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Abstract.

In this paper, & possible-worlds based Horn clawsal
form of eplstemic logic is introduced. It s intended
to serve directly as a programmiog langnage to
reason about epistemic notions. For this purpose,
an epistemic SLD-like proof procedure based on
Eonolige's B-resolution is developed. This proof
procedure is then extended to deal with a stratified
Horn auto-epistemic logic that allows gquantifying-in
variables. The concept of epistemic negation as
failure is also introduced. An attempt to extend the
single agent AE logic to multi-agents Is also made.

Keywords Epistemic  notions, Modal logic
programming, Intension/Extension, SLD  Horn
Clausal resolution, Auto-epistemic logic,
Stratification, Non-momotonic reasoming, Negation as
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1. Introduction

Epistemic notions are concerned with bellefs and
knowledge. They are important because our
representation of the world is generally incomplete
and subfecrive. This means that an effective loglc
paradigm should attempt to solve a problem on the
basis of what it currently belleves/knows and
what it does not, rather tham to walt for the
complete state of the world which may never be
obtained. This requirement is more cruclal for
distributed  problem  solving  systems — where
communication and cooperation are essential (eg.
multi-agent planning systems [Konolige 811). In this
case, an agent is further required to rely on iis
knowledge (or belicfs) about other agents's
knowledge (or beliefs) in order to make a proper
decision,

Epistemic  notlons are also  important in
commonsense reasoning. Often we draw conclusions
based on our current autoeplstemic reflection and
may retract them later when new beliefs are
aguired. If we regard a normal logic database as a
set of bellefs of a =inple apent (ep. the database),

then an autoepistemic view of the program could
additionally  allow  the  representation  and
introspection of beliefs about beliefs and non-beliefs
aof the agent itsplf. Thus episternic notlons are one
leve! higher concepis that are inclusive notlons of
normal logic programming paradigms. In  other
words, a mechanization of these notlons will also
entail that of a normal logic . programming
paradigm. In this paper, we thus attempt 1o
develop such a mechanization as the basis of an
epistemic logic programming papradigm.

It iz possible to model epistemic notions in a first
order theory in a syntactic framework [Perlls 87,
Konolizge 81) in which bellefs are represented as
quoted terms of a syntactic BEL predicate. This
has the nice property of partlally avoiding the logic
omnisience problem of epistemic ressoning [Moore &
Hendrix 79]. It also allows guantification owver
beliefs. The main problem of the syntactic
approach however, is the enormous complexity
involved in mechnizing epistemic notions which
have to be indirectly modelled through first order
encodings. First order Hilbert style systems of
bellefs are usually used (eg. [Morgenstern 87]),
although no serlous proofs exist to automate them
[Geisslerd:Konolige 86]. In addition, it is difficult
to analyze the axioms of epistemic notlons in the
syntactic approach [Levesque 34]. '

As a solution to this last difficulty, McCarthy et
al [78] and Moore [85a] proposed a fust order
axlomatization of possible-worlds semantics of
epistemic notlon at the expense of quantification
over beliefs and legle omnislence. This has -been
shown by Sakakibara [87] to be implementable in
Prolog. This approach nevertheless is still rather
inefficient because it Involves reasoning about
possible worlds and other objects of semantic
domains, rather than manipulating beliefs directly.

In this paper, we thus attempt to develop an
alternative possible-worlds based mechanization that
directly models episternic notions. Traditionally,
such a mechanization are resiricted at the
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propositional level [Halpern&Muoses 85 Otherwise
the Introduction of quantified modal logic often
requires much creative help from a wuser or gives
rise to long proofs. Farinas del Cerro [83] proposed
imitating classical clausal resolution in some modal
logics (eg. temporal logies). The proposed method
can be Incorporated In a wery efficlent Prolog
environment [86], but fails to treat many epistemic
notions  wunder conslderation. In  particular,
quantifying-in beliefs are not allowed. Another
classical approach to modal loglc is taken by
[Abadi & Manna 87]. Thelr system however Is
mainly concerned with temporal logics.

