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ABSTRACT

In this paper we consider modal logics as
programming languages. To modal pregrams we associale
a declaralive semantics represented by a tree which will
be defined as the limit of a certain transformation on
modal programs. This fixpoint represents the minimal
Kripke model of the program. We give a procedural
semantics based in SLD-resclution,

1 INTRODUCTION

Since logic programming is a useful teol for
developping Al Systems and modal logics are natural
hrmallsms‘ In domains as natural language understanding
or problem solving {see (Konolige1988), {Conf
1886)), we undertake to extend the classical theoretical
rasulis in logic programming  of (Apt 1987) and (Lloyd
1884) 1o modal logic. In the last years there have been
several approaches to make logle programming more
powerful by extending it to intensional logies, e.g. (Abadi
and Manna 1987} and (Gabbay 1987) for temporal
logic, (Subrahmanian 1987) and (van Emden 1987} for
guantitative and (Blair and Subrahmanian 1987) for
paraconsisten! reasoning, (Okada 1988) and (Akama
1986) for modal logics., (Yiang 1938} for epistemic
logics, (Mute 1987) for condilional logics, (Fitting
1988) for reasoning with coniradictions, (Gabbay and
Reyle 1284} and (Miller 1987) for Inluitionistic logic.

In previous works we introduced a syslem called
MOLOG thal allows us to consider modal logic as a
programming language (Balbiani et al. 1987), (Farifias
1988), (Farifias and Penllonsn 1987). The aim of this
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paper is to continue this work by giving some theoretical
basas. We define a particular st of modal formulas called
modal Horn clausas n analogy with classical logic (see
(Colmeraver et al. 1986)). We will consider modal
programs lo be sets of modal Hern clauses, To them we
assoclale a declarative semantics represented by a tree
which will be defined as the limit of a certain
transformation defined for the modal programs. This
limit represents the minimal Kripke model of the

program. We give an Inference mechanism based on a
rasolution principle.

The paper is organized as follows: In seclion 2 we
introduce modal logic. In section 3 we define the
Herbrand Universe for madai logic. In seclion 4 we give
the definition of modal Horn glauses. The resolution rules
for an exemplary modal system are given in section 5. In
saction 6 we present the declarative semantics for it. In
section 7 the correctness of declaralive ssmantics with
respect o possible worlds-semantics is established. The
completeness theorem of the resolution method (s
prazented in section 8. In section 9 we give the resolution
rules and declarative semantics for T and S4.

We give only the mail ideas of the proof, all detalls and
proofs and the cases of other modal syslams are given in
the full paper {Balbiani,and al. 1987).

2 MODAL LOGIC

2.1 Syntax. A modal language L is defined from the set
of primitive symbols composed of the following
pairwise disjeint sels: predicale names - p.g..., functions
names - g, h,.., variables - ¥, y, .., classical
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connectives - —, », =+, &, v, classical quantifiers - 3, v,
unary modal connective - O (“necessary™).

As usual OA is defined by —0-A. The formation rules
for terms and formulas are the classical ones with : if
Als a formula DA and oA are formulas.

2.2 Semantics. Thn Kripke semantice with uniform
domain (Hughes and Cresswell 1886) for L is defined in
terms of a model M = (W,R,0,m) where R C Weis a
relation, D iz a sel of chjeclz, and m iz a meaning
funetion such that

if  is a variable, m{x) e D

it g is a n-ary functional symbol, nz0, then
m{g):0f - D is a function;

If pis an n-ary predicate symbol than
mip) = W=D",
In erder to simplify our proofs we consider the relation
R to be tnlal; i.e. for every w there is a w' such that
{ww) £ R,

The satisfiabillly relation is defined as usuval by
induction an the structure of the formulas. Here we give
only the case of the modal operator @

Mw sat OA Iff for every w' & W if wRAw then Mw' sat A,

We say that M satisfies A or Mis a model for A if
there is aw in W such that M,w sat A. -

3 MODAL HERBRAND UNIVERSE

In what follows we shall consider a subsel of formulas
called universal formulas. A universal formula is a

closed formula of the form VEq...¥xy M where M I5 a

formwla in which no quanitifiers appear.

Definition. The H-domain for L (denoted by H|) is the

set of all ground terms, which can be formed out of the
constants and funclions appearing in L. {In the case that L
has no constants we add some constant, say "a", to form
ground terms).

