FROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1088,
edited by ICOT. © 1COT, 1988

675

A PROGRESS REPORT ON THE LML PROJECT

Bruno Bertolino, Paclo Mancarella, Luigi Meo, Luca Nini, Dino Pedreschi, Franco Turini

Dipartimento di Informatics, Universith di Pisa
Corso Italia, 40, 1 - 56100 Pisa, ITALY

ABSTRACT

LML iz a programming language for the construction
of knowledge based systems. Chunks of knowledge arc
represented as logic programming theories. A functional
metalevel provides suitable mechanisms for the dynamic
handling of logic theories. From an application viewpoint,
the: possibility of a clean handling of the dynamic evolution
of knowledge over time as well as of 2 modular approach to
knowledge based systems development is the most
distinctive feature of the language. The paper presents the
language, its implementation and a consistent example of its
use.

1 INTRODUCTION

It is, nowadays, widely recognized that Logic
Programming (Kowalski 1979, Kowalski 1983) is one of
the best basis for constrocting knowledge based systems
{Gallaire 1987). The consequences are a great push towards
the study of general technigues amenable to this endeaveor.
Among them we recall various attempts of making the basic
features of Logic Programming executors, i.e. unification
and backtracking, more powerful, the idea of
metaprogramming and metainterpretation {Bowen and
Kowalski 1982), the study of techniques for structuring
logic programs and the integration of Logic Programming
with other paradigms (Darlington et al. 1985, Robinson and
Sibert 1982).

The project described in this paper, named LML for
Logical ML, is concemned in a way ot another with the last
three of the above topics,

In a few words, LML is a language for building
knowledge based systems, in which logic theories can be
manipulated, as values of an ordinary data type, by a
functicnal meta-layer, which is essentally Standard ML
{Milner 1985).

The distinguishing feature of LML with respect to
other proposals aimed at the modularization of Logic
Programs, is the possibility of manipulating logic theories at

run time in an intensional way. Essentially, the functional
layer embodies a number of operators capable of
transforming one or more logic theories into a new one
(Mancarella et al. 1988h).

It is well known that one of the toughest problems in
dealing with knowledge based systems is handling the
evolution over tdme of the knowledge (e.g. learning,
nonmonotoric reasoning etc.). Our hope and intents are that
LML can be a clean and flexible solution to this class of
problems.

The paper is organized as follows. Section 2 presents
the most distinguishing featores of the LML language,
providing also some small examples. Section 3 offers a
rather complex example, which, in our opinion, is necessary
to provide a sharper flavor of the expressiveness of the
language. Section 4 discusses the current implementation of
the language, stressing the most critical points. At last,
section 3 concludes the paper by outlining the theoretical
foundations of LiL.)

2 OVERVIEW OF LML
2.1. The functional kernel of LML

The functional language which provides the meta-level
of LML iz essentially the kernel of Standard ML
(Milner 1985) extended with non-strict functions. The type
system of the language includes a set of predefined types -
¢.g. int, string, —+ (function space) — and the possibility of
defining new types via discriminating union, cartesfan
product and recursion. The fellowing are examples of data

type bool = true | falae:

type pat = zere | suce of nak;

Functions are defined in a declarative style by means of
pattern matching. For example

wal Plus (zeroc,n) =n |
Plus (sucec n,m} = succ(Plusin,m));
IfThenSlse (true,x;y) = x |
IfThenElse (false,x,v) = ¥

wal

676

The type of any expression can be statically inferred
and it can contain fype variables (for polymorphic
fonciions). In the previous exampie, the following types are
inferréd

Flus: nat x nat — nat

IfThenElse : bool o x @ —
where o is a type variable.

New polymorphic types can be introduced by the user,
as the following type “a list”

type o list =[] | :: of @mxo 1:'..5!;

Functions can be higher order as the following
example of the classic Map function shows

val Map £ [] = [] | ' _

Map £ (a :: R) = (f a :: Map £ R)
with Map:{ce—=PB)— (o list — Plist)

Finally, functions are non strict. Since also type
constructors are fonctions, it is possible to define and use
potentially infinite data structures. The following definidons
are examples of this feature:

val Ones = 1 :: Ones;
val Fromn =n :; From (m +1);
wval Humberzs = From 0;

As & consequence, it is poslsihlﬁ: to construct functions
which work on infinite data without they necessarily

diverge. In the example, consider
wal First 1 {a::R) = far |
First n {a::R) = fa 5 First n -1 R}

wal FirstTwenty = Pirst 20

Then the (lazy) evaluation of

FiratTwenty HNumbers
results into the Hst of the first 20 naturl numbers, although
Humbers dénotes an infinige list,

MNon-strictness is a considerable expressive
enhancement for a functional language, since it captures in a
natural way some programming aspects like interactivity,
inputfoutput and memory sensitivity, which are hard to
manage in strict functional programming languages
(Henderson 198(), Richards 1982),

