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ABSTRACT

In this paper, we present a Knowledge
representation svetem based on a first-order
modal logic and give its deductive inference
system. The modal logic which we proposed here
is a kind of first-order dynamiec logic, and is
suitable for representing both structured
knowledge and metaknowledge., A& possible-world
model wused in modal iogic can be regarded as
struoctured knowledge, and modal operalors can
be regarded as operators to describe wvarious
kinds of properties on a possible-world model.
In order to describe knowledge structure
effectively and compactly, we introduce 4
‘concept, “"viewpoints of modalities". We also

" ghow that schema formulas available In  this

_framework are useful for the description of
metakrowledge such as property inheritance.
According to this idea, we consirnct a
knowledge representation system based on a
gubset of our first-order modal logic wvhose
synltax is restricted to definite modal clauses,
and give a complete deductive system which is
as effective as SLD resolution. This fomaliza-
tion offers a theoretical framework to a graph
type gtructured Knowledge Iike & frame system.

1 INTRODUCTION

One of the most Important problems in
artificial intelligence s +to design a
EKnowledge representation language im  which
knowledge structure and metaknowledgme ocan be
described effectively. Unktil now, lots of
knowledge representation systems have  been
proposed.  Roughly speaking, we can divide
them inte three classes: production systems;
frame systems; and first-order logical systems.

4 produoction system treais only the "if-
then-eisa" type of procedaral knowl edge,
therefore, the inference on a production syslem
is simple and can be done wvery effectively.
Bot itz ability for knowledge representation is
limited to some extent, since it is difficuit
to deal with complex structured Knowledge and
metaknowledge.

KN frame system has very flexible and
general expressive power. In a frame system, a
knowledge strncture is described as a graph
where a node corresponds fo a set of kKnowledge.
The inference on & frame system can be regarded
as a search over this graph;  therefore, iis
fast processing can, be available. Dut we
should note that a frame system, as proposed by
Minsky, is fundamentally a programming
paradigm. Unfortunately, it has no sufficient
theoretical basis, though lots of efforts have
been made until now. The semantics of
knowledge and the concept of inference in a
frame system are not so clear.

A system based on first-order logic has a
fundamental mathematical theory and clear
semantics. In these days, a lot of knowledge
representation systems have been developed by
this approach. But, historically, first-order
logic was doveloped in order o describe
mathematies. Therefore, it is suitable for
reprezenting properties which are invariable

~over time and space, but 1t has no convenient

mechanism for describing the sirociore and the
hierarchy of knowledge. This canses
inconvenience for practical knowl edge
representation. In order i{o design a knowledge
representation language Improving on this
defect, it is necessary to initroduce a
mechanism of treating both structured knowledge
and metaknowledge to first-order logic.

The structure of knowledge can be regarded
as a kind of space. We have proposed a first-
order modal logic [Iwanuma and Harao 1%87]
which cam Lreat both temporal and spatial
modalities. Our logic i& based on first-order
dynamic logic [Fischer and Ladner 1379, Harel
1979, 19841, and has some useful mechanisms,
which first-order logic alone does not possess.
In this paper, we will extend a knowledge
representation system based on first-order
logic by using a first-order spatial modal
logic, which 185 a subsystem of our logic. AL
first, we show that a possible-world moedel can
be regarded as structured knowledge and that
modal operators are very useful in describing
knowledge structures. We introduce a new
concept  “"viewpoints of modalities™, which
corresponds  to a target program of dynamic
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logic, This makes it easier to describe
various kinds of kKnowledge struckures. Also,
we show the usefulness of schema formulas for

repregsenting such metaknowledge az property
inheritance. Mext, we contemplate some
properties of a first-order modal logic in

order to establish a effective inference rule.
Im  accord with these considerations, we
construct a knowledge vrepresentation system
which is based on our spatial modal Horm logic,
and give a compiete deductive method which is
as effective as SLD resolution.