Definition. Let M be a model. M is an H-interpretation

iff O = HL, mic} = ¢ for every conslant c,

m{g){t],.dp) = Olt4,...tp) for every funclional

symbol g and §y,....In € HL.

Lemma 3.1 A is satisfiable iff A is satisfied in an,
H-inlerpretation.
Proof. The prool is a trivial extension of the classical
case,

Mote that we can say now that Mw sat Vx Afx) iff
Mw sat A(t) for every 1 € Hi. So from now on we shall

consider anly H-interpretations.
4 MODAL HORN CLAUSES

4.1 Since 4(A~B) and 0A A0B are nol equivalent for
every definition which does nol identify ¢ and o, any
nation of moedal Horn clause must allow the ~-operator in
the scope of the {-operator. This makes things rathar
complicated because (In opposition o classical logic) one
modal Horn elause may be unsatisfizble alene, as ior
example 0{p A —p). Qur aim is to avoid this undesirable
feature. Tharefore we use a technigue similar o the
Skolem technique for eliminating existential quantifiers
and extend the language L In order 1o translate formulas
into the extended language. This idea appeared already in
(Farifias and Penttonen 1887) and (Chan 1%87).

Wae add to L the new sel of modal operators {<i=: 1is 8
term}. If A is a formula then <t=A is a formula, too. The
new language Is called L°. Take soms enumerafion
{ty.t2....} of the ground ierms. The semantics for L°® is
defined by & modeal M® = (W,(R,F),D,m) where F is a sat
{fyfa....} such that each fy W —+ W is a function and ;=R
for every I. The salisfiability relation is defined as above
where M®w sat <ip=A iff Mfiiw} sat A. The definitions of

calisfiability and of an H-interpretation for L® are the
same as for L.

Mow we define a translation * that allows us to embead
the universal formulas of L in L®. Without loss of
generalily we suppose from now on that all formulas



contain only operators —, A, w, and that the negation
appears immediately before the alomic formulas.

Definition. We map a formula A of L into & formula A*
af L* by replacing each occcurence of "0° In A by
<@{¥4,... %> wherg g is a new function name, and each
% is & variable such thal ¥x; governs the {-occurrence

in A. (S0 in A* every new funclion name occurs only

onca).

Example. If A 05 ¥ x0{0p(x) v 4{ga=t)} then A" will
be ¥ xO{<g(z)=p(x) v <h{=)={ga=t)}.

Lemma 4.1 Let A = ¥x4...¥xn C be a universal formula

of L in which negations occur immediately before atomic
formulas, A is safisfiable in an H-interpretation of L if
A" is satisfied in an H-interpretation of L°

Prooaf. The proof is done by induction on the structure of
. The main case in the induction siep is when the
formula is of the form ¢ B. Suppose Mw sat ¢B. Hence
for some w' such that wRw' we have M,w' sal B. By
induction hypothesis there existés a model
M'=(W,(R,F),D,m) such that M'w sat B*. Now as in
classical logic we extend the language by a new skolem

function g, and we build a new model

M*=(W,(R,FU{f}),D,)m) such that j is the index of
g{ly,..,1p) and fjw) = w'". Consaquently

M"w sat  <gity,....tn}> B™

Femark. The translation and the lemma are identical for
all modal syslems based in a language with the two
classical modal operaters 0, ¢ and possessing a Kripke
style semantics.

4.2 In analogy with classical logic we give the following
definitions:
& GG

Goal clauses (GChatomic  fermulas

F,3 = GG implies OF, <t=F, FAGEGC
Definite clauses (DC): atomic formulas € DG

F & DC, G e GC implies F+ G, OF, <t=F g DG
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A Horn clause {HZ) of L will be either a goal or a
definite clause. As in classical loglc we suppose that
every variable in the clauses is bound by a universal
gquantifier, i.e. a set of olauses iz considerad to be a
universal formula. In what follows sels of definite
clauses will be called programs.

Uszing Lemma 4.1 we will consider a resolution
principle for formulas whose translation is a set of Horn
clauses (where a conjunction of clauses is considered as a
sel). In particular this will be the case for every
formula which afler delation of the modal operaters gives
a sel of classical Horn clauses.

Example. The formula o000 (p{x) w=q(x)) - plaj)

becomes after skolemization a set of Horn clauses
[D<f(x)> (p(x} « qlx})} , O <i(x}> pla) }.