There are also some non-resolution based modal
proof procedures which work on natural forms of
modal formulae. This has the virtue of added
clarity, since formulae do not need to be rephrased
in unnatural and sometimes long clauwsal forms,
These proof procedures are elther tablean-based (eg.
[Wallen 871) or sequent-based (eg. [Jackson &
Reighlelt 87]). The former however has to
manipulate the set of formulae as a whole with no
‘eut' operator; while the latter tends to be less
goal-oriented. In addition, both approaches normally
introduce expliclt Indices for possible worlds.

Desplte the possibly unnatural form of clausss,
clause-based resolution stll remalns as - an
important - proof strategy for modal logice. Tn
[Konolige 86), Konolige introduced a clausal
resolution based proof theory called B-resolution for
gquantified  epistemic  notlons. However their
mechantzation is lack of conmtrol of ssarch space
and involves recursive clausalization in resolving
epistemic formulae. In addition, B-resclutlon s
only applied to a set of monotonic epistemic logics.

Nevertheless, B-resolution appears to provide a
foundation for mechanizing epistemic logics in the
same spirit as Robinson's resolution for first order
logic. Like Robinsen's resolutlon, unrestricted B-
resolution would also inevitably generate a huge
search space for general clausal form of epistemic
logics. In this paper, we thus first try to develop a
SLD-like [Lloyd 84] B-resolution for a Homn
clausal epistemic loglc. This loglc is intended as the
theoretical basls of an epistemic logic programming
paradigm in the same spirit as a Horn clausal logic
to Prolog-like paradigms, In other words, we want
to write down epistemic formulae as a program
whose execution is directly based on the proof
theory of the eplstemic logic. We also attempt to
extend the mechanization of the nonmonotonic
eplstemic logic to am non-monotonic autoepistemic
predicate logic that allows guantifylng-in varlables.

The paper is organized as follows. In section 2, we
introduce Konolige's B-resolution and analyze [is
problems. We then atternpt to solve these problems
In Section 3. This is followed by-an extension 1o

AE reasonning.

2. Bresolution

In [Konolige 86], Komolige has proved a set of
epistemic resolution rules called B-resolution rules
to be spund and complete for the corresponding
class of epistemic logics as follows.

B-resolution:
Let l"-l‘r., Y2 -Hl. E“{ﬂ';.ﬂ'ﬁ--]‘ and ﬁ-{al.az "-]' be

finite sets of formulae.

Given the following clauses (omiting the apents
and the terms),

A-:_FB"_H_
Az ¥ Byy

Ad, v =B§
Ads v =B

.

ABy v oy

A.B;Vﬂ'!
.

We can derlve the following clause,

AVA VL VAL VAA VL VAR VAR V..,

if only if the following set of formulae is

unsatisfiable

1. {T, =5} for K, T epistemlc logic;

2. {T, BT, -8} for K4, S4 epistemic logic;

3. {I, BT, -§,, -BA} for K45 epistemic logic;

4, I, BT,-8,, -BA,~B-L } for 55 epistéemic logic.

In addition, in the case of T, 54 and 55 eplstemic
logles, we also need to add the following
knowledge rule of inference:

Bep v A

dv A



For  the B-resolution  to  be  efective,
Geissler&Konolige's solution [86] is to apply . a
semantic @tachmen? technigue (a kind of Stickle's
meta theory resolution [B5]) fo recursively check
the unsatishability condition. Suppese, each time a
negative B-literal particlpates in a B-resolution,
another refutation procedure (or a view which is
similar to Kripke's device of auxiliary {tableaux
[59]) iz tnvoked (or opened) wusing the indicated
sets of sentences. Then the executlon of deductions
in the parent refutation proof is intermixed with
execution In the child view which is baing used to
check unsatisfiability, If at some polat a child
refutation succeeds, we can constroct a resolvent
with bindings returned to a disjunction of
auxiliary  remainder literals in the parent
refutation, This allows frec variables to perform a
schematic refutation. In addition, by keeping track
of the clansss In a resolution proof inm a view, we
need only consider the remainer lterals of these
clauses in the parent view.