This paper ig organized as foliows: In
Chapter 2, we show the usefulness of: a
possible-word model; viewpoints of modalities;
and schema formulas. In Chapter 3, at first, we
distuss some problems to establish a effective
inference system to a first-order modal logic.
Mext, we give the formal definition of our
knowledge representalion system. In Chapter 4,
we give a deductive inference rule, &and show
its completeness and soundness. Also we show
some exampl es af guestion-ansvering
‘computations of an inference program in Prolog.
In Chapter B, we compare our system with other
knowledge representation systems based on modal
lagie. Chepter & Is the conclusion. ’

2 POSSIBLE-WORLD MODELS AND SCHEMA FORMULAS

2.1 Fossible-World Models and = Structured

Eriowledge

A modal logic is a logle for treating two
kinds of modalities: "necesslity" and
Mpossibility", In this paper, we introduce a
coneept, "viewpoints of modalities", and
ipvestigate its applicability to Knowledpe
representation. Viewpolints - of modalities
correspond to target programs of dynamic logic.
Mecessity and possibility under the wiewpolnt
'a" are expressed by the modal operators [al
and <a», respectively, and these have the
following meanings:

[alp <==> under the viewpolnt "a', it is
inevitable that p is true.

Larp <==» under the viewpoint *a', it is
pogaible that p is true,

Modal formulas are interpreted in A&
possible-world model, which takes the form of a
directed graph. One example of possible-world
mpdels is shown in Fig.l, where each node is
called a possible world. Formaily, a possible
world is an assignment of truth values to modal

formalas. In Fig.1, P is true in the world W.
and both P and @ are true in the world Wa.
Directed arcs represent relations, called
aecessibility relations, The labels of these

ares are names of these accessibilitles, that
ig, they represent viewpoinis of modalities.
We say the world w is accessible from the
world y under the viewpoint 'a' if there iz &

direct arec labeled by 'a* fromy to w, In
Fig.1, the worlds W, and Wz are accessible from
the world Weo under the viewpoint "A', and Ws
and Wa are accessible from Wo under the
viewpoint 'B*.

The truth wvalues of modal formulas are
defined in the possible worlds. We write w =
P if the formula p is true in the world w.
The truth walues of the formulas [alp and
carp are defined respectively as follows:

W i= [alp {==> p ig true in all worlds
which are accessible from w
under the viewpoint ‘'a®.

¥ I= {ap ¢(==) there is a world vy such that
¥ 1&g accessible form w under
the viewpoint 'a' and p i=
true in ¥.

In Fig.l, the formulas [AIP, [B1Q, <AOP
and <B»P are true in the world Wa. On  the
other hand, [A)Q and [BIP are false in We.

A possible-world model wilh vievpoints of
modalities resembles a frame system. 4
posgible world can be regarded as a module of
knowledge vhich corresponds to the concept of a
frame. The sgccessibility relations and the
viewpoinis of modalities correspond to
connections between frames and names of these
conneclions, respectively. Therefore, a
possible-vorld model can be regarded as a frame
system, where slot values are represented by
logical fermulas. 1In addition, inference rules
of modal logic can be regarded as those of a
frame system. The computation of the truth
value of 8 formula including modal operators
involves a search over & possible-world model,
where the wiewpoints in these operators
represent search paths in the model.

¥e show an example of mechanical theorem
proving on a possible-world model, which can be
considered as a question-answering computation

Fig. 1 Possible-world model.



for & frame system. Consider the possible-
world model in Fig.2. All of the formalas
holding in this model have the forms of
definile clauses, so inference like SLD
resolilition is possible. At first, we ask "How
many legs does taro have " to the possible
world (that iz, the frame) "animal™ by using
the following gquestion clause:

¥~ animal ! numpber legs(taro,¥y?.

The underlined body of this clause can be
unified with the head of the following clauses
in "animal™:

rumber_legs(x,y){--{ako™ num_legs (X,¥).

After the unificatiom, the body of the above
clavse changes to “{ako ynum_legs{taro,vi",
which should be tested at the mext step. This
unified body is the procedure which examines
whether "num_legs(taro,¥)" holds in someé world

which is accessible from "animal” under the
viewpoint  "ako™". "ako~ is the ‘converse
viewpoint of "ake"™, that is, the direction of

accessibility of "ako™ is the opposite one of
"gko". The cliause

num_legs{x,4){--¢{iaa »monkey{x)

holds in the world "monkey"™ which is accessible
from "animal™ under "ako™™, and the head can be
enified with "num_legs{taro,¥)". Therefore,
the next step is to determine the truth wvalue
of "{isa”:monkey(tarol”. It is enocogh to
examine whether "monkey{(taro)}" holds in some
frame which is accessible from “"monkey" under
the viewpoint “isa™". In the model, the
ITollevwing clawse holds in "taro“.

