for
the case m = 2) {Gopalakrishnan et al. 1986), and se-
quential versicns in (Hochbaum and Shmoys 1985).

Let € = 0 be given. We wish to find & number M

such that
M <M= (1+eM,

where M* is the optimal makespan. The optimal
makespan problem can be related to the binpacking
problem in the following way: We want to find the
minimal M such that the tasks, considered as items, can
be packed into m bins of size M (or unit size bins, after
scaling the execution times by M). We note thal the
optimal scaling factor Moy, clearly satisfies

T < Muin < [ﬁ] T with T = max{t; i=1,...,n)}.

Starting with these bounds, we perform a binary search,
halving in each iteration the possible interval for My,
For each test value s (the midpoint of the current
interval}, we perform the following steps:

1. scale the execution times t; by ;
2. temporarily discard all items <

3. round off the size of all items to the next lower integer
multiple of ¢;

4. pack modified itemz opiimally into unit size bins;
5, undo step 3;

6. use the items smaller than ¢ to fill up the bins in such

& way that at most one item exceeds the bin capacity
nf 1.

Step 4 in the above procedure can be carried out using
a structure graph as with the binpacking problem. Also,
step 6 is quite analogous to the step in the binpacking

.algorithm filling in the small items. We therefore leave

the details to the reader.

If the above procedure suceeeds in step 4 and, in step
6, manages to pack all small items, we replace the upper
bound of the search interval by s, otherwise the lower
bound. In the first case, we know that all tasks can be
executed within lirme (14 €}s. In the second case, every
bin is filled above capacity, and thus s < M*. Let [L, U]
be the search interval after logn + log 1/¢ iterations of
the binary search. Then clearly

Q=lU—L<el and M™ e [L,U].
This implies that
M*<U<(1+M",

and we return M = 7 as our approximation to the
optimal makespan. We conclude

Theorem 4 For any fired € > 0, the oplimal makespan
problem can be solved within (L +¢€) of optimal by an NC
algorithm.

Again, the constants involved depend on ¢ and are
rafher big. They are of the same order as for the
binpacking approximation algorithm.

3 The Scaling Approach

Discretization, of course, is closely related to scaling
which s successfully used in sequential and parallel
algorithms for quite a number of problems, egq., by
Edmonds and Karp (1972), Karp et al. (1986), Gabow
and Tarjan (1987, 1988), Goldberg and Tarjan (1987),
and Orlin {1988).

Here, we consider the list scheduling problem, a P-
complete number problem (Helmbold and Mayr 1987a),
It involves scheduling independent jobs on two proces-
sors, Formally, it is given by a list of n jobs, with (inte-
ger) execution times ¢y,...,%, > 0. We are to construct
a two processor schedule such that the ith job is started
no later than the i +1st,for i = 1,...,n—1, and there is
no idle time between jobs. Note that it is straightforward
to compute a list schedule by a sequential algorithm.

Lemma 3.1 Let the erecution times in g list scheduling
problem be bounded by L(n). Then a list schedule can
be computed in porallel in O(log Lin)logn) time using
(n?) processors.

Proof: An algorithm with the required properties is
given in (Helmbold and Mayr 19872). We give a brief
sketch., For definiteness, we assume that when both

processors become idle at the same time, the next job is
assigned to the first processor. Let &, fori=1,...,n=1,
be the difference between the start times of the :th and
the ¢ + Ist task in the hst schedule, Also assurme that

all &; are < n, and therefore all & < n. We construct
an auxiliary graph, whose vertices are labelled with the
pairs in {1,...,n — 1} % {0,....,n}. Let (i,6) be such a
pair. Assuming that §; = &, we compute & = &y (in
constant time) and add an arc from (4,4) to (i 41,4") to
the auxiliary graph. As in the binpacking algorithm, the
resulting digraph is an in-forest, and we find the path
from vertex {1,0) to the root of its tree. The labels of
the wertices on this path can be used to determine, in a
completely straightforward manner, the list schedule,

If (some of) the ¢; are larger than n, we first divide
them by & suitable power of 2 and round the results
to the next lower integer, in such a way that the
resulting execulion limes are bounded by n, and use the
procedure outlined above. We then increase the number
of relevant bits, one bit per phase. This corresponds to
first doubling the execution times and then adding 1 to
some of thern, Tt turns out that, from phase to phase,
the §; also first double, and then change (up or down)
by an amount bounded by n. Therefore, there are at
most 2n possible values for the new &, and they can be
determined constructing an anxiliary graph (in-forest) in
quite the same way as described above,

The number of phases required is log L{n) =log n, the
time per phase is O{logn), and the number of processors
is n? on an EREW-PRAM.