Lets illustrate the ideas with a short example.
Assume the following Initfal set of clanses:
0. Blagent,w(c)) v g(k)
1. Blagent,p(a))
2. -p(b) :
3. q(x) v p(x) v Blagent,p(x) v {x))
4. -Blagent,p(y) v t(y)) v oly)
5. =q(b)

Ordinary resclution work as usual, for example,
243 wyield:

6. q(b) v Blagent, p(b) v (b))
6+5 yield:

7. Blagent,p(b) v r{b))
Clansa 4 contains a negative belief lteral,
following B-resolutlon, we open a new view In a

attempt to resolve it:

" View agent, rems(0,q(y))

8. =ply) v ans(0,y)
9, -r{¥) v ans(0.¥)

This 1= a view for the agent of the belief. The
clavses within the view are obtalned by changing
disjunctive lterals into conjunctive lterals. The ans
predicate keeps track of the input free wvariable y
to allow schematic resolution; it also contains the
additional argument "0° to indicate that It is
connected to the remainder (rems) indexed by 0. If
a proof Is found in the view, the remainder g(y)

317

will be returned with an appropriate binding for ¥y
as a deduced clause of the original proof. '

we can now add the arguments of positive bellef
literals to the wview following B-resolution, as in
clauses 0 and 7. The view now contalns:

View agent, rems_{[].q(]f}} rems{1,g(k))

8. -ply) v ans(0,y)
0, -r{y) v ans{0,¥)
10, p(b) v r{b)

11, wie) v ans(1)

Only the first three clauses resolve (using
ordinary binary resolution) with each other, yield:

12, ans{0,b)

ie. a proof for the view is found, Because clauss
11 s not involved In  the proof, so the
rems(1,g(k)) will not be returned to the parent
view,

Now uslog the substitution bfy generated by the
ans-predicate, we return gq(b) as the result to the
original view In which this new wview Is created. In
thi=s case, It i= the [nitial view.

12. g(b).

clanses 12 and 5 resolve to glve the null claunse fo
complete the proof.

The main problems of B-resolution are its lack of
control and the need to clausalize B-literals each
time a new wview is opened. The clausalization
process can be exponentlal to the slze of the
literals in coocern [Lakemayer 87]. The control
problem on the other hand is complicated by the
inability of applylng a direct set-of support or
linear resolution strategy. We will attempt to solve
these problems in the next section.

3, Epistemic SLD

We first want to obtaln a clausal form of
epistemic logic. Because quantifiers are bounded to
the modal B operators, we wuse a simplified
intensipnal scheme develpped In [Mang 88] to
gencrate a syntactic characterization of epistemic
formulas. The baslc idea is to attach an integer
level (default being =zero) to each quantified
varfable denoting 1= nesting of B-operators so that
mormal skolemization process can be applied on the
resultant formulae. For example, Vx Bla, 3y
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plx¥)) would become ¥x B(a, Iy, play,) which
can then be skolemized into Bla, pCxf(x}J)) Thus
the syntactic transformation will preserve the
context information of the criginal formulae. In
fact, as shown in [Jiang B8], we can also attach
levels to constants to allow complicated de ref and
de digto readings of sentences. In particular, we
can either reject or accept the constant domain
assumption of possible worlds (or the Barcan
Formulae VxB(p(x)) +«-— B(Vxp(x))) by either
levalling wuniversal variable or not levelling. To
capture the correct level of intenslon however,
introspective literals need to increment the level of
intension to the non-rigid terms of the original
literal. A semantic characterization of the scheme
is given in [Jang &8L

Theorem: A epistemic sentence Is unsatishable If
its skolemized form is.

Definition: An epistemic clanse is an epistemic
formulae that has a standard clausal form in the
scope of every B-operator of positive polarity and
has a standard conjunctive normal form in the
scope of every Boperator of negative polarity; eg.
Bla,p v =Blcqér)) i= an epistemic’ clause and
Bla,p&q) is not. .

Now by applying the standard  clausal
transformation rules and the modal transformation
rule Bla, p&q) = Bla,pliBla,q), we can transform
every epistemic formulae into an eplstemic clause.

Theorem: There i= an cffective procedure which
can transform every epistemic formula Into a
satisfability-preserving set of formulae in an
epistemic clausal form.