monkey{taro) {--

animal

move(x) -
nusber_{ega(x, y)+=-<ako">mm_legs(x,y)

ako ‘akp
bird nonkey

can_fily(x)e= can_rumx)s-
; num_legaCx, A)<isa” >monkey(x)
i=a *isn
Fauna ki taro
b rd{ hanakn )+ monkey( tara)—

Schema Axion AP == <isatako=AP

Fig. 2 Possible-world model,
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The further computation iz not NECEsEary,
becanse this is & wnit clause., Thus, the
computation  is finished. WNote it is possible
to give the anawer "y = 4" to the first

question, by using the uniflers constructed in
this compulation.

In general, it is very difficult and (has
not yel been achieved) to furmish an effective
inference system for full first-order modal
logic; but, we think, it is possibie for that
subsystem all of whose modal formulas teke the

“forms of definite clauses.

2.2 Schema formulas and Meta Enowledge

Metaknowledge is knowledge which deals
With KEnowledge. Therefore, if knowledge is
expressed by a formola at a certain level of
fomalization, then its metaknowledge should be
expressed by a higher-level logical formila.
Higher-order can deals with different level
formulas uniformly, thus it is & very natural
framework dfor treating metaknowledge.  But,
unfortunately, it is wery difficult to
construoct its symbolic computation rules. For
example, it is impossible to construct any
complete axlom systems [Miller 19831: also even
the unification proklem of second-order
formulas is not decidable [Goldfarke 19817].

Im this paper, we use schema formmlas to
describe metaknewledge instead of higher-order
formulas. Schema formulas are regarded as the
knowledge for formulas, that iz, metaknowledge.
Therefore, a knowledge representation system
based on first-order logic acguires the ability
for treating some metaknowledge, by
introducing a framework for treating schema
formulas. In order to treat schema formulas,
we use three Kinde of syntactieal wvariabies:
function, predicate and atom variables. These
variables express symbole which are names of
functions, _predicates or atoms. Kote they
don't directly express functions or predicates
themselves, They are used only for syntactical
matching between the sequences of alphahets.

We give an example to show the wusefuiness

of schema formulas. Consider the following
axiom schema in Fig.2.

AP (== {isa+akorAP

This formula implies that the property AP must

hold on the frame Wo if AP holds in a frame
which 15 accessible from we under the
viewponints "iga" or "ako". Therefore, this
expresses  the property of inheritance. For
example, in Fig.2, the formula “move(x)}" is
false in the frame "bird”, but is true in the

frame "animal" which is accessible from "bird"™
under "ako™., If the above schema formule is
assumed to be an axioem, then "move(x)" should
hold in "bird"; that is, "bird"™ should inherit
"move (x)}" from "animal®.
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Mechanical theorem proving with schema
formulas can also be easily estabilished. The
following inference is possible for the
question "how many lege does taro have %" o
the d{frame “taro”. At first, the question
clause is given as follows!

%~ taro |} num jegs{taro.v)

The body, which is underlined, can be unified
wWith the head of the above axiom schema, After
the wunification, Lthe body of the axiom schema
chanrges into

fisa+akornum_legs(taro,y).

The next step is to examine this body, which is
true if “pum_legs(taro,¥)" holds in a frame
which is aceessible from "taro" under "isa” or
“ako" ., In  the frame "monkey", there is the
clause

nim_legsix, 4){--Lisa™" Imonkey{x),

whose head can be wnified with the above body.
The unfinished tasks of this infersnce are the
same  af those of Section 2.1, As a result,
this inference will succeed, and the unifiers
through this computation will give the answer
"y=4" to the first guestion.