2.2. Definition and intensional manipulation of
logic theories

The logic component of LML essentially provides logic
theories as data rypes, along with a suitable set of operators
for manipulating them. Logic theories are defined within an
extension of pure Hom Clause Logic, which allows the use
of both negation and universal gquantification in clause
bodies. The formal semantics of LML, and in particular the
model theoretic semantics of its logic component, will not be
discussed in this paper. Just as a hint, the problem of

assigning a suitable meaning to a logic program T where
negation and universal quantification are used freely in its
clause bodies, is approached taking into account the first
order approximation of two extra axioms, namely the
Closed World Assumprtion (Reiter 1978) and the Closed
Domain Assumprion (Lloyd and Topor 1985, Lloyd and
Topor 1986, Mancarella et al. 1988a). The approximation of
CWA consists in considering the completion of T
(Lloyd 1984, Shepherdson 1985), whereas the
approximation to CDA consists in imposing type constraints
on T. This approach, discussed deeply in (Barbuti et
al.1988), is inherited from similar machinedes used in
{Lloyd 1984) for general logic programs and in (Lloyd and
Topor 1983, Lloyd and Topor 1986) for deductive
databases,

Logic theories deal with the same (concrete) data types
which are definable in the functional component. As a
consequence, clauses are typed just in the same sense
functions are. However, for the sake of simplicity, from
now on we will assume a single type for clauses,
disregarding, henceforth, type information in the definitions.
More precisely, the definitions will be stated with respect to
a generic type T equipped with constructors ¢4,...,0 each of
which of arity ag=0.

Definition [clauses]
A clause has the following form
Pligae . bg) = By,.. By
where (ty,...,t;) is an unrestricred tuple of erms (i.e, each
variable occurs exactly once in it).

Each B; has one of the following forms
=L (a literal)
« exists z.L
eall 21
where z are the variables oceurring only in L.
Literals are
* qtg,e by} {posttive literal)
* G {t1penoolpy) {negative literal)

The explicit mention of the variables bound by exists
and all will be omitted whenever the meaning is clear from
the context. The condition on unrestrictness on the terms in
the clause heads does not affect generality, since equality
constraints can be explicitely stated in the bedy via an
equality predicate (Barbut et al. 1987, Barbuti et al. 1988).

Definition [basic theory]

A basic theory is either the EmptyTheory, defining no
predicate, or & clause or the juxtapposition — denoted by " —
of two basic theories

As an example, consider the following theory defining the
ancestor relation,
val Ancestors =

[ancestor (x,y) - x=y ;

ancestor (¥,¥) =

axists z.proper ancestor(x,y,z) !
proper_ancestor(x,¥,z} :-

parent (x,z) rancestoc{z, v }

Notice the possibility of denoting a theory with an
identifier (Ancestors in the example) as for any other object
of the language, The equality predicate = in the first clause is
used in order to make its head unrestricted.

Besides' the juxtapposition on basic theories, a dual
operator, namely the meet operator, is provided.

Definition [meet]
Given two basic theories T, and T4, for each predicate name
, if
F P {1y oaaly) - By is 2 clavse of T; and
P {t']s . t'y) - Bo s a clavse of Ty and
it does exist 8 = mugnf (b obpdy [peeat’y 1)
then
Pl (tg,....t,)8) - By0, B4B is a clause of meet(Ty, To)

Actually, the theories of LML have two separate
components:
» g pogitive comporent (denoted by T+), i.e. a basic
theory, providing the clauses for positive literals;
« g pegative componens (denoted by T-), ie. a basic
theory providing the clauses for negative literals.

In fact, the negative information is handled
considering, for each predicate p, a new predicate symbol
p~, the definition of which embeds the negative knowledge
of p. The negative component is, indeed, obtained via a
transformation, called intensional negation, applied 1o the
positive one. The transformation is an extension of the
techniques introduced by Sato and Tamaki (1984).

2.3, Intensional Negation

The first step in the definition of inensional negation is
the algorithm for negating a tuple of terms. This algorithm
mirrors the idea that a term (and equivalently a tuple of
terms) represents the set of its ground instances. The
negation algorithm yields an intensional representation of the
complement of this set by means of a set of terms, The
algorithm works properly only if applied to unrestricted
tuples of terms, and furthermore it yields a finite set of
mples. It has been shown by Lassez and Marriot (1987) that
such a finlie represcatation does not exist for restricted
tuples.

Definition [negaton of rerms]

Referring to the type T equipped with constructors ¢q,...,04
each of arity a; = 0, given an urrestricted term t, negt(t)
denoies its negation and it is compured as follows

(1) negt(x) =)

(2) negt(ei(ty, . Wty)) =

{ej(xqs..- Xg) 1 #iju

677

{eilX e e sXpe s U Xy 1ae--o2gs) | k& [Loag], ' negin) }
where all the newly introduced variables are fresh and
distinct.