Now to solve the control problem of B-resolution,
lets - first investigate B-resolution's Inabllity to
enforce a set of support strategy by an example.

query: =B(a,p)
Refutated query: Ela,p)

Database:
Bla,~p v q)
-Blz,q)

If we uwse the refuted query as the set-of-support,
because the B-clause is positive, we cannot apply
the B-resolution to open a view. On the other
hand, the theorem/query would be proved in &
general B-resolution-based system by opening a
view for the negative B-clause -B(aq). Thus B-
resolution with direct set-of-support will not be
complete,

To solve this problem, we propose an indirect kind
of set of support strategy by associating a set of
support for each wview. The basic idea is to keep
the refuted guery/goal as the set of support of the
Initlal view. To resolve a negative B-literal -Bla,p)
in a set of support derivation in a view, we open
a new view with p as its set of support. However
everytime we attempt to resolve a positive B-literal
Bla,g) in a wiew, we look for a negative B-literal
of a wunifiable agent in the view to open a new
view with ¢ as its set of support. Thus in the
above example, to resolve Bla,p), we use -Bla,q) to
open a view with p as its set of support. In this
subview, we will then be able to obtaln a proof,

Theorem (completeness): Let S and T be sets of
eplstemic formulae, if 5+T is unsatisfiable and S Is
satishable, then there exists an indirect set of
support B-resolution proof D with T as the set-
of-support of the initlal view consisting of S+T.

Because the set of support strategy is compatible
with Unear resplution, we can also add linear
resolution to each view In a B-resolution.

Theorem: Let 5 and T be =ets of formulae, If 5
is satisfable and S5+T is unsatisfable, then there
exists an Indirect set of support with linear B-
resolution proof with T as the set-of-support of
the [nitial view consisting of S+T.

However the resultant system s still  wery
ineficlent compared with its first order counterpart
even though we omit the recarsive nature of B-
resolution. This is because the set of support for
each vlew can be exponentially expanding as
subviews are generated, Consider the following
partial view with clause 1 as the set of smpport:

I. -a
2, av -Blagp vqvwr)

The resolution between 1 & 2 will produce a
negative B-literal which would then result a view
with =p, -g and -r as its set of support. This is
because multiple clauses may  be generated when
negation s passed through a negative B-literal. For
this resson and for the reason that Horn clauses
can be !mplemented efficlently, a restricted form of
epistemic logic — epistemic Horn logle, Is proposed.

Definition: An  epistemic Horn clause 1= an
eplstemic clavse in which every B-lteral of
positive polarity s In standard Horn clausal form
and every B-literal of negative polarity 1= in a
conjunctive normal form of unit literals in which
there is at most a negative literal; eg. Bla,p v ~q)
& -Bla, ¢ & b) is an epistemic Horn clause; whilst



-Bla,c v -b) is not.

The basic idea of the restriction is that when
negation (if any) is passed through a B-operator,
the resultant clavse will be a single Horn clause.
We thus have the following theorem. Theorem:
The set of support of every view in a proof
structure of the epistemlc Horn logic is always a
single Horn clause.

Theorem: For any epistemic Horn logic proof (or
wlew) structure, every view of the proof will be
in standard Horn clausal form.

We only need to show that the remainer literals
of a wiew will be In a Horn clansal form for this
theoremn to be true. Since a view i3 always
opened by a megative B-literals with clauses added
to the wiew from positive B-literals and there Is at
most one positive literal in a standard Horn clausal
form, thus there is at most one positive literal In
the remainer clause of each wview.

Since each view contains only Homm clauses and its
set of support Is a single Horn clause, we can thus
have a sound and complete linear ingut (SLD-like)
B-resolution strategy with selection function for a
consistent set of Horn epistemic formulae.

Theorem: The epistemic SLD-like proof system Is
sound and complete for a consisteat set of
epistemnic Horn clanses.

Thus epistemic reasoning can be performed by
applying recursively a SLD-lke procedure In each
view. However unlike standard SLD procedure, the
epistemic Horn clauses in a wiew need not be
definite clauses; le. it can have negative clauses. A
consequence 18 that we can have incomplete or
disjunctive answers to a proof in a wview. This is
because each view can contaln ans-predicates for
Input wvariables to capture the incomplete answers
of a proof. However it should be noted that there
can only be one ans-literal in a proof of a view
for the remainder literals of the negative B-literal
that opened the wview; although there can be many
ans-literals for the remainder literals of the
positive B-literals added to the view. This Is
because the input wariable from the negative B-
literal must not get disjunctive answers from a
semantical point of wview. For example, given
B(pla) v P(b)), we cannot conclude 3x B(p(x))
although we can cooclude that B(3x p(x)). On the
ut.her hand, imput wvariables from positive literals

can get disjonctive answers. For example, glven
=B(p(a) v F(b)), and ¥x Blp(x)) v q(x), we can
obtain qa) v q(b).
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So far nothing has been sald about unification,
Because terms are additipnally associated with a
level of intension, we can thus frst define a strict
rule of uaification.