3. A ENOWLEDGE HERRESENTATION SYSTEN
BASED ON 4 MODAL LOGIC

3.1 System Architecture of a Knowledge

Representation Language

In this chapter, we construct a knowledge
representation system based on a first-order
madal legie. But, it 18 wery difficolt to
determine the truth values of modal formulas.
For example, in principle, it is impossible to
construct complete deductive systems for either
first-order dynamic logic [Harel 1979, 19843
and first-order temporal logic with eguality,
) {next) and <> (eventual) operators [Abadi
and Manna 1986a, Iwanuma and Harao 19871.
Also, meny researchers have invesktigated the
applicability of the resolution principle to
varions kinds of flrsi-order modal loglc [Abadi
and Manna 1986a, 1984b, Ventatesh 19851; bul
until mow, no fruitful result has  been
achieved.

Considering these difficultles, Aome
restrictions to the base logic of our system
are necesgary in order to establish effectlve
inference rules. A simple but useful idea 1is
to restrict the syntax of formulas to definite
(modal) elauses. This makes it possible to
construet an effective inference rule. We can
&ls0 observe that complex modal formulas aren'dl
S0 meaningful  im practical knovledge
presentation. One requirement of our system is
to have the ability for the natural description

of structured Knowledge, so we introduce &
framevork for describing knowladge structure,
that is, firnite skeleton of a possible-world

model which is defined by a finite set of
possible worlds and finite accessibility
relationa. Improvement on inferemce speed can

be expected as this consegquence, because the
system knows the finite skeleton of the model
in advance.

Also, the domain for variables iz assumed
to be common over all possible worlds, and the
interpretations of function conslant svyebols:
and wvarlables are independent of possible
worlds. These restrictions have been assumed
in the examples of inference shown in the
previcus chapter; therefore, we think they are
not too severe for practical Knowledge
representation. The wnary operator "(wv,)",
which denoles the worlds v, where its argument
formala must held, is introduced into our
system, besides the operators used in the
previous chapter. Hegular expressions over the
get of basic viewpoints are used in order to
CXPress various kinds of relations over
possible-worlds .

3.2 Syntax

Atomic symbols consist of: {frame name
symbels Vi, ¥z, ... ; link name symbols 4;, Az,

funetion constants ™, g7, ... 4 n=-ary
predicate constants p®, q@",... ; n-ary function
variables F®, G", ... : n-ary predicate

variables P%, @", ... ; and atom wvariables
AP, AQ, ... . MAlso, we use {, ¥, ¢, ¥, [, 1,
G Y 50 ® *+, =, =, U "any" and
"Frame_structure” as subsidiary symbols,

Definition.l Links and frame structures are
inductively defined as follows:

1Y If v, and v, are frame names and Ax is a

link name, then an expression Aw(v,,v,) is a
link.

2y If Lay .. ,Ln are links, then an expression
Frame_structore { Lz,...,L. } is a frame
structure.

Definition.2 A viewpoint owver a set of link

names [8 a regular expression over the set of
link names with the operators , #, <+, and
the unary oaperatoer "-".

Definition.d A knowledge |is
defined as follows:
1¥ A term iz an expression defined as usual
from individual varigbles, function constants
and fupction variables.
2y An  atom {8 an atem wvariakle, or an
eXpression defined as wusual from terms,
predicate constants and predicate variables,
3y If A is an atom, v, i85 & frame name and ‘a‘
is a viewpolnt, then

A, [ald, <axd, (vodA, (vodLalA, (vod<arh
are madal atoms.
4) If A iz an atom and MA.,....MA, are modal

inductively



atoms, then an expression

H {"Hﬁ]_.-.-.”sﬂ.ln
1z a definite clause.
5y If wy is & frame name and Cyi,...,Cn &re
definite clauses, then an expression

vi { Ci,.oasCh }
is knowledge of the frame v,. Also,

) any { Ci,...Cn }
ig knowledge of the special frame “"any". They
are denoled by Ky, and Kany, respectively.
6 [f KvigorssHon are Knowledges of the frames
Vi,-..4Vn Aappearing in & frame structure F,
respectively, and Kanse 12 a knowledge of the
frame "any", then an exXpression
{ Ev:.-~a.Kvn- Hnny H
is & knowiedge of F, and is denoled by He.
Ty I1f vy ig & frame name and MA.,...,MAn Aare
modal atoms, then an expression
T- vy 1 MAL, ... MA

is & goal clause for vy, and is denoted by G.,.