For list scheduling, we define an approximate solution
to be a schedule that has the same firsl come, first
served property as a list schedule, but we allow idle
time between the jobs. The smaller the total idle time,
the better the approximation. Using an NC algorithm
to compute a list schedule for problems with small job
times, we can construct an NC algorithm to approxdmate
list scheduling with the idle time an arbitrarily small
fraction of the schedule length.

Theorem 5 For all ¢ > 0, list scheduling can be
approzimated by an NC algorithm such that the total idle
time is bounded by e times the length of the schedule.

Proof: Let T = ITL & HT < 2 we solve
the problem exactly, as described in the above Lemma.
Otherwise, we first round each execution time up to the
next integral multiple of 2™ where m is determined by

am < ﬂ < gmtl
n

The modified execution times have at most O(log(nfe))
significant bits, and the modified problem can again be
solved exactly, using the above algorithm. In the list
schedule obtained for the modified problem, we then
restore the original execution times, but keep the starf

547

times for‘the jobs. The idle time caused by restoring the
execution tirme of the ith job is less than 2™, and thus
the total idle time is at most

2™n < e+ 1.

Since the length of the list schedule is at least T the claim
of the Theorem follows. [

It should be noted that the list scheduling problem
as desribed here 15 quite interesting because of this
extremely close relationship between the size of the
numbers in an instance, and ita parallel complexity.

4 Combinatorial Approaches

In this section, we study approvimation algerithms based
on mare combinatorial approaches. We alzo encounter
the phenomenon that in some cases the (historically or,
under certain assumptions, theoretically) best achievable
accuracy is atrictly bounded away from 1.

4.1 Greedy Scheduling

A unil ezeculion time task system (UET task system)
ig given by (i) a set T of n tasks &y,...,1,, each
requiring unit time for execution, (ii) a partial order =
over T' reflecting the precedence constraints among the
tasks, and (iii}) some number m of (identical) parallel
processors. A schedule for a UET task system (T, <)
on m processors is a mapping of the tasks in T fo unit
length time intervals (with integral houndaries) such
that, if £ < ¢' then #'s time interval precedes that of
¢, and at most ra tasks are mapped to any one interval.
The length of a schedule is the number of distinet time
intervals it wses. The UET scheduling problem is to

find a schedule of minimal length. The problem is A7P-
complete (Ullman 1975), as are some restricted versions
(Mayr 1981). If m = 2, optimal schedules can be found
in linear time {Gabow and Tarjan 1983), and in NC
{Helmbold and Mayr 1987h}.

A schedule is greedy if, whenever a timestep has
less than m tasks mapped to it, that timestep contains
all tasks available for execution, ie., a greedy schedule
leaves no processor unnecessarily idle. It is known that
the length of any greedy schedule is at most 2 — L times
optimal, and that this bound is tight (Graham 1969). We
show how to compute a greedy schedule fast in parallel.

We first determine for every task ¢ its level, defined
as the length of a longest path from a source (in-degree
zero vertex) to ¢ in the digraph P given by (T, <)
We then omit from P all arcs not belween adjacent
levels. Mext, the tasks within every level are numbered
arbitratily. Ewvery (directed) path in P starting at
the first level (i.e., with a source) is thus uniquely
associated with a sequence of numbers. Any two
such sequences can be compared lexicographically. We

548

compute, for every vertex { in P, the lexicographically
maximal sequence over all paths starting at a source
and ending at £, This computation is performed using
a transitive closure routine based on iterated matrix
multiplication, with scalar multiplication replaced by
path composition and scalar addition replaced by taking
the lexicographic maximum. Let p(f) denote the
lexicographically maximal sequence computed for 1. We
sort the tasks, first by ascending level, and then within
every level in order of increasing p[} The resulting
list, L, determines a list schedule for (T',<): at every
step, as many executable tasks as possible (up to m) are
scheduled, in the order given by L.