Strict Unihcation: Two terms are unifiable if
they aed thelr level of intension are wunifiable In
the stardard sense. Since a composite structure of a
term and its level of intension is also a term,
there i5 no need to change the standard unification
algorithm.

Because some terms may be rigid, ie. have the
same interpretation in all possible worlds, we can
treat their level of intension (indicated by a "'
sign) similarly as the ‘' operator in Prolog, ie.
matchable to anything. In the case the Barcan
formulae are assumed, the universal varlable will
be freated as rigid with their level of intenslon
denoted by the *__' sign. The strict unification will
thus be the same irrespect of the assnmption of

- the Barcan formulae.

Sometimes, It is also wuseful to allow certaln
relationships of level of intension to be unifiable
For example, often it iz useful 1o deduce an
intensinnal meaning from an extenslonal meaning.
Thus given IxB{p(x)), we can deduce B(ExP(x])) but
not the other way around. This example also
shows that the relationships may be directional. To
define these relationships, we specify a set of
builtin predicates which can be used in the strict
unification algorithm in a similar fashion as
many-sorted unification. For example, Unify(1,2)
would allow any two unifiable terms to  be
unifiable if the level of intension of one term s 1
and the other i 2. On the other hand, Goal-
unify(ji) < =1 would only allow two unifiable
terms to be unifiable If the goal term’s level s
greater than the other term's level. This Is in fact
the case of the Intenslon-from-extenslon example
mentioned abowve.

4, An autoepistemic predicate logic

Autoepistemic (AE) logic is a nonmonctonic logic
that is conmcerned with the reasoming of bellefs of
an ideally rational agent who reflects upon his own
beliefs [Moore 85b). Originally it was only defined
for propositional case. Otherwise, the logic Is
restricted to closed epistemic formulae in the sense
that no guantifying-in wvariables are allowed.
Although there were attempts made to Include
gquantifying-in beliefs, eg. [Niemela 88], however
the proposed proof procedures are normally
restricted to functlon free epistemic formulae. As
a result, existential quantified variables are not
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allowed. With the assumption of Barcan Formulae,
the AE predicate logic In this case iz essentially
reduced to one worse than closed AE logic due to
the lack of existential quantifers. )

Although AE logic is famed for its ability to
reason about Incompleteness, however most of the
incomplete knowledge are normally gquantifying-in
type of epistemic formulze. For example, the
statement "I belleve that I know all the teachers"
can be represented in agent I's belief as:

Wx Teacher(x) = B(I, Teacher(x])).

Another  impact of the introduction  of
quantifying-in to AE loglc Is that it will Invalidate
Konolige's equivalence relationship [87] between AFE
logle and defanlt logic [Reiter 801 In fact, AE
gquantified logic becomes more powerful than the
default logle. The translation of the latter to the
former is still possible amd local, but not
conversely. In this section, we ‘thus attempt to
extend closed AE logic to include quantifying-in
variables,

It 1= noted by Moore [84] that an AE logic can be
formalized In a fransitive and euclidean possible
worlds semantics. In particular, the Stalnaker's
three stable set conditions [80] of an AE theory
can be charaterized by a complete 55 kripke
structure for the theory. As a consequence, an AR
extension T of a set A of premises can be
characterized by the following non-constructive

proof-theoretic fixpoint equation [Konolige 871:
T={®|AUBI U =BTy Iy @

where Ty, is the consequential eclosure of the
ordinary (first order non-modal sentences) formulae
In the AE extension. In section 3, we have
already developed an cfficlent resolution based proof
mechanization of the monotonic quantified K45
logle. It s thus matural 1o extend this
mechanization to the AE predicate logic. Unlike
tableau-based [Niemela 88] or sequent-based
[Jackson & Reichgelt 88] ABE-like proof theories, the
(SLD-like) resolution based approach is more goal
orlented.

