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ABSTRACT

The class NC consists of problems solvable by par-
allel algorithms running in time O((logn)*) using poly-
nomial number of processors for some £ > 0. It s
strongly believed that PRNC, If P£NC is assumed,
the P-completeness of a problem implies that no effi-
cient parallel algorithm exists for the problem. This
paper presents very general P-completeness theorems
which yield a new series of P-complete problems includ-
ing the lexicographically first maximal independent set
problem (Cook 1983). We also give & method of finding
parallelism in some kind of sequential algorithms.

1 INTRODUCTION

An important role of the parallel complexity theory
is to gain insights into inhereni parallelism in various
types of computing problems. 16 is intended to provide
knowledges for answering the following basic questions:

1. What kind of problems allow fast efficient parallel
algorithms?

2. What kind of problems are inherently sequential?

MNamely, it aims al understanding of the range of prob-
lems which allow fast efficient parallel algorithms. Si-
multanecusly, it tries to capture theoretical limits of
parallel computations.

It has been observed that there are some problems I

which can be solved by easy polynomial time sequential
algorithms but do not sesm to allow any fast parallel al-

gorithms. Hecent researches show that these problems

are P-complete. On the other hand, the class NC, iden-
tified by Pippenger (1879}, is understood as the class of
problems which allow fast efficient parallel algorithms.

The class NC is a subclass of P but, unfortunately,
nobody has succeeded in proving P#£NC although it
is strongly believed that P#NC like NP£P question.
If PANC iz approved, a proofl that a problem is P-
complete will be a social proof of nonparallelizability.

This paper gives very general P-complete theorema
concerning graph algorithms. These theorems vield a
new series of P-complete problems arising from graph
optimization problems including the lexicographically
first maximal independent set problem { Cock 1983). Po-
tentially, infinitely many nootrivial P-complele prob-
lems can be derived.

This paper is also concerned with a method of find-
ing parallelism in preblems. Parallelism can be con-
sidered in two ways. One is parallelism in existing se-
quential algerithms (Kuck 1977). The other is inherent
parallelism in problems themselves that requires more
mathematical analysis. A method we present in this pa-
per locales between these two parallelisms. This method
is very helpful to shew that some problems are in NC.
We exemplify the method through some applications.

2 EFFICIENT PARALLEL ALGORITHMS
AND NC

NC is a mnemonics for Nick’s Class {Nick Pippenger
1978) named by 5.A. Cook in recognition of his contribu-
tion. The purpose of this section is to convince that NC
is a reasonable class which provides a yardstick measur-
ing parallel complexity of problems.

2.1 Efficient Parallel Algorithms

Many formal parallel computation models have been
considered (Cook 1981). A broadly accepted model s
the parallel RAM (PRAM) model in which a oumber
of processors work together synchronously and commu-



nicate with a common random access memory. The
PRAM model is further classified according to read and
wrile access abilities as CREW PRAM (Concurrent Read
Exclusive Write), EREW PRAM and CRCW PRAM.

Problems for which we consider parallel complexity
are formulated as follows:

Definition A problem (or seavch problem) 5 with a size
parameter h(n) is a family {5.}.1 of relations 5, C
{0,1}" % {0,1}™ forn> 1. Forn> 1,z € {0,1}" is
called an instance and an object y € {0, 11"} satisfying
Sz, w), if any, is called a solution for x.

Example 2.1 A marimal independent set (MIS) of an
undirested graph is a maximal set U7 of vertices such that
no two vertices in [f are adjacent. The problem of find-
ing a MIS is formulated in the following way: A graph
with n vertices is represented by an n % n-adjacency ma-
trix and a subset of vertices is represented by an n-bit
vector. Then MIS={MIS.} is defined only for integers
of the form n® as
MIS,z € {0,1}" x {0,1}",

where for (z,y) eMISs, = is & symmetric matrix repre-
genling an undirected graph with n vertices and y a bit

vector representing a MIS in the graph,

Definition A parallel algorithm on a PRAM solving
a problem is efficient if, given an input of size n, it runs

(1) in time O{{logn)*) for some constant k = 0,
(2) with a polynomial number of processors.