A simple induction shows that every timestep in the
list schedule determined by [contains tasks from at
most two distinet levels. We claim that the list schedule
actually schedules the tasks in list order:

Lemma 4.1 Let t and ¢ be two tasks, 1' ccenrring later
in L than {. Assume that in some timestep of the list
schedule for L, taski is not yet ezecufalle. Then neither
ist',
Proof: Assume to the contrary, and let £ be the
first task (in list order) that cannot be executed while
some successer 1 of ¢ in L is executable. Also, let
t be the immediate predecessor of ¢ with the largest
associated sequence that has not yet been executed, and
let ' be the immediate predecessor of t' in P, also with
the largest associated sequence. Then p{i')} must be
lexicographically at least as large as p(f), and hence # is
scheduled no later than ¢'. Henee, t must be executable;
comtradiction. [J

Given the list L, the corresponding list schedule can
be computed fast in parallel: Assuming we know the
position in [of the Arst task scheduled in timestep i,
it is straightforward to find the first fask scheduled in
step # + 1. Using a path finding technique as in earlier
algorithms, we obtain

Theorem 6 There is an AC-alporithm to find a gresdy
schedule for UET task systems. The length of the greedy
schedule iz al most 2 = # times opiimal, where m is the

number of parallel processors for the schedule.

If we define the level of & task to be the maximal
distance to a sink (a task with no successor) instead
of to a source, and schedule executable tasks on higher
levels before those on lower levels, we obtain a so-called
highest level first (HLF) schedule {alzo a list schedule).
To compule an HLF schedule, howewver, iz P-complete,
even when the precedence constraints are restricted to
unions of an in-tree and an out-tree (Dolev et al. 1985).

4.2 Large Degree Induced Subgraphs

We shall discuss a P-complete problem for which the
best achievable approximation is more than a factor of 2

unless P equals A'C. For a more detailed presentation,
the reader is referred to (Anderson and Mayr 1984}
Given a graph & = (V, B} and an integer d > 0 the
Righ degree subgraph problem (HDS) is to find HDS,(&),
the maximum induced subgraph of & whose nodes all
have degree at least d. There is a simple linear time
sequential algorithm for this problem. It discards nodes
of degres less than d until all remaining nodes have
degree at least d, or the graph is empty. The correctness
of this algorithm is completely straightforward.)

We shall make use below of the following

Lemma 4.2 [f @ graph has n vertices and m edges then
il hos an induced subgraph with mintmum degree]—fﬂ

Proof: For a proof, see (Erdde 1063). [

We reformulate the high degree subgraph problem as
a decision problem HDS by asking if a specific nede v is
in HOS5;(@F). In (Anderson and Mayr 1984) it is shown
that

Theorem T For d = 3, HDS is P-complete. [t is also
P-complete to decide whether HDS.(G) is nonempty, for
d in the same range. []

On the other hand, it is quite easy to see that
HD53(F) can be computed by an AC algorithm. The
algorithm has logn phases, where each phase remowes
all chains. A chain is a path that starts with a vertex of
degree 1 and contains no vertex of degree greater than 2.
The chains can easily be identified by path doubling
techniques. When the chains are deleted, more nodes
of degree 1 might be created, however, each new node of
degree 1 required the removal of at least two chains, so
the number of chains decreases by at least half at each
phase, We thus have the following

Theorem 8 [t is possible fo compute HDS5:(G) by an
NC algorithm. [J

Consider the following optimization problem: Given
& graph G, find the largest d such that HOS,{3) is
nonempty. We denote this value by D* = D*(F). An
approximate solution for the problem is an integer D
such that, for some positive constant ¢ > 1,

D*(G) < D < eD*(G).
We call such a D a c-approwimation for D*.

Theorem 8 Lef ¢ be o consiant greater than 2. Then
a c-approzimation for D*(G) can be found by an NC
algorithm.

Proof: Let e=1—4 > 0, and consider the following
pruning procedure (with parameter d):

1. let n' be the number of vertices currently in G}
2, if at most en’ vertices have degree < d then stop;
3. remove all vertices from & that have degree < d

4. goto 1.

This pruning procedure removes vertices from & until
(& is empty or at most a proportion of € of the remaining
vertices have degree < d. In the first case, G clearly
has no induced subgraph with degree at least 4. In
the second case, the remaining graph containg at least
1=%.dn' edges, and hence, by the Lemma, D*(G) = 32*-d.
Hunning the pruning procedure for every d € [1, n- li let
D be the largest such parameter for which the procedure
returns a nonempty graph, Then D" < D <eD* 0

The next theorem shows that the previous result is
essentially the best possible assuming that P # NC.
We show that a circuit can be simulated by a graph &
with D*(7) = 2d if the oniput of the circuit is 1 and
D*(F) = d+ 1 the output is 0.