5 RESOLUTION

MNow we shall sludy in an exemplary way a particular
modal systern, quantificational Q. For the other classical
modal systems T and S4 see section 9 or the full paper
{Balbiani, Farifias and Herzig 1987). The models of Q
are caraclerized by a serial accessibilily relation B. The
madal operator can be interprefed as a temporal operalor
able 1o describe from each state the nexl state. The
inluitive meaning of 0A is thal in every nex state we will
have A, and of #A that there ks a next stale in which A ls
frue. We shall describe SLD-reselullon for the modal
Horn clauses of Q. We start by defining how to produce a
new goal clause from an old goal and a definite cladse. For
it we give a formal syslem composed of rules for
computing resolvenis and of simplification rules.

5.1 Rules for computing resclvents. We define the
ralation on clauses "Gy is a direct resolvent of A and
G" where A is a definite clause and & and Gy are goal
clauses, in symbols AG = G4, by the following formal
syslam :

Axiom: p, = Ti{g) If there is & most genaral unifier o

such that po = qo, where p and g are atomic formulas and
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T dencles the emply question ("True").
Classical rule:

(& rulej: from AG = Gylo)
infer A+« Gz ,GaG3y = Gy~ GpaGalo)
Modal rules:

{O<l>-rule): frem A, G = Gylo)

infer DA, <=3 = <t=G1(a)

(=t=<t'z-rule): from A, G = Gqlo)
infar <t=A,<t'>G=<t>G4{ta) If t{e{t))=t{a{i))

(G-rule): from A, =G = Gy{s)

Infer A, 4G = Gjlo)

I and t' denote classical terms, and we use anain the
classical definition of a meost general unifier {Lassez st
al. 1887). By a goal clause we denote some parficular
permutation of if, in other words for each permuiation
we have a particular selection function.

The procedural interpretation of the axiom and the
rules is as follows. )

Axiom: p is an answer fo the guestion g ifp and g
are unifiables.

Classical rule: from the fact A « Gg and goal G » Gg

we infer the new goal Gy » Gy ~ Gg it Gy is the goal

obtained from A and G,
Modal rules: We consider only ihe D<t=-rula, for the
another rules the interpretation is identical. A fact oA

and a goal <t>G produce the new goal <t=Gq if Gy is
obtained from the fact A and the goal &,

5.2. Simplification rules. The role of the simplification
rules is to eliminate the T symbol afer application of the
formal system rules. The relation "A is similar to B,
noted A = B, is the least congruence relation containing
AT =T ,wheré A=D0.<ts, and T # D =D,

Definition. We say that Gy is a resolvent of A and G If
there is some Gy’ such that A, G = G¢" and Gy =Gy, Wo

write A, G => Gy for "Gy i5 a resolvent of A and G=,

Example. The definite clause <f{x)> (p(x) — q) and
the goal clause {p{a) have as a resolven! <f(x)» g [x\a}.

5.4 Consistence of Resoclulion.

From the axiom p(x),p(a) = T{x\a}
P{x}—q,pla) = Taq{x\a} by the classical rule. From
the latter we <f{x)>(p{x)« q), Opla) =
=H{x)=({Taq) {x\a} by ¢-rule and <ls<l's-rule. As
=f()=({T » qg) {\a} = =f(x)> g [x'a] the new goal will
be <f{a)- g.

we infer

infer

5.3 Resolution rule
c G
G, G =>Gy{g)
Gyla)

where C i5 a definite clause and G, Gy are goal clauses.

SLD-resolution is defined using the resclution rule as
follows. Given a program P and a goal clause G we say Ihat
G is derivable from P, and we note it P -G, if there [s a

sequenca Gy.....Gn of goal clauses where G4 s G and G, Is
T, and each G;, 1 is obtained from G; against a clause of P

using the resclution rule.

Example. Let P= {0g, <f{x)=(p(x}<q)} and G = op{a).
We prove that G is derivable from P:

<f(x)>(p(x}eq) 0p(a)
og =fla)=q by means of ¢-rule,
<l=ct's-rule and «—rule
T by means of the D<t=-rula,

The proof is by
induction on the number of classical and medal rules,

6 DECLARATIVE SEMANTICS FOR MODAL LOGIC

In this section we will associate to modal lagics, as in
classical logic, a declarative semantics that allows us to
consider modal Horn clauses as programs. The base of L®

denoted by &)+ is defined as in the classical case as the
set of greund Instances of the alomic formulas appearing
in L® obtained using the domain Hy -, In order to simpify

the notalion, we drop the index L* from @|- and Hys.