An expression is called a  schema
expression if it includes some of -fonclion
variables, predicate  wvariasbles or atom
variables. An expression is called a ground
exprezgion if it isn't & schema expreszion and
doesn'l include any individual variables.

We give an example of a knowledge
repregentation corresponding to Lhe possible=
world model of Fig.2.

Frame_structure ( .
ako(bird,animal}, ako(monkey,animall,
isaltaro,monKey), isalhanako,bird)

}

animal { move(X),
number_legs(X,¥){--<ako™ »num_legs(X,¥)
H

bird { can_£1y{X} }
monkey | can_runiX},
num_legs{X,4} {-- {isa”rmonkey(X)
}
hanako { bird{hanako} }
taro { monkey (tara) 1
any AP {-- {isa+akoAP }

We have construcied a simple inference
system Iin Prolog with the deductive Inference
rules stated in Sectiom 4.1. We will show some
examples of [ts question-angwering computakions
in Section 4.2,

3.3 Semantics

Pefinition.4 A model of a frame siructure F
iz a directed graph Gz = <¥p, Lp, Ep} with
labeled arcs, where Ve i5 the set of all frame
names appearing ian F, Ly is the set of all link
names appearing in F, and Ep: Ex -3 2¥FYF g
a function satisfyling the following conditions:
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17 Ep iz the set of viewpoints over L,
2) Bplhu) = § <vg,vy» | Al(vy,v;) EF }
3) Eplaibl= Epfa)o Exlh)
(compozition of relations)
4) Bpfa+b)= Epla)+Eer(b) {union of relations)
51 Ep(a™) = Ep(a)* (reflex and transitive
eclosure of a relation)
6) Epfa™) = { {wg,vy».] Cvy,vy> B Epla) }
{converse of a relation}

The frame structure F defines the skeleton
of a possible-world model. Gy iz abbreviated
as F if no confusion arises.

¥We consider a kKind of Herbramd interpre-
tation in order to simplify our discussion. We
refer the reader io [Abadi and Manna 1986b,
Harel 1979, Lloyd 1984] for other definitions
of interpretations. As stated in Section 3.1,
the interpretation of variables and funclion
constants i3 assumed %o be independent of
possible worlds. The interpretalion of
predicate constents must be dependent on
possible worlds.

Lefinition.5 Lel K be a knowledge of @ frame
structare F. The Herbrand universe Hge for Eg
is the set af all ground terms which can be
constrocted with the function constants appear-
ing in Ke. Also, the Herbrand base Bge for Ky
is the set of all modal atoems of the form
(o dp™ty, ..., tny) sunch that t;,...,ta € Hge
and both symbols v, and p™ fppear in F or He.

Definition.8 Let Ky be a knowledge of a
frame structure F. An interpretation 1 for Ep
iz a subzel of the Herbrand base Byr for EKe.

(W 0p™(ty,...,tn) € | means that p™(ty,...
+En)} i3 true in the frame vy, under the Inter-
pretation 1. We will extend the wsual defini-
tion of substitutions in order to deal with
function, predicate and atom variables.

Definition.T A subslitulion @ is a finile set
of the form { /8., ... . O/ By }, where
each pair of ofy/ 4. satisfies the following
conditions: .

13 o, is an individual variable and &, is a
term distinet from o ,, or

2} o, is a n-ary function variable and &3, is
an n-ary function constant or an n-ary function
variable distinct from ¢, or

) ofy i an n-ary predicate variable and a,
is & n-ary predicate constant or am n-ary
predicate variable distinet from ol,, or

1} ﬁu is an atom variable and 3, is an atom
distinct from ofy.

If E8 is a ground expression, then @ is
called & ground sobstitution of E. Composi-
tion of substitutions and the most general
unifier (mgu), ete. are defined as wusuoal
[Lloyd 19841, A substitution @ is called a
substitution over a knowledge Kg if all
constant symbols appearing inm & also appear in
Fe. All substitutions wsed in this paper are
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assumed to be substitutions over Ke.