Theorem 10 Fet ¢ be @ constant, 1 < ¢ < 2. Unless
P = NC, there is no NC alporithm to compuie e-
approrimations for the high degree subgraph problem.

Proof; It is not hard to see that the monotone circuit
value problem with OR gates having just one output is
still P-complete (just use an AND gate with one input
tied to 1 to achieve fanout). We shall give a logspace
reduction that, given such a circuit and an integer 0 > 1,
comstructs a graph & with D*(@) = 2D if the output of
the cireuit is 1, and with D*(G) < I + 1 otherwise, In
the reduction, first every gate of the circuit is replaced
by a corresponding gadget, as shown in Figures 1 and 2.

In these figures, the circles represent sets of I vertices
each, the bold edges denote the edges of a complete
bipartite graph on the two vertex sets they connect (i.e.,
a Kpp), and the thin edges in Figure 2 denote a set
of D edges giving some arbitrary bijection between the
two sefs of D vertices each. Figure 2 shows the special
case of an AND gate with two outputs. Different fanout
can easily be achieved repeating the pattern given in the
figure, with D circles connected by bold edges to a line
and each of them with a thin line to the corresponding

“sutput” circle. When a wire connects an output of one
gate with an input of ancther gate, the corresponding
“sutput® circle of the first gate is identified with the
proper “input” circle of the second. To complete the
reduction, we add to the circuit an AND gate one of
whose inputs is the original output of the circuit, while
the other is tied to 1. Each 1-input of the circuit becomes
an output of this AND gate. Of course, this additional
gate then is also replaced by the corresponding gadget.

Assume first that the output of the circuit, with
the: given assignment of input values, is 1. Then the
subgraph induced by (the wertices in) the circles in

549

iy i3

Figure 1: OR gate

Figure 2: AND gate

gadgets lor gafes with value I (omitting, in the case of
OR gates, inputs with valee 0) has degree at least 200 as
one can easily verify. It is also quite easy to see that, in
this case, D* < 20 + 1, and thus D™ = 20,

Consider now the case where the output of the circuit
is 0. We remove, from the graph constructed in the

reduction, vertices of degree at most [+ 2. Starting at
O-inputs to the circuit, it is clear that the gadget for the
output gate, the added gadget feeding the outputs back
to the I-inputs, and finally the vertices in all gadpets get
removed. Henee, az claimed, D* < D4+ 1. [0

For a detailed discussion of another type of parallel
approximations for the high degree subgraph problem
[yielding algorithms not necessarily in NC), we refer the
reader t6 (Anderson and Mayr 1984),

4.3 FFD Binpacking

The firsi-fit-decreasing (FFD) method is a simple heuris-
tic for the A"P-complete (one-dimensional) binpacking
problem with a guaranteed performance bound of 4
times optimal. Unfortunately, computing an FFD pack-
ing, given the size of the items, is P-complete in the
strong sense (i.e., even if numerical values are given in
unary notation) as shown in (Anderson et al. 1938). In
this paper, it is also shown that an FFD packing can in
fact be computed by an NC algorithm if all item sizes
are bounded from below by some ¢ >). This routine can
then be used to “approxdmate” an FFD packing for un-
restricted problem instances: First, items of size at least

350

% are packed according o the FFD heuristic, using the
NC routine. The remaining, small items are then used
to fill up these and, if necessary, additional bins. This
fill-in routine is similar to the ones discussed earlier, and
is easily seen to be in NC. For a detailed presentation
of the algorithms and results, the reader is referred to
(Anderson et al. 1988),

5 Conclusion

We have presented (full) N approximation schemes for
AP-hard optimization problems like the 0-1 knapsack
problem, binpacking, and the makespan minimization
problem. We have also shown a full NC approximation
scheme for the P-complete list scheduling preblem.
Finally, we have discussed some problems for which the
best achievable aceuracy for approximation schemes is,
as far as we know, strictly bounded away from 0.

Of course, there are other parallel approximation al-
gorithms. For example, we did not touch on approxi-
mate string matching, nor on the use of the random AC
routine in (Karp et al. 1985) for maximum cardinality
matching in graphs, which can be employed to build ap-
proximation algorithms for maximum weight matchings
and maximum flow problems, based on scaling.

