PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. & ICOT, 1958

MODULAR AND COMMUNICATING OBJECTS IN SICSTUS PROLOG

Mabiel A. Elshiewy

ELLEMTEL Telecommunications Systems Laboratories”
Box 1505, 8125 25 Alvsjs, Sweden

ABSTRACT

An experiment to inte the object-oriented paradi

of programming into SICStus og is reported. This
integration suggms the capabiliies of encapsulaton and
organisation of large-scale logie programs, for product
software development, using hierarchical smroctures and
encapsulated inheritance mechanisms and making dis-
tinction between code inheritance and behaviour inheri-
tance. Making use of SICStus Prolog facilities to delay the
evaluation of calls waiting for variable bindings, systems
can be described in terms of asynchronously communi-
cating objects with private memory and internal states
changeable in response to external messages. Buffering and
arbitration of incoming messages are realized by stream
communication and merge with constant delay,

1 INTRODUCTION

Many product software applications are complex and
large and are often composed of different com ts and
program modules. To allow logic programming of such
applications, intellipent mechanisms and tools are required

1o s?ispm modular design of their components (modules)
and also to support modification, reuse and interconnecting
of the component modules,

In the object-oriented paradigm of programming,
systems are described in terms of eomputational entities
called objects which are interacring by sending MESSAZes [0
each other. Each ohject encapsulates its own private
memery and computational behaviour. An ohject is an in-
stance of a class which groups all similar objects and
defines their structure. Classes can be organized into
hierarchies. An object belonging to a class in the hierarchy
inherits attributes of all objects on the higher level.,

This MADET presents an object-oriented logic model in-
tegrated with and lgl_rgemmmd in SICStus Prolog [Carlsson
and Widen 1988]. This integration supports capabilities for
organizing large-scale logic programs by the use of
hierarchical structures and inheritance mechanisms. The
object-oriented message passing paradigm also allows logic
programming of many systems which are naturally
described in terms of asynchronous! communicating
pbjmcls with private memory and in states changeable
In response to external messages. The integrated system
provides & stronger support for encapsulation which is an
lportant requirement of product software developinent.

* This work was dong whie The author was visiing al e Swedish st
af Computer Science, SICS. L . e

Many attempts to integrate the object-oriented paradigm
into logic programming have been reported using either
Prolog, c.g. E\‘.‘.%hiknym 1984, Zaniolo 1984, Gullichsen
1985] or parallel logic languages, e.g., [Shapiro and
Takeuchi 1983, Kahn et.al 1987, Yozshida and Chikayama
1987, Davison 1988]. Proposals extending Prolog either
failed to support the encapsulation of state changes or made
severe restrictions on the use of the concepts of logic
programming.

The object-oriented. style of programming using
parallel logic languages, first explored in [Shapiro and
Takeuchi 1983], provides encapsulation of objects by
describing objects In terms of tail-recursive processes. The
state of the object is given as a sct of arguments to the
process which may change for each recursive call to the
procedure, Messages are communicated berween objects
through partially instantiated shared variables {streamsi An
object is suspended until it receives a message. A simple
inﬂeritancc mechanism is provided allowing an
unrzcognized message to be passed over a stream con-
necting the recelving object to the inherited object (explicit
delegaton w paris).

It has been argued [Kahn and Miller 1987] that a
Prolog system which provides either a wait declaration or a
"freeze” primitive can support object-oriented programming
in a manner similar to parallel logic languages. SICStus
Prolog provides both a wait declaration facility and a
“freeze” primitive in addition to other primitives useful to
support u]ﬁ]em—ntienmd programming [Carlsson 19877,

The approach presented here is similar to the one
wnﬂaﬂ by parallel lﬁic langnages with the main
itference that it supports full encapsulation [Snyder 1986]
which means that not only instance variables and internal
behaviour are hidden from the clients of a class but also the
inheritance hierarchy it might make use of. Only the
methods of a class may be inherited. Full encapsulation
provides greater support for a strong program modularity,
in pardcular, for reusability and dynamic modificaton
( ition) of program modules,

In this paper, an overview of the integrated system is
given describing its major features illustrated with
examples, The implementation strategy is described and
shown to be simple and efficient with a minimum of
overhead.