Definition.8 We write I,v, I2¢ E  if the
expresgion E is true in the frame v, Iin the
interpretation | {for the knowledge Ke. The
truth walues of ground modal atoms are induc-
tively defined as follows:
1Y I,vy lse pP™(tysces,tn) iff
(Ve dp™{tyyeuastnd €1

2} I,wy l=p [alA i£f

1s¥e 1= & for all v auch

that <v,,vx>» € Epla)
3y L,vy I=¢ <ads iff

there iz~ a wu such that
{Vy,Vi? 8§ Epfal) and T,vy i=p A

4} I,'l":. ‘=p {waldA i ff 1.%; l=¢ A
8} I|'|||':|_ I=p {?j}[ﬂ.}ﬂ iff
I,we l=p & for all v such
that €v,,v.>» € Epfa}
6 I,vi i=p (wyddadA iff
there is a v such that

¥y, Ve € Ex{a) and [,vy 1=p A
The truth valoes of definite clauses C = A¢--
MAyy:a.MAn are defined as follows:
7 1,vy i=p AC=-MAy,...,MA, 1ff
Tor all ground substitutions & of C ,
if Iﬂ?l l=p MA: B P I.\rl l2p H.hnEI,
. then [,vy i=p A8
We write I !=¢ Huy if the knowledge Kvy, = v,
{Ciyun.yCal i true in the interpretation 1.
8 1 imp Hey iff
I,vy izp Cy for all €5 € Hey
Particularly, we define the truth value of the
knowledge Han, a8 follows:
8} 1 1sp Kany iff  I,v, l=p C,
for all vy € Ve and C; € Kansw
We write 1 l=p Ep if the Knowledge Hp = |
Ev:ll'li v 1Kwm, H-nn:r ¥} oof thE frame structure F is
true in the interpretation I.
13} 1 i=¢ Kg iff I i=p Evy for all K., € Ke,
- and [ l=p Kany

Fonction, predicate and atom variables are
treated in Definition B-7). The values of these
variables are restricted to ‘the constant
symbols  appearing in  He, because all
substitutions im this paper have besn assumed
to be substitutions over Ee.

Definition.8 Let Er be a knowledge of F and
Gey= 7= vy I} MAy,...,MAn be a goal clause for
Vi, Guy 8 sald to be true in the mode! | on F
for Ky 1 Gey satisfles the following
eondition:

For every ground substitution 8 of Gu,,

l,"fj I=r H.ﬂ.j_ﬂ. T I.V| |=p MALE

Gvy is sald to be valid on Er if G, is true in
&ll models on F for He.

Definition.10 Let KEp be & Knowledge and Gy, be
a goal clause. A correct answer sSubstitution
B for G,y on Ke is a substitution for
varigbles of Gw, such that G..8 is valid on Ke.

4 A DEDUCTIVE SYSTEM

4.1 A Deductive System and Its Soundness and
Completeness

We give a deductive system for our
languesge and show its spundness and complete=
nesg. Though it is possible to translate our
Enowledge representation to an equivalent many-
sorted Proleg program, we will investigate a
variant of SLD resolution here, because it is
directly applicable to our language.

Let vy be a frame name and MA
be a modal atom. Then we define the modal atom
(v, )MA ag follows:

(v JHR = {IUJJHB
vy IMA

if MA has the form {v;)MB
-otherwise.

Lepma.) Let e be a Knovledge, v, and wvu be
the frame names appearing in F and MA be a

modal atom. Then the following statements are
equivalenk:

1y & goal 7= wve |} [veoME iz walid on Ee,

2) A goal 7= v 1] MA - is walid on He.
Definition.]12 Let Ep be a knowledge, Gl,= 7=
vy P HALI"'I qu'h‘u!--j HA}: be a Eﬂﬂl a-ﬂd-
C31+1 be a set of definite clauses, Then the