This definition is based on the observation that the time
O((log n)*) is very fast and a polynomial number of pro-
cessors is feasible,

The PRAM model may not seem very realistic in the
practical sense. A more realistic model Is, for example,
a network model. But there are some works showing
that PRAM is a good model. For example, Alt et al.
{1987} showed that the shared memory of any EREW
PRAM with n proceszors and m cells of shared mem-
ory can be emulated by an n-proceszor module parailel
computer with a slow down of O (log ). Ranade (1987)
proved that one step of an n-processor CRCW PRAM
can be emulated on an n-processor FFT network in time
O(logn) with high probability, using an FIFO queue of
size O(1) at each node. Hence the gap is only O(logn)
while keeping the number of processors.
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2.2 Uniform Cirenits and Parallel RAM

The class NC is defined by the uniform circuit model
that is suited for classifying problems precisely.

Definition A circuit o with n inputs and m outputs is
a finite labelled directed acyclic graph satisfying the fol-
lowings: There are exactly n nodes of indegree 0 called
inpuis which are labelled with =z, ..., ., respectively.
The nodes of indegree 2 (resp. indegree 1) are labelled
with either v (or) or A (and) (resp. - (not)). Exactly
m nodes labelled with gy, ..., ¥, are specified as outputs,
We denote by size(a) (resp. depthia)) the number of
nodes in o (resp. the length of the longest path from
gome Input to some oulput).

Definition We say that a circuit family {aa}es; with
output size h{n) computes a function f = {fu}nz1, if
each a, computes f,., where o, is a circuit with n inputs
and h(n) outputs and f, : {0,1}* — {0,1}*". Fora
search problem S = {8} 1, wesay that {an }nsy solves
S if the function {fu}ny1 computed by {ag}us1 satisfies
Splz, falz)) foralln = 1.

Several kinds of uniformities of circuits have been
proposed (Ruzzo 1981, Cook 1981, 1983, 1985). One of

PESPACE

Fig. 2.1 Overview of Complexity Classes

them defines that a cireuit family {ay }uzy is “uniform®
(called log uniform) if, given n in unary, the description
of the nth circuit ay, is log space computable!. But NC
defined below does not change by the choice of unifor-
mity {Ruzze 1981). The location of NIC is shown in
Fig. 2.1 together with its neighbors.

1A functien f is log space computable if it ia computed by
& deterministic off-line Turing machine using O(logn) worktape
Space.
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Definition

(1) NC*={5 | § is colvable by a uniform circuit
family {o.}az1 such that size(o,)
is bounded by some polynomial
and simultancously depthia,) =

Of(logn}*)}.
(2) NC=UjoNC*,

From the above arpuments and the following result,
we see that NC is a reasonable class.

Theorem 2.1 (Stockmeyer and Vishkin 1984)
NC* CCRCW-PRAM(r0), O{(log n)¥)) CNCk+1,

where CRCW-PRAM(n®™, O((logn)?M)) is the class
of problems solvable on a CRCW PRAM with polyno-
mial number of processors in time O((logn)*) for some
constant & = 0.,

In the argunments above, we have ignored constants
appearing in O-notation and the degrees of polynomi-
als. In parallel computations, constants affect very seri-
ously and weshould be more careful about these things.
For example, the Batcher's sorting network is of depth
1/2logn(l + logn). On the other hand, the AKS sort-
ing network improved by Cole and l‘.fl'DlinJa.ing (19286) is
still of depth about 200 - logn. [t should be noted that
200 > log n even if n is the total number of atoms in the
solar system,

However, the class NC and the hierarchy within it
grasp the parallel complexity of problems and deepen
the understanding of the problems. As was experienced
for sequential computations, the notion of complexity
directs pecple to design faster and more efficient algo-
rithma,

3 CONVINCING THE HARDNESS OF
PARALLELIZATION

No mathematical proof has been given showing that
P+ NC. Even a proof separating NP from NC? has not
been known. The best result known is that NC? £NC!
(Furst et al. 1981). There is, however, a strong belief
that P£NC.

Assuming that P£NC, we can prove that ne P-
complete problem allows any parallel algorithm running
in time O{(log n)®") with n™) processors. Thus the
P-completeness plays a very important role to convince

the hardness of parallelization.

The knowledge that a problem is P-complete pro-
vides algorithm designers valuable information about
the approaches they should choose. It would relieve
wasting efforts for devising drastically fast parallel al-
gorithms and, instead, direct toward ways which lead to
useful algorithms. Proofs of P-completeness may also
tell us which parts of problems are hard to parallelize.