2. CLASSES AND INSTANCE BEHAVIOUR

To preserve the full benefits of encapsalation, a class
defines an abstract external interface which only eontains



the set of messages accepted by instances of that class. The
abstract external interface serves as a contract berween the
object and its clients. Each object is an instance of one class
and the object may receive messages from a multiple of
dynamically ereated client objects. An object is known 1o
each of its clients by a mail box (stream) associated with it
on which the clients may send contracted messages.

Multiple streams are fair merged into the server object.

A message has & name and (possibly) & collection of
arguments. Making use of the logical variable concept,
some of the arguments of a message may be variables to be
bound by the object receiving the message which is referred
to as @ teply from the object to its client. The class
definition contains the appropriate code which describes the
computations to be ormed in response 1o the messages
received by each object.

A new class is defined by its name and the abstract
external interface to its instances. In the present
implementation it is syntactically described using the
fuIaning declaration:

- class(ClassNama, ListOfMessages, InitCmds).

ListdfMessages defines the protocol of messages to
be accepted by the instances. A class declaration does not
provide any further information about instance variables or
use of inheritance. Such information is fully encapsulated in
the class and its instances. It may, however, be required 1o
allow creating an object with different initial data prompred
by the creator of the object. This is provided by the abstract
interface declaration of the class in the third argument
InitCmds which defines the set of commands to be
supplied by the creator of the object to enable alternative
initial states for the created object,

A simple example of & class definition for a queue of
elements is given below:

= class|queue, [engueus/, dequeusl, is_emply/1,
: lengthi1, display/1], ]).

which means thar an objece of guene may accept five
messages all with one ment and no initialization
commands are provided. If it is permitted to define an
arbitrary initial state when creating a new instance of the
class queue, the designer of the class may provide the
following abstract external interface:

- class(gueue.[enqueus/t, dequeus/t, is_emply/1,
length/t, display], [with/1]).

where with/] may représent & command with an
argurment which contains a list of elements to be queued as
an initial state of the queue instance. The designer of a class
must provide a definition of the procedure fnirialize/2
specify the inidal state of class instances, The first argument
of initialize/2 is the list of initalization commands which
can be empty and the second argnment is the initial state
{variables and data structures) of the object. To define the
inidal state of a queue object, initialize/2 may have the
following definition:

initialize([], [9(0, @, Q).
initialize([with(L)], [InitQ]} =
mik_gueue(l, (0, Q, Q), InitQ).
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mk_gqueua([], Q, Q).
mk_queue{[E|Es], g(N, F, [EIR]), Q) -
N1 is N+1,
mk_gueue(Es, qiN1, F, R), Q).

The initialization procedure defines the the siructure of
the initial state gnd its valoe is either defined by default (no
initialization commands are entered) or according Lo some
given initialization commands. In our example, the state of
a queue instance is represented by a difference-list structure
which is empty and of length '’ by default. Responding to
an initialization command with'], a call to mk_quene/3 will
resuit in a quene where the elements given as an argument
to the command with/] are enguened.

The computations required to respond to messages are
defined in terms of calls lo local andfor universal
procedures. Universal procedures are either built-in or
library defined procedures (to be described later). A quene
object may behave according to the following (less-
verbose) code:

queue{q(N, Qh, [E|Q1]) =

enqueue(E) ==  N1isN+1,
queua{g(M1, Gh, Qt)).
queus(g(N, [E|Qn], Qt) -
dequeus(E) => NiisN-1,

gueus(g(MN1, Qh, Gt)).

quaua(Q) -
{ is_emptylyes) =>Q=ql0,_ _)
v is_empty(no) == CQ=qg(N,_,_J . N>D
' angm{N} = Q= qlN- — J
. displayil) == portray(C, L)
)
quewue(Q).

pﬂmﬂﬁf{q{ul Qp n]l D}'
portray(a(N, [E|Qh], Qt), [E]L]} -
M1 is N-1, portray{g(N1, Qh, Gt), L).

In the abuu:gmg:am, the communication streams are
ahstracted away. Only the state of the object is given as an
argurnent to the main procedure describing the behaviour of
quene instances. The main (message dispaiching) procedure
has the same name as the class defining it. The infix opera-
tor '==f2' i5 introduced of which the left-hand argument is
a message and the right-hand argument is the computations
performed in response to the message.