goal GIT' satisiving the following conditions
iz saild to be the resolvent obtained from GL,
and C85,.; using the mgu 9... on the selected
atom MAL:
1} If MAn, is an atom B, then
a) €5;.: i & set consisting of exactly one
clause A{--MBi,...,MB, of Ky oF Hany,
bl 8i.y i5 & mgu such that BBy.;= AB,.y.
ch GE}II = T=vy b O (MAy, ... MAR-1 s MBi....,
HBlll_ Hh‘l,ill!mk} 31_1-11
2) If MAm is & modal atom (v,)B, then
&) CHi+1 is a gat consisting of exactly one
clause AC--MBy,...,MBs of Hey OF Hane,
b} By I8 A mgu such that B .:= ABye1.
e) Gift = Py, 1| (MAz e MAm—g, (Vv IMBE,,
vasg (VyIMBy, MAmezy e MAk) Byay.
3y [f MAm i5 a modal atom <a>B  {or {v,;)<a>B )
and v, is a frame such that <v,,v.> € Epia)
{respectively, <v,,v.> & Eplal), then
a) C8y.: is a set consisting of exactly one
clause A{--MBy,...,MB, of K.z o Eans,
B} Bi.1 i3 a mgu such that BOy.a= A81.1.
e} Git o= Tevy M (MA, ...  MBm-s, (VoIMH;,
""I'I{v'l'}“ﬂl'll Hﬁmit;---,mh} B[--j_-
4=1% If MAn is & modal atom [a&lB (or (¥v,3[alB )}
and there is no frame v such that <v,,v.> €
Ex(a) (respectively, <v;,v.> & Ep{a)), then
8} C8i.; is the empty set
b} By.: is the identity substitution

) Geil = P- v 11 (MAa, ... MAm-1,
] MAmey g oee g Milged
4=2) If MA~ is & modal atom [alB (or (v,)}[alB}
and Vigesas¥Vy are all frames v, satisfying

the condition <w,,v > € Epfa} (respectively,



Vi, V> € Ep(ald)y, then .
a) C3y+1 15 a 86t {Cyry...sCun} such that
each Co belongs to Bur 0r Kanx.

Suppose thalt each Cur iB Avr<--H31?r....,HE%K.
Then
B} By.1 I8 a mgu such that
BE'Ii':l..’= -A-\!:,E;tll" sas B .ﬁ.,,..ﬂ-l +3

e) GET2 = 9= v, 10 (MAz,... MA;-a,

LOvadMBaye oo (VL IMB, 3, 400
[ Vi M;---gl‘mﬁﬁnﬁ]n
Hﬂlu—:n --jHﬁ-K} H|-[+

Definitiopn.13 Let B be a knowledge and Ges be
& goal. A derivation of Ges on He consists of
a sequence G985y 5 Gey, G¥i, G5, ... of goals,
& sequence C5:, €8z, ... of sels of clauses and
& sequence 8y, @z, ... Of mgu's such that

L1t is a resolvent obtained from Gi: and CSy.
using ®,.; on a selected atom in Gi, . A
refutation of Gw, on Ke i3 & flnite derivation
of Gy on Er vwhich has the empiy claunse as  the
last goal in the derivation.

Pefinition.l4 Let e be a knowiedge and Goq be
a goal. A computed answer substitution for
Ger on Ewx i5 the substitution obtained by
restricting the composition ®3...8, to  the
variables of Gy, where 8i,..., 8, i5 the
Eﬂquence of mgu's in & refutatlon for Ge: on
s

We can prove the followings by Lemma.l,
though their proofs are omitted here. We refer
the reader to [Iwanuma and Harao 1988, Lloyd
19841 for detailed proofs. J

Theorem.] (Soundness of computed answer substi-
tutions) Let Ep be a knowledge &nd G, be a
goal. Then every computed substitution for Gu.
on Kr is & correct answer substitution.
Theorem.2 (Completeness of computed ansver
substitutions) Let Ee be & knowledge and G,
be a goal. For every correct answer substitu-
tion & for Ge. on Ee, there iz a computed
answer substitution ¢~ for Gv, on Ep and a
substitution ) such that & = o} .

4.2 An Inference System in Prolog

We have constructed a simple inference
system in Prolog., We demonstrale some examples
0f guestion-answering computations of  this
gystem over the knowledge shown in Secliom 3.2.

Dl T —————————————— L —

= animal || number_legs(taro,Y).
Y = 4;

no

T~ taro |l number_legs{tare,¥). =—re= (2]
Y = 4;

o
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7= bird i1 AP. === (3D
AP = can_f£f1ly(X)

AP = move(X);

AP = number_lega(taro,4);

no

?- taro i} [(isatako)™JAP. m=—== {4}
AP = movelX);

AP = number_legs{taro,4);

no

¥= FX || can_fly(hanako). ===== {5}
FX = bird;

FX = hanako;

no

The first two questions were explained in
Chapter 2. The 3rd question iz what holds In
the frame "bird". The answers are "can_fly(x)",
"move(X)}" and "number_legs{taro,4)". The last
two answers are inherited from “animal®, by the
gohema formula AP <{--{isatako»AP". The 4th
question is what holds in all frames which are
siper-concept frames of "taro". The answers are
ones which holds in the top frame "animal"™. In
the &th guestion, we ask where the atom
"can_fly(hanako)™ holds, by using a frame name
varigble FX, which is not treated in this
paper in order to simplify our discussion.