The P-completeness due to Cook (1985) adopted
the NC'-reducibility that uses NC'-computable O(log n)
depth uniform cireuits with oracle gates. However, we
use an extended version of the many-one log space re-
ducibility (Hoperoft and Ullman 1979) instead of the
NC-reducibility because of the following reasons. It
is easier to find required log space computable functions
which are also computable in NC?, Above all, all known
P-completeness of natural problems can alss be shown
via log space reductions, '

Definition Let § and T be problems of size param-
eters g(n) and h(n), respectively. We say that § is
log space reducible to T, denoted § <™ T if there
are log space computable functions f = {fu}nz1 and
9 = {gn}uzr with fo : {0,1}" — {0,1}"" and g, :
{0,1}" — {0,1}7%) such that for every = € {0,1}" the
following statement holds:

¥z € {0, 1}MAD) [S, (2, giorap(2)) <= Typmy(ful2), 2)]

If § <% T and an algorithm solving T is given,
then 5§ can be solved as follows: For an instance  of
S, first compute f(z), then find a solution z for f(z) by
the algorithm solving I". Finally, compute g(z), which
is guaranteed to be a solution for =.

The above definition is also a natural extension of
the many-one reducibility between sets and a modified
version of the NC'-reducibility.

Proposition 3.1

(1) The relation <"* js transitive,

(2) If § <5 T and T €NC, then § eNC.
Definition A problem § is said to be P-complete if
the following conditions are satisfied:

{1) §is in P.
(2) For each problem § in P, 5 < §,

Proposition 3.1 implies easily the following fact.



Proposition 3.2
No P-complete problem is in NC if PEINC,

After Cook (1974), some amount of P-complete prob-
lems were teported in Jones and Laaser (1977), Lad-
ner (1977), Goldschlager (1979). Then some important
problems have been shown P-complete; the linear pro-
gramming (Dobkin et al. 1979), the maximum flow
problem (Goldschlager et al. 1982), and the unifiabil-
ity (Dwork et al. 1984, Yasuura 1984). It should be
emphasized that proving the P-completeness of a prob-
lem is just the start of work on that problem. Even if
a problem is shown P-complete, it just tells us that no
drastic speed up may be expected theoretically. How-
ever, parallelism may help speeding up constant times
or reducing the degree of polynomial of the time com-
plexity. For example, the maximum flow problem that
is P-complete allows an O(r?logn) parallel algorithm
using n processors (Shiloach and Vishkin 1982). The
best sequential algorithm runs in O(n?) time.

4 NEW SERIES OF P-COMPLETE PROB-
LEMS -

It is rumored that, at present, several thousands of
natural NP-compleie problems have been found. Com-
pared with NP-complete problems, the number of known
P-complete problems is small (Miyane et al. 1988) al-
though the first P-complete problem was found by Cook
(1974) only a few years after his paper on NP-complete
problems. One of the reasons why P-completeness did
not attract very much is that it was concerned only with
space complexity as was done in Cook (1974) and NC
was not identified until Pippenger (1979} while NP was
heating up. However, the P-completeness 35 now very
important in evaluating parallel complexity of problems.

An important contribution was made in the field of
NP-complete problems by Lewis and Yannakakis (1980),
Yannakakis (1981}, Watanabe et al. (1981), Asano and
Hirata [1982). They unified NP-completeness proofs for
graph optimization problems and established very gen-
eral NP-completeness theorems, :

In this section we prove very general P-completeness
theorems that cover many problems solvable by polyno-
mial time greedy algorithms. These are the first results
in this direction.
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4.1 Greedy Algorithms and P-Completeness

Greedy algorithms are of very sequential nature [ An-
derson and Mayr 1984). For example, a straightforward
sequential greedy algorithm finds 2 MIS called the lexi-
cographically first mozimal independent set (LFMIS) in
pelynomial time.

Valiant (1982) noted that LFMIS does not seem to
allow any efficient parallel algorithm, This was con-
firmed by the P-completeness of LFMIS due to Cook
{1883). Then problems similar to LFMIS bave been in-
vestigated to some extent (Anderson and Mayr 1984,
1987, Luby 1985, Miyano 1987, 1988a, 1988b, Reif 1985).
Reif (1985) showed the computing the lexicographically
first depth-firet search tree is P-complete, Further, the
lexicographically first maximal path problems is also
shown P-complete { Anderson and Mayr 1987).