To flag the end of a class definition, the following
declaration is used:

= endclass(ClassName).

This is translated o the following SICStus Prolog
rogram in which two exira arguments are added to the
E and the recursive calls of quene/I abowve, the first is
the inpit sream on which messages afe received from
outside and the second is the SelfSrream on which
messages to Self are seni. To enable a queue object to be
activated {waken-up} DI:H when a message arrives on its
input stream, SICStes Prolog's wait declaration is used.

- wait queus/3.

To evaluate a call to a procedure, with a wais
declaration, the first argement of the call has to be
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instantiated (bounded to a non-variable term). The call
reduction is, u@wnsz, delayed until the argument is bound
tc a non-variable term possibly by another call in a
conjunction of calls.

queue({lenqueus{E}|CS], 55, q(M, Gh, [E|CH])) =

M1 is N+1, queus(CS, §5, g{N1, Gh, Q1))
queue(ldequeue(E)|CS], S8, q(N, [E|Ch], Qt)) -

N1 is N-1, quaue(CS, 55, q{N1, Qh, Qf)).
queus(is_empty(yes)|CS], 55, Q) -

- Q= g{0,_, _), queus(C5, 55, Q).

quaue(fis_ampty(no)|CS], 58, Q) -

Q=giN, _, ), N =0, queus(CS5, 55, Q).
gueua([length{N}|CS], S5, Q) -

Q =g{N._, ), queus{C5, 35, Q).
gueue([display(List}jCS], S8, Q) -

portray(Q, List), queus(CS, 55, Q).
queue([], [l Q). :

The designer of a class has the freedom to choose the
names of the local procedures in the class definition, To
avold multiple name conflicts, each local procedure name is
prefixed by the name of its class a.ttachex:f' tov it by the oper-
ator /2" when translated and loaded into the system. In the
example given above, the local procedures are named:
queug.initializel2, quewe:mik_guene3 and quewe portray.

The fact that a class defines a fixed zet of messages led
to the decision that if an undefined message is received by
an object .I:m!as ige unification failed), the result of the
computation is failure. No switching to a default method or
handler is provided. Handling exceptions and incomplete
knowledge is, however, a subject under study,

3 MAKING INSTANCES

_ To avoid the need for meta-class hierarchies, an
instance of a class is created by a call to the (system-
defined) procedure make instance/? which behaves
according to the following program:

make_instance(CN, EMS, InitCmds) :-
make_instance(CN, EMS, InitCmds, SeliS).

The call takes three arguments: CN, the name of the
class to which the instance belongs, EMS, the external
stream on which messages are sent to the instance and
InitCmds, a list of initialization commands (possibly
empty). Identifying a self sweam SelfS, make_insrance(3 is
reduced to a call to make_{nstanceld:

make_instance(CN,EMS,; InitCmds, SelfS) -
ensure_loaded{class{CN)),
merga({EMS, Inputs),
priority_merge(SelfS,InputS, IMS),
ancestors{CN, As},
form_instances(As,CN,IMS,SelfS, InitCmds),

form_instances([], CN, IMS, SeliS, InitCmds) -
initialize(CM, InitCmds, InitState),
Instance =.. [CN, IMS, SelfS| [nitState),
call{Instance).

form_instances(lAs, CN, IMS, §5, InitC) -
inherit_instance(lAs, InitC, 88, DS, Inhing),
Initialize(CN, InitC, InitState),
append(DS, InitState, TArgs),

Ins =. [CN, IMS, 55| TArgs),
activate{[Ins|Inhins]).

The definition of the class with CN is loaded (if not
already there).

The Externalde Stream EME is defined as a splic
srrear [Brand and Haridi 1988] which allows the instance
to receive messages from a multiple of (dynamically
created) client objects. A split stream § is a data structure
with the following selectors: (ff, [H(51] and splirff81, ...,
Snf), where 81, ..., Sn are split streams and H iz a term).
To distinguish between split streams and conventional
streams which are represented as a lst of elements, the
latter will be called single stream in the sequel, '

Calling the system-defined operator merge/2, messages
received on the split stream EMS are merged into the single
frpurS stream The operator merge/2 is implemented so that
it guarantees constant time access using a destructive
gssignment primitive @rnvided in SICStus Prolog) in a
similar manner to that given in [Shapiro and Safra 1986].