Definition. A Iree is a siructure t=<W.F.m=. W is the
set of nodes, and F is a sel of functions from W into W
standing for the amows of the tree. m: W - 2% 5 a

meaning funclion.
Remark. As for the translation of seclion 4 we note thal
the definition of tree structure is independent of the

modal logic.,

Example.

It is a tree If « s a tree, for a language possessing two
terms {4 and fa.

B.1. The lattice of trees. Let T be the set of rees and

t = <W.F.m=> and I' = <W F,m's two trees in . We dafine
tha intersectlon and the union operations betwesan

trees:

tmt = W, F.m™>  where m"{w)=m{wjnm'{w} for
gvery w W,

i = <W.F.m">= where m"{wj=m{wjum'(w) for
gvany w g W,

As mi{w) and m'{w} are seis of ground atemic formulas,
n and v are the standard set intersection and union,

We define the relation S by 1S If and only if tet' = 1.
The minimal elemeant of iz noted L. L 5 the tres
<W,F.m= where miw) is the empty set {}
alement w of W.

for evary

Fact. Since 29 is a complete lattice I will be a
complete |attice, too.

6.2. The transformation Tp for Q. In order o give
a declarative semantics to a program P we associate 1o it

a transformalion Tp depending on the particutar modal
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logic. In what follows we shall give the transformation
for Q.

Definition, Let a program P, a Hom clause G, a tree t, a
node w in 1. By induction on ihe struciure of G we defing
"G appears In w ", densted by G £ (tw), as follows :
1. pe Lwiffpe miw) if pis a ground atomic formula
2. AABe (tw) iff Ag (tw)and B & (Lw)

3. Be=A e (tw iff ifAe (Lw) thenB e (tw)
4

<=4 e {Lw) i A e (thlw))

o

0A e (tw) iff there is an isuch that <ti=A € {tw)

Example. In the tree below &p and <to=q " appear in

tha root, and Os, 0m don’t appear In the root @

Definition. We define & function +: r«W=DC= T which
gives a new tree +{Lw,C} fram t,w and a ground definite
clause G. In the following, in order to simplily owr
notation wa will write (tw) +C instead of +{tw,C). The
funetion + is defined by the following recursive
algorithm

1. {tw) +p = 1" where U' I5 identical 1o 1, except m'(w)
= miw) U {p)

2. (tw)+{A«B) = if Be(wj then [Lw] +A
else 1
3. ({tw) +=ti=A = [th{w]} + A}

4. (tw) +OA =

Wi (th{w)) + A}

Example. Assume that t has root w and is
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then we have (Lw) + <tp={r « g}

whera w is the root

{q), {q,r}

Definition. Mow we introduce the transformation Tp.

Tpis a mapping Tp: T = T such that Tp{l}= ug

{{tw)+C : C is a ground instance of a clause of P}, where
w Is the root of L.

Example. Let H = {ab}, P ={0g, <g{x)>(p(x) « q)}.

Te(l) is

{g,p(a))
AN

Proposition 6.1. Tp is continucus.

Given a program P, since Tp i3 continuous and I"is a

complete lattice, we have that Tp possesses a least

fixpoint Up{Tpl= un e y TP L)

Example. In the example above we have Ifp(Tp)=

Tp2{L).

7 POSSIBLE WORLDS AND DECLARATIVE
SEMANTICS

Mow we establish the connection between classical modal
semantics and declarative samantics.

Faet. Each tree defines a model.

Proof. Given a tree (W.F,m) we pul R = wr g & £ {il.

Thearam 7.1 Let P be a program, G a goal, and %P
the universal closure of P and 3G the existential closure
of G. it YP = 3G is valid then there is a ground i.nstance
Go of G such thal Go € {Iip(Tp)w), where w is the root
of Hp(Tp).

Proof. Assume on the contrary that Go € {lfp(Tp},w).
Then for any o there is no medel obtained from Fp(Tp)
in which Go is salisfied. However Po is satisfiable for
avery o because Po e (fp(Tplw). So it is in

confradiction with the fact that ¥ P = 3G is valid,

8 RESOLUTION COMPLETEMESS BY FIXPOINT

In order to prove the completeness of the
SLD-relsolution some lemmas and theorems are
nacessary.

(Upward) Lemma 8.1 Let Aq,..,An,Qq,..,Qp be

definite clauses and G a goal. _

{i)  KfAy,...A, G then DAq,....0A, - OG.