The problem we consider is the lesieagraphically first
mazimal subgraph problem for a graph properfy v (ab-
breviated LFMSP{w)) that involves LFMIS as a special
Case,

LFMSP(x)

Instance: A graph (directed graph) G = (V| E)
with V' = {1, ....rn}.

Problem: Compute the lexicographically firat
maximal {abbreviated lfm) subset I of
V ench that the vertex-induced sub-
graph G[U] of I/ satisfies the property 7.

4.2 P-Completeness Theorems

A graph property = is said to be nontrivial on a
graph family D if infinitely many graphs in D satisfy
v and some graph in [ violates ». The property = is
said to be hereditary on induced subgraphs if, whenever
a graph (7 satisfies ¥, all subgraphs of & also satisfy 7.

Examples of nontrivial hereditary properties are in-
dependent set, planar, bipartite, outerplanar, forest, edge
graph, chordal, interval graph, mazimum degree k, com-
pamﬁﬂi!!y gr'aphJ uribfout cyﬂfes a_f f&hg‘lh k, :ramp!eie bi-
partite, transitive, symmelric, unicennected, ete.

For each such property x, LFMSP(x) can be com-
puted in polynomial time by the greedy algorithm in
Adporithm 4.1 since iz polynomial time testable.

Our main results are the following theorems.
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*

begin
Ui
forie—1ton
if QU U {i}] satisfies = then [F « T U {1}
end for
end

Algorithm 4.1 Algorithm for LFMSP(r)

Theorem 4.1 Let x be a polynomial time testable
nontrivial property on undireeted graphs which is
hereditary on induced subgraphs. Then LFMSP(r) is
P-complete.

Theorem 4.2 Let x be a polynomial time testable non-
trivial property on directed graphs which is heredifary
on induced subgraphs. Then LFMSP(=) is P-complete.

Theorem 4.5 Let 7 be a hereditary polynomial time
testable property which is nontrivial on undirected pla-
nar bipartite graphs and satisfied by all independent
edges. Then LFMSP(x) restricted to planar bipartite
graphs is P-complete,

4.3 Hedueing LFMIS

Az a basis of reduetion we use the following lemma
(Miyane 1987).
Lemma 4.4 The following problems are P-complete.
(1) LFMIS restricted fo planar graphs of degree 3.
(2) LFMIS restricted to bipartite graphs of degree 3.
(3) The lifm subgraph of maximum degree one prob-
lem restricted to planar bipartite graphs of degree 3.

Let i bea connected undirected graph. A vertex ¢
i3 called & cuipoint of H if deletion of ¢ from [/ separates
the graph into at least two connected components, A

subgraph consisting of a resulting connected component’

together with ¢ and the edges joining ¢ and the compo-
nent is called a component relalive fo ¢ A connected
graph without any cutpoint is called biconnected,

For a connected graph H, we define the a-sequence
oy of H in the following way. If H is not biconnected, let
c be any cutpoint of H and let H,, ..., Hy,) be connected
components relative to c. Then a. g = (||, ..., | Hjia),
where |H;[ represents the number of vertices in H; and
we assume |[Hy| = --- = |Hjgl Then ay is defined
by ey = min{a. g | ¢ is a cutpoint of H}, where min
is the minimum with respect to the lexicographic erder

Fig. 4.1

on sorted lists of positive integers. Let ey be any cut-
point with agy = a.,. 5. If H is biconnected, we defined
ay = (|H]) and ey be any vertex. For a graph @ with
connected components &y, ..., &, the -sequence Sz of
G is (ag,,..,006,), where ag, > -+ = ag,. It should
be noticed that any set of S-sequences has a minimum
since lists are sorted,

Notation For subsets V), V; of a linearly ordered set
V, we denote Vi < ¥ if vy < v for any vy'€ V; and any
w £ 15

Proof of Theorem 4.1  As shown in Lewis and Yan-
nakakis {1980}, if & property = is nontrivial and hered-
ilary, it follows from Ramsey's Theorem that either «
is satisfied by all independent sets of vertices or  is
satisfied by all cliques.

Since 7 is nontrivial, there exists an undirected graph
J such that 8; = min{fz | G is an undirected graph vi-
olating w}. Let Ji,...,J; be the connected components
of J that are sorted as a;, > --- > ay,. Hence the §-
sequence of J is (e, ..., a5 ). Let c be ¢z and T be the
largest connected component of J; relative to e

Case 1. x is satisfied by all independent sefs: Since
« is hereditary and satisfied by all independent sets, Iy
must contain an edge. Therefore there is a vertex d of
Iy with d # e. Let I be the graph obtained by deleting
Iy except ¢ from J; (Fig 4.1 (a)).