Each instance possesses its own SelfStream on which
the object itself or any of its ancestors may send messages
to Self. The system-defined operator priority_mergel3 is
called to merge both the SeliS and the InputS Streams into
an InternalMessageStream /MS on which messages from
Self¥ stream are given priority (o appear.

The goal ancestorsf2 is evaluated o collect the names
of immediate ancestors of the class. An empty list of names
is produced if no inheritance is defined. In suoch case,
calling the goal form_instances/5, the inital state of the
class instance is defined by evalvating the goal
CN:initialize/2 using the code given in the class definition.
The goal mpresmtin%ihe ohject is then constructed having
the argnments: FMS, SeifS and the fnitialSeare of the object.
A possible scenario for the creation and manipulation of a
queue object may be as follows:

make_instance{gueus, C8, []),
CS = [enqueue(l), is_empty(R), dequeue(E),
length{M}, engueue(2} |C51],

 If the class inherits the behaviour of single or multiple
immediate ancestors, the goal form_instances/5 is evaluated
first to build up an inheritance tree of instances of all
ancestor classes and then o aetivate the resulting instances
as will be shown in Section 5.

4 DYNAMIC ENCAPSULATED INHERITANCE

One of the most important features of object-oriented
programiming is the concept of sharing knowledge between
related groups of objects. An important observation is that
sharing between objects is used for two distinct purposes:
either to only share code to be reused by different classes
with no reference to an external behaviour, or to share bath
the code and the behaviour (state variables and data struc-
tures) of different classes,

4.1 Code Inheritance

If the primary use of inheritance is motivated only by
code reuse, the concept of universal procedures (methods



is provided. A universal procedure is cither a built-in
procedure or a library procedure. A [ibrary groups a
collection of procedures in code form only. It is different
from a class in that a library has no behaviour in the form of
instance variables or local state and that no instances can be
created for a library.

Wo special declaration is required for the use of built-in
procedure calls. The library system is, mainly, based on the
medule system ided in Quintus-Prolog version
2.0 [Quintus 1987]. A library module definition begins
with a declaration of the form:

= library(NameGilibrary, PublicPredList).

PublicPredList is a list of predicate specificatdons of the
form NamelArity.

If some library defined procedures are used by a class,
a directive in the following form is required in the class
by

= use_library(MNameOflibrary).

When an instance of a class, which contains this
directive, is created, all the procedures stored in the libr
named NameOfLibrary arc loaded, if not already there, If a
restricted number of res in the lbrary is required,
the following directive may be used: ;

- use_library(NameOfLibrary, ProceduresList).

where ProceduresList is a sequence of one or more
elements of the form ProcedureNamelArity. For example, if
from & library named arithmetic which contains procedures
for manipulating arithmetic operations, oaly the procedures
sguare/2 and divizible/3 are required, the declaration
{directive):

= usa_library{arithmetic, [square/2, divisible/3]).

is entered according to which the code of the two proce-
dures i5 loaded from the library arithmetic if not already
loaded before. The code from a library is loaded only once
even if it is used by different classss in the running system.

To avoid name conflicts, the same convention used for
local class procedures is used here, namely, prefixing the
name of the library attached to the name of the procedure by
the infix operator ':/2",

The mechanism, adopted here, to share semantic
knowledge (including both behaviour and code) is based on
the concept of encapsulated inheritance [Snyder 1987].
Each object is an instance of a class. If a class is defined to
share semantic knowledge with an ancestob class, an
instance of the ancestor class is created and its input stream
is made known to the descendant object. Any message
which cannot be processed by the receiving descendant
object is delegated to the ancestor object through the
DelegateStream connected berween the two objects.
Externally, all objects in the inheritance hierarchy are
viewed as an indivisible object. All access to inherited
behaviour of objects is mediated by the child objest, .

The following declaration is required in the definition
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of a class if inheritance of the behaviour and the code of an
ancestor class is required:

- inherits(Ancestor, InhMessages, InhinitCmds).

The designer of a class is allowed to choose a subset of
the abstract external interface defined for the ancestor class,
The second and the third arguments are set to 'all' if all
messages and initialization commands are included in the
inheritance. If, otherwise, a subset of the messages and/for
the commands are required, they must be defined explicity.