(i) WAJ A0y b= G then
0A{,... 08, <ty <l=0p - <=6,

Proof. We only prove (i}, the proof of {i} i= similar.
Let there be k inferemces in the derivation

AqveesBgaQq4-.,0p - G. Each infarence comes from a rule
Gy Gy = Gjyq, for 1<ick. We replace Ciby OC;{HCjis
in {fq,...,An} and by <t=C; else. The correctness of the

resulting inference is warranled by the O<is-rule or by
lhe <ts<ls-rule, and thus we have build the reguired
derivation.



Theorem 8.1 Let A be a ground goal. A & fp(Te}
implies P - A. .

Proof. Suppose A £ ip{Tp). As the sequence
{Tp™M L)}, is a directed set there exists n such that A €
TpM(L). Adding sublormulas of A o the nodes in the tree

whenever we do a +-ﬁpa:auan it is possible to obtain a
tableau-like tree. Mow by Induction on its dapth and using

the Upward Lemma 8.1 we can show that P - A,

(Lifting) Lemma 8.2 Let P be a program, G a goal
and o a substitution such that G Is ground. P GIfP

G

Proof. The proof is as for the classical case, by
transforming each step of the proof P = Go into 3 new
slep of the proof P = G. This is dong by induction an the

number of operations which are necessary in each step
of the proof.

Theorem 8.2 Let P be a program. Let ip{Tp) be its
fixpoint and w the root of p(Tp). It Ga e (fp(Tp).w)
for some ground instance Go of G then P+ G,

Proof. Assume that Go € lip{Tpw), then P Go by

Theorem 8.1 and using the Lifting Lemma we have P =G,

2 MODAL SYSTEMS T AND S4

In this section we present schematically Ihe declarative
samantics for the systems T and 54 .

9.1 System T. The semantics of T is characterized by
models having a reflaxive accesibitity refalion, lis
resolution rules are those of Q plus:

T-rules: from  AG = Gyle} infer A, 4G = Gylo)

fram AG= Gy(s} infer DA Q= Gy(a)

In what concems the declarative semantios, we just
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redefine the following two operations an frees:
5. &A e (Lw) iff A e (Lw} orithere is an isuch that

A e (Li{w))

4'. fLw) o+ O0A = up{(LT{w)) + A} o {(tw)eA)

8.2 System S4. Models for S4 have a reflexive and
transitive accesiliity relation. The resolution rules are
those of Twhare we replace the D<t=-rule by:

S4-rule: from DAG = G4lg)

infer OA<1>G = <i> Gylo)
Declarative seamantics for 54 is more complexe than thal
for @ and T. As the accesibillly relation is iransilive, in
order to check if a goal G appears in a nede w of a tree
we must test if it appears in a descendant of w. The deplh
of the tree being unbound, in order to remain decidable it
is sufficent lo consider only descendants whose distance

from w is less or equal than v{P}.deg(G), where v(F) is

the cardinal of the set of sublormulas of P, and deg{G) is
the modal degree of G.
5'. 0A € (Lw) Iff there is k=0 and ij,..i, such that

A e {t.{flk{.n{fij (w}...} )}

4 (LwhDA=upen (Wi, in (it (Wil AL

10 CONCLUSION

We have dafined a declarative semantics that allows
us to consider modal Hom clauses as programs using
Skolem techniques. This semaniics was used 1o obiain the
complateness of a resolution inference mechanism. We
consider restricled class of formulas, prenex formulas;
howevar the method can be extended as in (Farifias and
Herzig 1888) to general gquantified formulas, In which
the D-operator I5 also ransformed wsing the same
tachnigues, bul we must note thal the readibility of the
madal expressions decreases. Using a closely related
methodology Wallen (1987), Ohlbach (1988) and
Auffray and Enjalbert (1988) obtained similar results.
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Throughout the paper there is a strong analogy with
tha classical case, where sets of classical Hom clauses
are considered as logic programs. The gist of this work is
the generalization of the lgast Herbrand mode! to the

modal case, It was achieved considering each model as a .

tree whose nodes are classical Herbrand model. The

associated complete latlice is obtained by a generalization
of the classical Herbrand Inlerpretation. Every nice

classical properly of classical Horn clauses can be
extended to the modal case. Resolution rules, declarative
gamaniics, and the completeness proof have been given
onty for the modal syslem Q. in order to facilitale
understanding. For the multi-modal versions of Q, T or
84 and systems with further restrictions on the
accessibility relation, the mathodolegy given in this
paper can be used.
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