We reduce LFMIS to the problem. For an undi-
rected graph G = (V,E), we construct a graph G =
(V,E) as follows (Fig. 4.1 (b)): For each vertex u of G,
a copy of I is attached by identifying u with ¢, Then
each edge {u, v} in F is replaced by a copy of Iy by iden-
tifying u (resp. v) with ¢ (resp. d). Finally, independent
graphs Jg, ..., J; are added. If follows from the choice of
J that for any independent set [7 of & the induced sub-
graph of {‘:‘"— V) U U has a §-sequence smaller than 8
and for each edge {u, v} in £ the induced subgraph of
(V= V)U{u, v} violates x. Therefore we define an order



on V so that V — V < V', the order on V 15 the same
as (7 and the order on V — V is arbitrary. With this or-
der, first all vertices in ¥ — ¥, which were newly added,
are chosen. Then the vertices in the lfm independent
set of &7 are chosen according to the order on V. Thus
the Ifm independent set U of & and the Hm subset I
of V whose induced subgraph satisfies 7 are related as
U=(V-viur.

Case 2. 7 is satisfied by all cliques: This case can be
solved in the same way as Case 1 by considering com-
plement graphs.O

Proof of Theorem 4.2 We say that a directed
graph [0 = (V, A) with V' = {1,...,n} is complete anti-
symmetrie transilive (c.a.t.) (resp. an independent sef,
complete symmetric) if (1,7) € A but (j,1) & A for all
l<i<j<n(resp. A=0, A=V = V). By Ramsey's
Theorem, = is satisfied by either (i) all independent sets,
or (ii) all complete symmetric divected graphs, or (iii) all
complete antisymmetric transitive directed graphs. The
cases for (i) and (i1} can be proved in the same way as in
the case of undirected graphs (Theorem 4.1). We deal
with the case (iii). Assume that = is satisfied by all c.at,
directed graphs but not by all independent sets. Let s
be the largest number such that every graph consisting
of any c.at. directed graph and s independent vertices
Uy, ..oy Uy sabisfies = but there is a e.a.t, directed graph
' such that the graph consisting of € and wuy, ...,y
violates 7. Since some independent set violates 7, such
number s exists,

We give a reduction from LFMIS. For an instance

G = {V, E) of LFMIS, we define a directed graph D =
(Vo, Ap) as folléws. Let k be the number of vertices
in C and let ¥V = {1,..,n}. We use k copies of the
complement graph G of G. We denote the ith copy of
G by G; = (V;, E;), where V; = {vj,...,vim}. Then we
define Vo = UL, V; U {uy, ..., u,}. The edges of D are
added so that the induced subgraph of {vyj, vej, .., vas]
is the c.a.t. directed graph of & vertices. Namely,

Ap = {[%1ﬂvi]|1£ﬂ{QEk115j£“]‘
j -
U U {(uperves) | {625} € B, 1 S i< j <n)
=1
U{(tgi, i) | 1S p<gSh 1€4,7 S,
{1,7} € E}
The order on V5 is

By < vl o Wy o gy e Mgy S e
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e Wy € Vg € S U

Let [F be the lim independent set of & and [fp be
the Ifm subset of Vip whose induced subgraph satisfies =
Then by induction we shall show the following relation.

(1) Up={ur, s u} U {vs | i€ U, 1 Sp <k}

Since the induced subgraph of {v11, va1, o0 Vi } 38 the
c.a.t. directed graph of size k, it follows from the choice
of 5 and & that the vertices wy,..., s, and v, ¥a1, .00 tia
can be chosen into Up. Let qu" = Upn({u,..,u} U
{vi | 1<i<j, 1< p<k}) and UV = Un{L,...j}.
Let j be the next vertex in V' to be tested for choice into
LU, 1t suffices to note the following two facts.

(2) If 7 is not adjacent to any vertex in U0, then
all vertices vyj, ..., ¥ can be chosen cince the resulting
induced subgraph of U}’ consists of a c.at. directed
graph and & independent vertices.