The above computations are faithful to the
dedective method stated im Section 4.1, our
sysiem has some modes which control the search
gpace of inference. Formal discussion about
those modes are omitted te simplify  our
discussion, though they are possible. We show
some  examples. The command  "inf_mode™
instructs the system to restriet the search
gspace for solving a goal "%- v, || Body" to a
get of possible worlds whosze distance from v,
is equal or less than 1.

= inf_mode(restrict,13.

yes
- bird 11 AF. === (G}
AP = can_fly(X);

AF = movelX);

na

?- taro || [{isa+ako)™]AP. ————= {7}

P = num_legsitaro,4);
no

Compare the asnswers of the 6th oquestion
with those of the drd aquestion.
"number_legs(taro,4)" is dropped here, because,
in order to infer “number_legs(taro,d)}”, it is
necessary to search the worlds "monkey™ and
"taro" whose distance from "bird™ is more than
1. Also, the answers of the 7Tth guestion are
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oneg which hold in “"monkey™, and are different
from those of the 4th quesiion. Nole Manimal"
is at a distance of 2 from "t{aro".

5 MODAL LOGIC AND ENOWLEDGE REPRESENTATION

Foughly speaking, there are two kinds of
applications of modal logie to Knowledge repre-
sentation. One of them is represented by the
logie of belief and knowledge [Fagin et al.
1984, Levesque 19847, where metdknowledge such
as "believe" or "know" are represented by modal
operators. In this case, the concept of
possible worlds is hidden from knowledge
represenlation. The other one is the research
such as [Cerrc 1985, Makazima 1985, Sakakibara
19861, which introduce the concept of possible
worlds intoe knowledge representation systems in
order to describe Knowledge structures. Modal
operators are used for describing properties
over the structure. Our research belongs to
the latter category.

In other systems, the concept correspond-
ing Lo our "wiewpoints™ is not invesligated.
Congsequently, our system furnishes a stronger
capability for deseribing knowledge siructures
than do others. Also, there are few research
efforte concerning: the metaknowledge over
knowledge structure; formal inference roles:

and their soundness, completeness and
effectiveness.
Sakakibara (1986) presented programming

language based on a modal logie. His idea is
similar to ours. But he proposed only an
outline of his language and (ts programming
siyle. He mnelther discussed the formal
semantics of his language nor gave any formal
inference system. In his language, the names
of aeceessibility relations are assumed to be
unique, g0 the wviewpoinis of modalities
proposed in this paper ¢an be regarded as its
extension. Also, the modal operatoers ]
{necessity) and <> (possibility) are allowed to
be at the heads of definite clauses in his
language., They are used to express property
inheritance over possible worlds, But the
-operator <) at the head doesn't guarantee the
uriguensss of models of knowledge expressions:
that is, it has the effect that some knowledge
expressions may have some minimal  models
instead of exactly one least model. Perhaps we
can construct a linear resolution method that
refutes a goal iff there is a minimal model
making the goal wvalid. But we conjecture that
itz computation will become wvery complex,
therefore, this  approach seems to be
Impractical. In thls paper, we don't allow the
operator (> at the head of & definite claunse in
order to achieve effectivensss of inference,

6 COMCLUSION

In this paper, Wwe have showWn that
struckured knowledge and metaknowledge can be
naturally described in our knowledge
representation system, which is based on a
first-order modal logic. Also, we have given a
complete deduckive system which iz as effeclive
as SLD resolution. Its simple inference sysiem
hazs been constructed in Prolog.

In the future, we will investigate the
applicability of higher-order types io meta-
Knowledge representations. Also, we have &
plan to investigate the possibility of
parallel processing in a processor network llike
a cellular machine, in which each processor
corresponds to one possible world.
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