Multiple inheritance is defined by multiple declarations
of the form above. The order of multiple ancestor classes is
irrelevant. Messages are delegated o the appropriate an-
cestor because of the advance knowledge of the ancestors’
external message interface.

5 TRANSFORMING THE INHERITANCE TREE

A call wo imherit_instance/S (defined in Section 3 above)
produces instances for all inherited classes in the hierarchy,
all with a common SelfStream and connected to each other
through single  DelepareStreams.  The inheritance mee is
represented as a conjunction of calls to the different
{dispatcher) procedures representing the different objects in
the inheritance hierarchy. The conjunction of calls is
viewed, externally, as a single indivisible object. All
interaction with external clients is handled by the child
instance.

In the case of using single inheritance, i.c., cdch object
has at most one ancestor, the inheritance tree is shown in
the figure below.

SelfStream

552

Delegate Streams -

Making use of the known abstract interfaces,
delegation to ancestor instances is generated, automatically,
the pre-compiler, There may, however, be need to
explicitly delegate a message to the immediate ancestor
class, e.g., processing a message by a descendant requires
sending a message to the immediate ancestor o perform a
sub-computation. The system-defined primitive ‘super/l’ is
provided for this purpose. A call super{Message) adds the
argument Message to the DelegareSiream connected to the
immediate ancestor ohject.

Using multiple inheritance may give rise to the
following rwo problems:

a) a class may inherit messages andfor initialization
commands with the same Name/arity from more than one
ancestor class.

. b} the inheritance tree may contain multiple instances of
the same class, ie., two or more classes, higher in the
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hierarchy, may inherit the same external interface of a

common ancestor class,

_If several messages andfor initialization commands
with the same Name/Arity appear in the different external
interfaces of multiple ancestors, it is the responsibility of
the inheriting class designer to resolve any conflicts. The
designer may rename the messages in the external interface
of the descendant class or exclude the undesirable MESSAZCS
from the inherited external interfaces of the ancestor
classes. Another flexible approach is to use the system-de-
fined primitive ‘super/2' to E“PHEEF delegate a message to
a specific i iate ancestor, A ¢

super{immedigteAncestor, DelegatedMessage)
adds the DelegaredMessage to the DelegateStream con-
nected to the instance of the given DrmediateAncestor,

One of the reasons for the possible appearance of
multiple Name/Arity in the external interface of a
descendant class is the existence of multiple instances of a
common ancestor class in the inheritance mee. Another
related observation is.that messages processed by
procedures defined in the common ancestor class must be
delegated 1o each instance of the common ancestor, To
avoid these problems, multiple instances of a common
ancestor class are replaced by one single instance. This
solution also avoids duplication of instance variables and
the related problem of keeping them updated. To allow
delegating messages from the different descendant
instances, the delegation streams connected to them are
merged into one connected to the new common instance.
Assume, for example, that a class €1 is defined in terms of
inheritance from two classes C21 and C22 and both
ancestors are defined so that cach of them inherits from the
same class C3. The resulting inheritance tree contains two
instances of the common class C3. This tree is transformed,
further, to the modified tree shown in the figure below.

SelfStream

Note that each descendant object still possess its own
identification and view of the (common) ancestor object
keeping the delegation stream connecting them unchanged,

5.1 Descendants are Privileged Clients
_ An important observation related to multiple inheritance

and the case shown in the fignre above is that if during the
processing of a message in the descendant object C1, the
message may be delegated to each of the two ancestor
objects C21 and C22, respectively. Processing the
responses in each object may include sending the same
message to their common ancestor C3. This leads to
redundant computations in the common ancestor's object,
This property is highly undesirable, in particular, if the
computations have any side effects,

To avoid this problem, a general dnsién inciple is
defined in [Carnese 1984] as follows: "Code which muiy be

. useful for methods of descendant [objects) should not be

defined in procedures which invoke methods of ancesior
[objects]”. .