We have shown that efficient parallel approximalion
schemes exist for some A P-complete problems as well
as for suitable P-complete problems. Finding an FFD
packing and Linear Programeming (LP) are strongly P-
complete. Nonetheless, FFD can be approximated by
AT algorithms in a certain sense, while no such approach
is kenown for LP. It is also an interesting open problem to
find other strongly P-complete problems, and to study
whether, and in which sense, exact solutions for them
can be approximated efficiently in parallel.

Another challenging area for research is to develop
approximation methods for problems of practical interest
(as some of those mentioned above) that can be imple-
mented efficiently on more realistic parallel architectures,
like the Hypercube. Many of the results shown here are
asymptotic bounds and sometimes hide large constants
{or, even worse, polynomial degrees),

REFERENCES

[Anderson and Mayr 1984] R. ANDERSON, E. MAYR:
A P-complete problem aend approzimations fo it
STAN-CS5-84-1014, Depariment of Compuber Sci-
ence, Stanford University (1984).

[Andersen et al. 1988] R. ANDERSON, E. Mavm,
M. WARMUTH: Parallel approzimation algorithms
Jor bin packing. STAN-CS-88-1200, Department
of Computer Science, Stanford University {March
1988},

[Dobkin et al. 1975] D. DoBkiv, R. LiPToN, 5. REss:

Linear programming iz log-space hard for P. fnfor
- mation Processing Letters, 8(2):86-97, 1979

[Dolev et al. 1985] D). DoLev, E. UPraL, M. WaR-
MUTH: Scheduling tress in parallel. In P. Bertolazsi,
F. Luccio, editors, VLS Algorithms and Architec-
tures. Proceedings of the International Workshop on

" Parallel Computation and VLSI, pages 1-30, 1985.

[Edmonds and Karp 1972] J. Epmonns, R.M, Kare:
Theoretical improvements in algorithmic efficiency
for network flow problems, JACM, 19:248-264,
1972,

[Erdés 1963] ErRpGs, P.: On the structure of linear
graphs. Jfsrael Journal of Mathematics, 1:156-160,
1963, .

[Fernandez de la Vega and Lueker 1981) W. FERNANDEE
DE LA VEGA, G.5. LUEKER: Bin packing can be
aolved within 1 4 ¢ in linear time. Combinatorica,
1(4):349-355, 1981,

[Fortune and Wyllie 1978] 5. ForTunE, J. WYLLIE:
Parallelism in random access machines, In Procesd-
ings of the 10th Ann. ACM Symposium on Theory of
Computing (San Diege, CA), pages 114-118, 1978

[Gabow and Tarjan 1983] H.N. GaBow, R.E. Tan-
JAN: A linear-time algorithm for a special case
of disjoint set union. In Proceedings of the 15th
Ann. ACM Symposium on Theory of Computing
{Beston, Mass.), pages 246-251, 1983.

[Gabow and Tarjan 1987] H.N. Gasow, R.E. Tag-
JAN: Faster scaling algorithms for nelwork prob-
lems. C8-TR-111-87, Department of Computer Sci-
ence, Princeton University (August 1987).

[Gabow and Tarjan 1988] H.N. GABow, R.E. Tamr-
1aN: Almost-optimum speed-ups of algorithms for
bipartite matching and related problems. In Proceed-
ings of the 20th Ann. ACM Symposium on Theory of
Computing (Chicage, IL], pages 514-527, 1988.

|Garey and Johnsen 1979] M.R. GAREY, D.S. JOHN-
soN: Computers and intractability: A guide to
the theory of NP-completeness. San Franeiseo:
W.H. Freeman (1979). '

[Goldberg and Tarjan 1987) A. GOLDBERG, R.E. TaRr-
JaK: Selving minimum-cost flow problems by suec-
cessive approximations. In Proceedings of the 10th
Ann. ACM Symposium on Theory of Computing
{New York City), pages T-18, 1987,

[Gopalakrishnan et al. 1986] P.S. GOPALAKRISHNAN,
LV. RaMaKRISHNAN, L.N. KaNaL: Fasl approz-
imation schemes for a class of combinatorial opti-
mization problems on a porallel mechine. C5-TR-
1725, Department of Computer Science, University
of Maryland {October 1988).