(3) If § is adjacent to some vertex i in U/U~1), then
there is no edge between vy and wvy; for all p = 1,.., k.
Therefore none of w4, ..., vs; can be chosen since adding
an independent vertex v,; produces a graph consisting
of C and wuy, ..., ts, vp; that viclates m by the choice of s
and C.O

Proof of Theorem 4.3 The ides is very similar to
the proof of Theorem 4.1 except that we consider planar
bipartite graphs. Sinee # is hereditary and satisfied by
all independent edges?, Iy must also contain an edge.

Case 1. Ipis not a single edge: We give a reduction
from LFMIS restricted planar graphs {Lemma 4.4 (1)}
We can choose the vertex d so that ¢ and d are on the
same face in its planar layout and the distance between
¢ and d is even. The construction is the same as that in
Case 1 of the proof of Theorem 4.1.

Case 2. Iy is a single edge: We reduce the lfm sub-
graph of maximum degree 1 problem restricted to planar
bipartite graphs (Lemma 4.5 (3)) to the problem. We
call the complete bipartite geaph Ky, the n-siar. The
{m, n)-double star is a graph obtained by connecting the
centers of an m-star and an n-star by an edge. Since [y
is a single edge, J; is a star and therefore so are Jg, ..., J.
Assume that J; has r edges. Since 7 is satisfied by all
independent edges, we see r > 2. Note that graphs con-
sisting of any number of independent (r — 1)-stars and
Ja, .y Jy have Bsequences smaller than §y and satisfy
x. Thersfore there exist integers g,k,p such that the
following facts holds.

Zp eollection of disjoint edges is called independent edges.
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(1) Graphs consisting of any number of (r—2, g—1}-
double stars, k£ — 1 number of {r — 2, g)-double stars and
Jay oy Jy satisfy T

(2) The graph consisting of p number of (r—2, g—1)-

double stars, k& number of (r — 2, g)-double stars and -

g3y ey Jy violates w.

‘For a planar bipartite graph G = (V, E), where V is

parlitioned as V' = N U M, we construet a graph G="

(¥, E) as follows: For each vertex u in V (resp. M), an
(r— 2)-star (resp. a g-star) is attached by identifying u
with the center of the star. Then Js, ..., Jy, £—1 number
of (r—2,q)-double stars and p number of (r = 2, g = 1)-
double stars are added. Obviously the resulting graph
ig bipartite and planar. An order on V is given so that
V —V < V, the order on V is the same as & and the
order cn newly added vertices is arbitrary.

Then it can be shown that the fm subset [ of &
whose induced subgraph satisfies « is (V —V)UU/, where
L is the Um subset of V' whose induced subgraph is of
degree at most one. We omit the detail. 0

Remark  Theorem 4.1 also holds when the in-
stances are restricted to either planar graphs or bipartite
graphs. This can be shown by using Lemma 4.4 (1) and
(2).

5 FINDING PARALLELISM

This section presents an idea that finds pm‘a.ﬂalism
in problems. Although the method is not universal,
many problems can be shown to be in NC. The basic
idea is due to Rytter [1983).

5.1 Inference Systems

Definition An inference system is a pair @ = (X, B),
where X is a finite set of sentences and R is the set
of rules. A rule is of the form f,..., 8% = o, where
&, By o € X (n 2 0). In particular, if a rule is of
the form =+ o, we call the sentence o an aziom. TH(G)
is the least set of sentences containing all axioms and
closed under the rules. An element in TH(Q) is called
a theorem,

Definition A proof tree T'(y) for v+ e€TH{Q) is a £-
nite labelled tree such that the root is labelled with -y,
the leaves are all labelled with axioms, and the internal

vertices satisfy the following condition:

If & vertex with label & € X has sons labelled with
Buyeey Oy then 8y, ..., 5, = o i5 a rule in A,

We denote by a:'.ss['fl:';}} and height{T(+)) the number
of leaves in T'() and the height of T{v), respectively.
Then we define size(y) =min{size(T(v)) | T'(+) is &
proof tree for 4} and size(Q@) = max{size(y) | v €
TH(Q)}.

For each rule &, ..., 5, = a with n > 3, we replace
it h!l' (ﬁinlﬂﬂ = Tl}:— hhﬂﬂ- = ﬁ]r"-! {’-"n—hﬁn = "-"] h-'l‘r
introducing new sentences i, .., Yu-2. By this replace-
ment, we assume hereafter that the left side of each rule
of @ = (X, R) has at most two sentences. It should be
noticed that this change increases the number of rules
only linearly.