The solution adopted here, to solve this problem
preserving the full encapsulation property and not exposing
the inheritance, is that the designer of a class may consider
that the class can be inherited by other classes. Descendant
classes may be allowed the privilege to greater access to the
internals of the class definition, ¢.g., access to the direct
evaluation of local procedures in the ancestor class. The
designer of a class may, therefore, provide a set of
messages to be accepted and processed only if sent by a
descendant instance. The set of messages cannot be a part
of the external interface of the descendant class and Eannot
be inherited further 1o any descendants of the descendant.
The following declaration in a class definition describes the
protecol of privileged messages:

- descends{ListOfPrivilegedMessages).

where each member of ListOfFPrivilegedMessapes is of the
form NamelArity.

This solution allows the designer of, e.g., the class
C21 to factor the computations performed in response’to the
message, Part of the computations is sending a message to
the ancestor to be processed there and another part is calling
an auxiliary local procedure to perform the additional
computations not performed by the ancestor. The point is
that the descendant object is provided the possibility 1o
send a privileged message to the ancestor object whose
response is the evaluation of the ancestor's anxiliary local

procedure,

6 ILLUSTRATIVE EXAMPLES

Two examples are given here, the first illustrates the
use of our solution of multiple inheritance in addition 1w
illustrating many of the features of the integrated SICSns
Prolog system. Next an example is given showing our
solution to the Self problem.

6.1 Inheritance and redundant compuiations

The following example is taken, with slight modifica-
tion, from [Carnese 1984]. Using multiple inheritance, the
following four classes are implemented:

The class point represents a movable point in one-
dimensional space. An instance of point has the state
Point_Location holding the current location of the point
which is initialized, by defanlt, to the value 0. Each instance
of point accepts the following message protocol:



« [acaton{Loc) : bind Loe to the current location of
the point.

« move{WewLoc)
point 10 NewlLoc.

« displayfDevice) : print the sting
Point at Loc' on the given output device where Lac is
the current location of the point.

The following initialisation command is also provided:

* init_otX) : bind the initial location of the point
to the value of X.

: change the current location of the

Coded in the notations of the integrated SICStus
Prolog system:

- class(point, [location/1, move/, display/],
[init_at/1]).

= use_library(file_i_o, [writeln/2]).

% load in the predicate ‘writeln/2' from the library
% module named file i o'

initialize([], [at{0}]).
initialize([int_at(X}], [at(x)]).

point(at{Loc)) -
lecation(Loc) ==
; move(Newl) ==
; display(S) ==

point{at{Loc))
paoint{at{Mewl))

writeln(S, ['Point at ', Loc]),
paoint{at{Loc)).

- endclass(paoint).

The class 'history point' holds a list conraining a
recard of all locations the point has had since its creation
and accepts the following message protocol:

+ location(Loc)
the point.
« move(Newloc) @ change the current location of the
point to Newloc, Update the history record.
+ display(Device) : print the string:
"Point at Location
with location history: HistoryRecord on the
given output device,
The following initialization command is also provided:
¢ init qnX) % bind the inital location of the point
to the structure a(X).

: bind Lar:_m the current location of

The class hisrory_point is defined by inheriting the
behaviour of the class point. The extemnal interface of point
is inherited but processing both messages move/! and
display/ need 1o be redefined (overriding the ancestor class
messages). To ilusirate how an object may create and make
use of other objects, the state of the location history record
is represented as an instance of the class guene (defined
abeve) onto which new locations are enqueued;

- class{history_paint, [location/1, move! , display/],
[init_atA]).

- inherits{point, all, all).
iy daaoarids{[pﬂnt_hlstmwﬂ}.
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% considering that the class definition may be inherited
% by other classes, the local message print_historw ] can
% bereceived only from descendants.

% initalize the record of location history by creating an

% inmstance of & gueue with one element initially enquened
% and with aQueueStraam connected 1o the created

% instance of histery_paoint,

initialize([], [Queues]) :-
make_instance{gueue, Queusas, [with{[0])1).
initialize([init_at(X)], [QueusS]) :-
make_instance(queue, QueusS, [with{[X]}]}.

higtory_point{QS) :-
display(D) == super{display{D}),
salf(print_history(D}),
history_point{QS)
. move(l) = wper{mnue{L}L,
QS=[enqueue(L)|QS1]),
_ history_point{QS1)
; print_history(D) == QS = [display{H}|Q51),

print_history(D, H},
history_point{QS1).

print_history(D, History) -
writeln(D, ['with location history?, History]).