Because of the non-monotonic nature' (characterized
by fixpoint operations) of the AE logie, the
deployment of the monotonic K45 mechanization to
the AE logic mneed to be augmented by the
extensions of BTy and -BTy This howevér present
several difficulties. For start, the second extenslon
(called negarive Introspection) is itself not even
semi-decidable [Konolige 85]. Furthermore, these
extenslons are part of the AE extension itself, thus

involving making assumptlons and checking for
groundness, For example, from Bp—p, an AE
extension could assume P to be true and be
justified through proundness.

To solve these problems, we propose the following
solutions,  First, instead of having a . peneral
negation as fallure type of extension, we adopt an
epistemic Megation As finite Failure (NAF) rule of
inference (omitting the increment of level of
intension for clarity reason) for the negative
introspection. In this case, the AE extension will

“then be made seml-decidable instead of non-semi-

decidable,

Epistemic NAF: If ~ |- p, then |- -Bp

The finite fallure restriction is reasonable since an
agent can only conclude non-bellefs through a
finite process upon which he can judge. This by oo
means relaxes the -assumption of an ideal rational
agent. As far as reasoning i= concerned, an agent
has still infinite power. The difference here is that
the infinite power will mot be able to obtain
conclusive finite result from an infinite process.

The epistemic NAF rule s in fact similar to
Clark’s NAF [Clark 78] except that it is made at
an episternic level. Tt is nevertheless more
intuitively sound than Clark's NAF. After all if
we cannot prove something, we should not deduce
that it is false; rather it Is commonsense to deduce
that we do not believe it. Furthermore, we also
offer an [nterpretative semantics to MAF notions in
the same way to default reasoning [Konolige 871
As a result, it also makes it clearer to EXpress
non-beliefs about non-bellefs than Clark’s NAF
rule. In this way, we could replace the nepative
literal -p in traditional logic programming paradigm
with -Bp. The resultant system then operates on
an eplstemic level.

However like Clark's NAF, the epistemic NAF can
still result inconsistent bellefs at epistemic level,
For example, given Bp v Bg, the eplstemic NAF
could result -Bp & =-Bg. From an autoepistemic
point of wview, this inconsistency would result an
empty AE extension. To splve this problem, we
restrict our AE logic to AE Horn logic. This
resiriction is reasonable and practical as normally a
Horn logic can yield an  efficlent proof
mechanization,

To characterize 1the positive introspection, we
introduce another rule of inference (again omitting
the increment of level of iotension for clarity
reason):



Pl: Il |- p, then |- Bp.

This iz in fact the kind of rule of inference used
in McDermott's modal non-monotonde logies [82]
As pointed out by Moore [85b], instead of treating
the inference as part of a AE theory, le. BpeT if
peT, the mere use of inference as a rule would
result no AE extension of Bp—p that contains p.
On the other hand, by assuming p and justifying
it, a Moore’s AE extension would contain p. Moore
argued for this pecularity that McDermott's B is
mare like knowledge rather than belief. It is felt
that this argument. seems ill-founded. Afterall, a
belief of an agent Is a knowledge as far as the
agent Is concerned. Thus belleving p to be true as
a bellef of an agent can only be justified f p Is
itsellfl a belief of the agent.

Konolige [87] proposed several restricted definitions
of AE extension to avold Moore's pecularity. They
are moderately grounded and strongly grounded
extensions.

Defnitien: A moderately grounded AE extension
T is

T={®31lA UBA U =BTy Iy O}

Definition: A strongly grounded AE extension T
is

T={®A UBA U BTy las @}

where A's Is the set of sentences of A whose
ordinary patt is contalned in T.