[Graham 1969] GRAHAM, R.L.: Bounds on multipro-
cessing timing anomalies. SIAM J. Appl. Math.,
17(2):416-429, 1969.

[Helmbold and Mayr 1987a] D, HELMEOLD, E. Mavh:
Fast scheduling algorithms on parallel computers.
In F.P. Preparata, editor, Advances in Compui-
ing Hesearch; Parallel and Distributed Compuling,
pages J9-68, JAT Press, 1957,

{Helmbold and Mayr 1987s] D. HELMBOLD, E. Mayh:
Two processor scheduling is in NC. SIAM J. on
Comput., 16:747-759, 1987,

[Hochbaum and Shmoys 1985] D.S. HocuBaum, D.B.
SHMoYs: Using dual approximation algorithms
for scheduling problems: Theoretical and practical
results, In Proceedings of the 26th Ann, [EEE
Symposium on Foundations of Computer Science
{Portland, OR), pages T9-89, 1985,

{lbarra and Kim 1975] O.H. Isarka, C.E. KIM: Fast
approximation algorithms for the knapsadk and sum
of subset problems. J ACM, 22(4):463-468, 1975,

[Karmarker and Karp 1982] N. KarMar®ar, R.M.
Karr: An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proceed-
ings of the 29rd Ann. [EEE Symposium on Founda-
tions of Computer Seience (Chicago, IL), pages 312-
320, 1982.

[Karp et al. 1985] R.M. Kanrr, E. UPFAL, A, Wic-
DERSON: Constructing a perfect matching iz in
random NC. In Proceedings of the 17th Ann. ACM
Symposium on Theory of Computing [Providenee,
RI), pages 22-32, 1985,

[Ladoer and Fischer 1980] R.E. Lapner, M.J. Fis-
CHER: Parallel prefix computation. JACM, 27(4):
831-838, 1980.

[Lawler 1979] LawLERr, E.: Fast approximation algo-
rithms for knapsack problems. Mathemalics of Op-
erations Research, 4:339-356, 1979,

[Mayzr 1981] E. Mayr: Well structured parallel programs
are not easier to schedule. STAN-CS-81-880, De-
partment of Computer Science, Stanford University
(September 1981).

[Mayr 1985] E. MayR: Efficient parallél scheduling
algorithms. 19k Ann. dsilomar Conf. on Circuits,
Sysiems and Compuiers, November 7, 1985,

[Orlin 1988] J. ORrLIN: A faster stromgly polynomial
minimum cost flow algorithm, In Proceedings of the
20th Ann. ACM Symposivm on Theory of Computing
{Chicago, IL), pages 377-387, 1988,

[Peters and Rudolph 1984] J. PETERS, L. RUDOLPH:
Parallel approximation schemes for subset sum and
knapsack problems. In Proceedings of the 28nd
Ann, Allerton Conference on Communication, Con-
trol and Computing, pages 671-680, 19584,

[Phister 1085] G.F. PPISTER: The architecture of the
IEM research parallel processor prototype (RFP3).
Research Report RC 11210, IBM Yorktown Heights
{June 1985).

[Pippenger 1979] M. PiPPENGER: On simultaneous re-
source bounds, In Proceedings of the 20h Ann. IEEE

551

Symposium on Foundations of Computer Science
{Sen Juan, PR), pages 307-311, 1979,

[Preparata and Vuillemin 187%9] F.P. PREPARATA, J.
VUILLEMIN: The cube-connected-cycles: A versatile
network for parallel computation. In Proceedings of
the 20th Ann. IEEE Symposivm on Foundations of
Compuler Science (San Juan, PR), pages 140-147,
1979,

[Schwartz 1980] J. ScHWARTZ: Ultracomputers. A8
Trans. on Programming, Lenguages and Sysiems,
2(4):484-521, 1980. :

[Seitz 1985] C. SE1TZ: The Cosmic Cube. Comm.ACM,
28(1):22-13, 1985.

[Ullman 1975] J.D. ULLMAN: A"P-complete scheduling
problems. JCSS, 10(3):384-393, 1975.

[Vishkin 1987] U. VISHEKIN: An optimal parallel algo-
rithm for selection. In F.P. Preparata, editor, Ad-
vances in Computing Research; Parallel and Dis-
tributed Computing, pages T9-86, JAI Press, 1987,