= endolass(history_point),

MNote that the computations performed in response to
the message display/] have been factored so that the
message display/l is sent to the ancestor and the local
processing is performed by sending the privileged message
print_history/] 1w self. Note that messages o self are given
pricnity over other messages received by the object.

The class 'bounded_point' represents also a poine
which has, in addition to a location, lower and upper
bounds for that location. An instance of the class
bounded point accepts and processes the following
MESEREES:

. Igmriqn-rﬂacj : bind Loc to the current location of
the: point,
+ move{Newloc) : change the current location of the

point to NewlLoc only if the value is in bounds.
« display(Device) : printthe swing
‘Point at Location
with bounds: {(min: Min , max: Max ) on the
iven device. :

» bounds(LB, UB} : binds LB and UB to the current
lower bound and the current upper bound for the point
respectively.

» ser_bounds{NewLB, NewUB) : changes the current
bounds o NewlB and NewlR respectively.

The following inidalizaton command is used:

« set Bounds(InitlB, Initl/B).

- class(bounded_peint,
[lecation/1,moved display/, bounds/2,
set_bounds/2],
[set_bounds/2]).

= inherits{point, all, [1).
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- descends([print_bounds/1]).
= use_library{file_I_o, [writeln/2]),

initialize([], [min(0), max(100)]) -
init_super(init_at(0}).

initialize ([set_bounds{LB, UB)][min(LB),max{UB]) :-
init_super(init_at{LB}).

o init_super(] is a system-defined progedure used o

%o ensure correct initalization of ancestor instances. It can
% use the ancestor's initialization eommand even those

%o hidden from the clients of the descendant.

bounded_paint(Min, Max) -
display(D} => super{display(D)),
. self{print_bounds(D)),
bounded _point{Min, Max)
+ bounds(LB, UB)
=> Min = min(LB}),
Max = max(LUB),
bounded_point(Min, Max)
i set_bounds(NewlB, NewUB)
== Min1 = min{NawLB},
Max1 = max(NewlUB),
bounded_point{Min1, Max1)
== within_bounds(L, Min, Max),
super{movea(L)),
bounded_point{Min, Max)
i print_hounds(D)
== print_bounds{D, Min, Max),
bounded_point{ Min, Max).

print_bounds(D, min{LB}), max{UB} :-
writeln(D, ['with bounds: { min: ', LB, ",
max: ', UB," ).

v move(L)

- endclass(bounded_paint).

_The last class 'bh_point' also represents a point
which has a location, lower end upper bounds for that
location and a location history record. An instance of the
class bh_point accepts and processes the messages and
initialization commands making a union of the external
interfaces of both classes history_point and bounded point
in addition to the following message:

+ display(Device) : print the string
"Point at Location
wi!h houm:]'s: { min: Min , max: Max )
with location history: HistorvRecord” on the
given ourput device.

.. The new class will be defined using multiple
inheritance from both classes bauna’sdjwim apnd
history_point. The messages Tocation/l', ‘movell* and
display/l’ are duplicated, Because ‘ocation/l' has the
same functionality in both ancestor classes, it can be
sufficient to delegate it 1o only one of the ancestors. the
message ‘'movell’ is delegated to both ancestors. It is,
hawever, necessary to resolve the conflict caused by the
funcuonat:!:y of the message "display/], Sending the
message display/l to both ancestors has the undesirable
side effect that the output string will have the form:

Point at Location
with bounds: { min: Min , max: Max )
Point at Locarion
with lecation history: History Record

The redundancy of displaying the location of the point
twice can be avoided by making use of privileged
messages. The designer of the class may choose to send
display/l to one of the ancestor objects and a privileged
message to the other object to perform the local
computations required 1o complete the task.

- class(bh_point,
[location/1, moves1, display/1, bounds/2,
set_bounds/2],
[init_at1, sat_bounds/2]).

= inherits{bounded_paoint, all, all}.
= inherits{history_point, all, all).

initialize([].[]).

bh_point -
move(Location) ==

super{bounded_point, move(Location}),
super({history_point,move(Location)),
bh_point

i display{Device) =>
super(bounded_point,display (Devica)),
super{print_history{Device}},
bh_point.

endclass({bh_point).

To create an instance of the class bk_poins, a call of the
following form may be entered:

?- make_instance(bh_point, SplitStream, []), ... .