5.2 Balancing Technique

For an inference system ¢ = (X, R), we define the
following inference system @ = (X, &) called the bal-
anced inference system, where ¥ = X U (X x X)U{X x
(X % X)). R consists of the following rules of {1)-(4).

(1) For each rule in R, the following rules are in R

Raule in R Rule in &
=T =T
Y=z = (i, %)
ERTE = (i, [z, x))
5=z = (z,(y, z))

{2) v, {y,z) = =.
(3) z,(2 (v, 7)) = (v, 2).
{41 {3.3}],{5!', :r:] = (s, w}

_ Proposition 5.1 TH(Q)=TH(Q)n X.

Proposition 5.2 For each theorem 4 €TH(Q), let
T'{v) be a proof iree for v in Q. Then there is a proof
tree T'(+) for 4 in Q) satisfying

height{T'(y)) < 7 - log(size(T(7))).

Proposition 5.2 is proved by the following separator
theorem for frees.

Lemma 5.3 Let T be a k-ary free with k > 2. Then
there is a vertex v of T such that

size[T') <

size(T), size(T") <

k k.
i o lstze[T]l,
where T" is the subtree of T rooted at v and TV is the
tree oblained by pruning T from T



begin
for k=1 to 7-log(size(Q))
pardo for each §,....,0, = a € J2)
if {B,,.... B} CTH(Q)
then TH(Q) «TH(Q) U {a}
end pardo
end for
end

Algorithm 5.1

Propositions 5.1, 5.2 guaraniee that Algorithm 5.1
on a CRCW PRAM computes TH(@) with polyno-
mial number of processors although the polynomial is
of rather large degree. Possibly, size{Q) is exponential
with respect to | X|. However, if size(Q) is polynomially
bounded, it runs in O{logn) time. This cheervation is
also found in Ullman and van Gelder {1986),

Definition We say that a family {Q; = (X;, R:)} of
inference systems has polynomial size proof trees if there
is a polynomial p(n) such that every theorem ¥ of Q; has
& proafl tres 'T',l:-ﬂ for v in {J; with aizel:TI:-r]} < p{lx.“l

For @ = (X, ), we define a directed g:rap_ll Dg =
(X, A) by setting A = {(z,y) | (z,p) € TH(Q)}. We
say that ¢ has the unigue path property if Dy is uni-
connected, that is, there iz at most one directed path
between any pair of distinet verifees.

Theorem 5.4 (Rytter 1085) Let {Q; = (Xi, R)} be
& family of inference systems with polynomial size proof
trees. Let n = | X3

(1) TH(Q;) can be computed on a CRCW PRAM
with pelynemial number of processors in O(logn) time.

(2) If the unique path property is satisfled, then
TH(Q;) cap be computed on a CREW PRAM with
polynomial number of processors in Ologn) time.

5.2 Applications

An interesting feature of Theorems 5.4 is that it
gives a method of transforming sequential algorithms to
paralle]l algorithms., We show some applications of the
theorem.

Example 5.1 The fm independent set problem is
known P-complete but the problem can be parallelized
by Theorem 5.4 (2) if the instances are restricted to
forests. For a forest & = (V, B) with V' = {1,...,n}, we
construct an inference system as follows: For ¢ € V', let

539

N(i) = {7 | {5, 7} € E and j < ¢}. The rules are defined
by

(1) j = =i for each j € N(3).
(2) <1y oy it = iy where N(i) = (G, 0 e}

It is easy to see that vertex 1 is in the 1fm indepen-
dent set if and only if ¢ is a theorem of the inference
system. Further, the resulting inference systemn has the
unique path property. Hence the problem is solvable on
CREW PRAM in time O(logn).

Example 5.2 The lexicographically first maximal tri-
angle free edge-induced subgraph problem is, given a
graph 7 = (V, E) with & linear order on £, to find the
Ifm edge set F' C E such that the graph formed by F
contains no cycle of length three. This problem is P-
complete for graphs with degree 6 (Miyano 1987). How-
ever, it can be shown by constructing an inference sys-
tem from a graph that the problem restricted to outer-
planar graphs s parallelized by Theorem 5.4 {1] (Mivane
1988a).