The moderately grounded extension would aveid
Moore's pecularity for Bp—p but not of the set of
sentences that contains intermediately derived  Bp,
eg {-Bp—qBp—+p}. The Ilatter problem can be
avoided through the stronly grounded AE
extension. :

Despite the strongly groundness restriction, Moore's
AE logic is still suffered with the problem of
‘theoremnhood’ In the sense that there could be
multiple (eg. {~Bp—q,~Bq—p}) and empty (eg. {Bpl)
AE extenslons. The former may be justified by
assuming that an agent can bhave alternative bellef
sets as far as the apent is concerned. The latter
however s less justified. Given some bellefs of an
agent, the possibility of an empty AE extension or
bellef set appears to be intuitively contradictory.
Afterall, the agent did have some beliefs before his
reflection.

To solve this problem, we wuse a stratified AE
predicate logic. We extend Gelfond's [87] definition
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for propositional logle to predicate loglc.

Definition: An AE theory T is stratified if there
is a partition T=Tgt+.+T, such that

1. T, is ordinary (possibly empty).

2. Nepative epistemic Horn clauses do not belong
to T, where k>0

3. If a predicate p belongs to the positive lteral
of an epistemic Horn clause in T,, then atoms
with predicate p do not belong to g0 and
atoms Bf where { contains p do not belongs to
Typeerds

Follow the stratification definition, we have the
following theorem, although the converse is not
truae,

Theorem: Every stratified AE extension is

strungly—gmunded.andﬂlsthmalsuasyn‘mcﬂc
property of an AE logle.

Mow Gelfond [87] has shown that every consistent
stratified AE propositional theory has a unnglue AE
extension. In [Jlang 8&8], we have shown tibat
Herbrand theorem "a set of unlversal sentences is
unsatisfisble f a finite sobset of iis ground
instances are” remains to be wvalid with the
introduction of level of Intension. Thus with
unification and Gelond’s propoesitional result, we
can hawve the followlng theorsm:

Theorem: Every consistent stratified AE predicate
theory has a unique AE extension.

In other words, a stratefied AE theory will define
a unique and non-empty extenslon. It thus provides
a better definition of “theoremhood’.

IF we use K45+ENAF+PI 1o characterize the proof
mechanization of our stratified AE Horn predicate
logic, an AE extension T in this loglc can thus be
summarized as follows:

T = (&1 A lpisavaro P

We illustrate the AE logic with an example. It can
be s=een that the database iz consistent since the
agent’s concept of concept of father of John is
different from its concept of father of John.

Query: ~teacher{Tom).
Goal: 0, teacher{Tom).
Database:
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. teacher(John).
teacher(father{ Johnl).

. =Blteacher(father(John),)).
. =teacher(x) v Blteacher(x)).

Resolve Owd, vield:

5. Blteacher{Tom})
Apply ENAF and B-resolution, yield:

6. -B(teacher(Tom))
J+6 completes the proof.

If we add father(John)=Tom, then apply
paramodulation and B-resolution in a wiew, we
will not get a proof.

It may be noted that the AE logic described so far
is for single agent, eg. the current database. In
practice, it = often useful to allow a database to
describe another database. This I5 also the case in
distributed problem solving. The K45 system
described in Section 3 is applicable to multiple
agents. Thus it is tempting to add multiple agents
to an AE theory.

We first define an stratified multiple agents AE
theory as a stratified AE theory from every agenti’s
point of wview. DBecause of the existence of unigue
AE extenslon, we can thus add introspection of
other agents from the current agent's palnt of
view. Such introspection can be mechanized in
exactly the same way as the current agent except
that it is done as if the current agent iz put in
the shoe of the other agent. This introspection can
also be be extened to nested agents if stratification
Is also extended correspondingly.

5. Conclusion

In this paper, we have presented an eplstemic Horn
logic with an  epistemic SLD-like  proof
mechanization based on Konolige’s B-resolution.
This is intended as the theoretical foundation of
epistemic loglc programming in the semse it can
serve directly as a programming language. We have
also demonstrated how the K435 mechanization of
the monotonic K45 epistemic Horn loglc may be
extended to a nonmonotonic AE logic that allows
quantifying-in wvariables. An epistemic NAF rule of
inference instead of Clark's MAF has also been
intreduced. In addition, we have also attempted to
add multiagents reflection to AE logic.

Rather than attempting to map modal notlons into
a Prolog-like SLD interpreter (eg. [Fujita etal 86]),
we have directly advocated the use of a direct
epistemic SLD-like interpreter. After all Prolog is
aot equal to logle programming,
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