An instance of bk_point primarily contains two objects
of peint which are replaced by a single one to which
messages sent from the different DelegareStreams are
merged into a single input stream:

7 bh_point(in3, SelfS, HistS, Bounds),
history_point{HistS,5elfS, PointSH, Queuas),
queua{Queues, SalfQueusas, InitialQuaua),
bounded_point{BoundS,SelfS, PointSB,LE,UB),
merge(split{ PointSH, PointSB), Point3),
point{PointS, SelfS, InitialPoint).

6.2 Delegation to Self

Afrer asking the question "“What ularity of inheri-
tance is all for fn object hmramﬁ;ﬁ'?‘ Bognw [1984]
points out that the explicit message delegation used in Con-
current Prolog IShﬂFll!‘ﬂ and Takenchi 1983] "doesn't allow
fine grained ialization” and illustrates his statement by
an example. This problem is alse known as the “Self prob-
lem", The example given in [Bobrow 1984] 15 used here o
illustrate how self communication works in our model be-
tween instances in a hierarchy and to show that fine grained
specialization is supported in the model. The class mov-
able object holds information about the coordinate position
(X, Y) of the abject and has a message protocol according
to the following declaration:



- class({movable_object, [..., mover2, . 1, [-.])

The message move/2 takes a new coordinate position
(NewX, NewY') and is processed as follows:

movable_object(pos(Xspos,Yspos)) -

;o move{MewX, NewY) ==
salf{arase(Xspos, Yspos)),
selfidraw{NewX, MewY1),
meovable_object{pos{NewX, NewY)).

Upon receiving a message move/2, the two messages
(erase/2 and draw/2) are sent one after the other onto
SelfStream. If no inheritance is involved, SelfStream is
connected to the instance of movable_object itself. The
definition of the class mevable_object includes code to
perform the appropriate response to both messages.

Assume that a new class sguare is defined to inherit the
class movable object and 1t is defined o that an instance of
square delegates the message move/2, when received by if,
to the ancestor instance of movable object, The erase/2 and
drawl2 messages are processed by square instance ftself.

A message movel2 received by an instance of square is
delegated to the ancestor movable_obfeet instance. The
ancestor will respond by sending the message erase/2
followed by draw/2 onto its SelfStream which is connected
te the descendant instance of square (see Section 5). Both
messages erage/2 and draw/2 are now received by the
instance of square to be processed theére. Both messages are
given priority over any other messages sent to square
instance from client objecis. Note that in Bobrow's example
the erase and draw were nullary operations where in our
soluton erase/2 and drawi2 must carry the actal position
of the point to be processed.

7 RELATED AND FURTHER WOREK

In comparison to the approach presented here the
languages ‘#:]lt-ﬂﬂ [Eahn et.al 1987], A'UM [Yoshida and
Chikayama 1987] and Polka [Davison 1988] are based on
similar concepts which stems from the approach presented
in Concurrent Prolog [Shapiro and Takeuchi 1983]. None
of these langnages provide support for full encapsulation or
the ability to program objects with non-daterministic
behaviour. Non-determinism allows, e.g., generate-and-
test programs to be written in a communicating object-
oriented style. Non-determinism also allows sending a
variable as a message to an object which may lead to non-
deterministic evaluation of the methods defined by the
¢lass. The syntactic sugar provided here to make programs
less verbose is much simpler than the syntactic constructs
defined by the compared languages. Our syntactic sugar is
greatly influenced by Prolog's Definite Clause
(DCG) which absmact much of the code needed to
implement logic grammars and allow calls and definitions
of Prolog procedures within the grammar rules.

There is a work in gress extending the current
system to provide m:-cﬂl::lisms to support handling
exceptions, errors and incomplete knowledge, and also to
support the dynamic replacement of pro modules (Le,
the ability to modify programs while the system is
running). The work also include the development of a
computationsl model and a methodology for program
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development in the integrated system and the provision of a
high level debugging tool,

There is also work in progress to use the integrated
gystem in the design and development of an industrial large
software system which will demonstrate the viability of the
in ted system and will provides real figares about the
performance of the system. It is also interesting to
investigate mechanisms and implementation strategies
which ide a support to describe and handle explicit
parallelism and concurrent activities.
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