Example 5.3 2-satisfiability problem (25AT) is also
solved on & CRCW PRAM in O(logn) time. Let § =
o, B} {oa, B2}, ooy {00, F 1} b a-set of clavses of
size two, where o, §; are in {z,~3, .., 20, "2}, The
problem is to decide whether 5 is satisfiable. For S, we
construct an inference system Q5 = (Xg, Hg) as follows:

{{ﬂ:,ﬁ]‘ I 'ﬂ'hﬂ‘ € {mliqmlt-'-tzn:_@n}}
u{o}

Xg =

The rules of Q5 are

= {o, fi}
A fh {87 = a7}
{81, {-8.,7} = {1}
{81,{-8} = 0O

where @, #,v are literals in {2, -2y, ooy Ty o2}

fori=1,...m

1t iz known (Jones et al. 1976) that 5 is not satisfi-
able if and only if there is a sequence of literals 4y, ..., 1
such that (1) holds, and either {2) or (3) holds.

(1) {7, Tesa} is in § for all i =1,...,k — 1.
(2) {m} € 5 and % = -n.
(3) n=-vy;=x forsomel < j <k

Then it can be shown that O is in theorem(Qs) if and
only if § is not satisfiable. Moreover, it is not hard to
show that size((g) is linear with respect to m.
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Example 5.4 The class AuxDPDA(n™M logn) of
functions computable by deterministic auxiliary push-
down machines (Hoperoft and Ullman 1979) which run
in polynomial time using O{logn) worktape space con-
tains many important problems, for example, sorting,
pattern matching, parsing, ete.

We show by constructing inference systems that prob-
lems in this class are computable on'a CREW PRAM
with peolynomial number of processors in O(logn) time.
This class is known to be contained in NC? (Ruzzo 1980,
1981).

Assnme that an auxiliary pushdown machine M runs
in polynomial time, say p(n), using Oflogn) worktape
space. A surface configuration O = (I, A) of M on an
input = of length n consists of the top symbol A of the
pushdown store and a configuration [ except the push-
down store describing the current state, the input head
position, and the contents of the worktape together with
the worktape head location.

For each », we construct an inference system as fol-
lows: Let C, O, D, I, E be surface configuralions of M
on z, For an indexed pair (C, D)f of surface configu-
rations, it means that M on z can move from © to D
keeping the stack height at least h. The rules are defined
as follows:

1. = (C,0) -
2. (C,D0L(D,Ef = (CERY
3. {G,D)ﬁ = (O, D,

where it 15 assumed in 3 that O'F O ]:n}r pwfx[.ﬂ}l and
D F D' by pop(A) for some A, and the lower index & is
between 1 and p(n) and the upper index k is between 0

and p(n).

If the pair (Cy, Do)¥ of the initial and final surface
configtirations is a theorem of the inference system for
some k. then M accents z. and vice versa. We can show
that the above family of inference systems indexed by
inputs has polynomial size proof trees and the unique
path property.

Meoregver, if M is nondeterministic, the unique path
property may be lost but it still has polynomial size
proof trees, Therefore Theorem 5.4 (1) is applicable,

Example 5.5 Unambigucus context-free languages are
recognizable in time O(logn) oo CREW PRAM (Rytter
1985). This result can be also proved by directly con-
structing inference systems. We show the construction

by an example. Let & be an unambignous context-free
grammar with productions

588, 5=(8), §=0),

where “(" and *)" are terminal symbols. For a string
w =z - - - 2y of terminal symbols, we define an inference
system Qy = (Xu, Ry) by setting Xu = {S[i,j] | 0 <
t<j<mn,j—1iseven}. R, consists of the following
rules:

{1} = EI'I_'I‘.1 I +2I ifIH.iI;.H 3 [:I
(2) S[i, 4= Sli-Lj+1]ifax;={ and 25, = ).
(3) S, g1, S0, k] = Sz, k],

Then §[0,n] € TH(Q,) 4= § =* w and the family
{Qw} satisfies the conditions of Theorem 5.4 (2).

6 CONCLUSION

Given a problem in P, there may be two ways to
go. The first reaches P-completeness. The other falls
into NC. In these respects, this paper coniributed in
the following points:

1. Very general P-completeness theorems are found
that derives a new series of P-complete problems
that are solvable by simple greedy algorithms.

2. By using inference systems, a method of finding
parallelism in sequential algorithms is introduced.

While the search for a really efficient and exact al-
gorithm is always expected, the P-completeness would
light up the way to go. Also, a variety of parallelizing
techniques should be searched in detail.
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