Notice that the second mle collapses into
negt(c;) ={ej0xy.... X 1 # i}
when ¢; is a nullary funetion, i.e. a constant. The negation
algorithm can be easily extended to tuple of terms in the
following way:

Definition [negation of mples of terms]
neg (ty,....tp) = _
[(g oXie1s 1 Kigg oo nXpd Tk € [1,0], t'e neglty) }

As an example, the instantiatdon of the negation
algorithm on the data type of natural numbers, with the
constant zero and the unary function suce, is the following

neg(x) = [}

neg(zero) = {succ(x))

neg(succit)) = (zero} s [succ(t) | t' = neg(t))
which, applied to the term succ(succ(zero)) yiclds

{ zero, succ(zero), suce(succ(succ(x))))

We are now ready to define the intensional negation of
a basie theory, which defines only the positive predicates. In
order to simplify the notation the lower case letter n,
possibly with subscripts, will be used in the sequel to denote
tples of terms.

Definition [intensional negation]
Let T+ be a non empty basic theory. The intensional
negation T- of T+ is inductively defined as follows

(1) (@) s By....By) =

g=y{x) -5
.
p{ngd -
P:Ell“f;:' =¥
p-in) - B~y
p~{n) :- By
where
* {ny,....0p) =ncg(n)
¥ B""i = L~ ifBi =1,
' allz.L~ ifBj=existsz. L
exists z. L~ if Bj=allz. L
where
L= g~(s) if L =q(s)
q(s) ifL=g-~(s)

= g~{x) - are introduced for each predicate symbaol
q; # p. occurting in the body of the clavse
(2) (T3Ta)- =mee(Ty~, Tyo).

678

Case | corresponds to the program consisting of a
single clause p(n):-By,...,By: recalling that intensional
negation allows to compute what can be inferred by
negation as failure, let us notice that a goal g{m) fails iff
either q{m) does not unify with p(n) (first h+r facts) or p(m)
unifies with p{n) via mgo 6 but B;8 frils for some i (last k
Ealja]m]. Casc 2 finally states a kind of De Morgan rule for

ure.

As an example, consider the following basic theory
defining the predicate even on natural rrmnbars.
T+ even(zero);
even{suce(x)) - even~{x)
T-: meet({even(zero) =),
(even(succ(x)) :- even~(x))") =
meet] (even~(succ(x)) -],
{even~{zero) -
even~(suce(y])) :- even(y)))=
even~{succ(y)) - even(y).

The whole theory is then:
evenlzera);
even(succ(x)) :- even~{x)

even~({succly)) - even(y)
which, as expected, defines even and odd {(even~) numbers.

2.4. Intensional operators on logic theories

As mentioned in the introduction, the main goal of
LML is to provide means for manipulating chunks of
knowledge, coded as logic theories. Henceforth, a number
of operators on theories is provided: renaming, negation,
union and intersection,

Definition [renaming]
Given a theory T=<T+, T-> and py,...
predicate names, then
TIp'y/P1s-os PPl
is the theory where each p; is substitoted by p'j.

Pms PLoeeP'm

Definition [ncgation]
Given a theory T and a predicate name p, then the negation
of T with respect to p is

not(T,p) =T [p/p~, p~/p].

As an example, consider
= [p(suceix)) :- exists y. r{y) ; r{zemo}:- |
Then
T- = { p~(zero):- ;
p=(succ(x)):- all y.r={y) ;
Referring to the previous definitions:
not(T, py*+ = [p{zero):- ;
plsuec() =~ all y. r~(y) ; r{zero) |
not(T, p)- = [p~(succ(x)) :- exists y. r(y) ;
r~(succ(x)):- .

r~{succ(x)) 1.

The definitions of the union and the intersecton of twao
theories are stated with respect to subtheories ccocurring in
both theorics, i.e. the set of clauses defining a specific
predicate (maybe in different ways). If T is a theory and p is
a predicate name, Tlp denotes such a subtheory, whereas
TTp denotes the remaining part.

Definition [union and intersection]
Given two theories T and T and a predicate name p, !e:
Ry =Tlq/q] and Ry = Tplq"/q)
for each predicate name q=p occurring in both T; and Ty,
with ' and q" new predicate symbols. Then
union(Ty, Ty, p)=
< (Ry*; Ry ¥, (Ry-Tp: Ry~ Tp; meet(R,-Lp; Ry-dp)) >
intersection(Ty, Ty, p) =
< (Ry+Tp; Ro#Tp; meet(Ry+dp: Ry*+lp)) , Ry Ry) >

Motice that in both operations, if p is not defined in one
of the two théories, it is enough to add the clanse p~(x):- in it
before the application of the operations. The extension of the
operations to an arbitrary number of predicates is
straightforward. .

Finally, as a matter of syntactic sugar, the following
abbreviations are available:
not T = not (T, <ppy....pp=)
where py,....py are all the predicates ocourring in T;
union(T,Ty) = wnion(Ty,Ta, <pi.....pp>)
intersection(Ty,Ta) = intersection(T1,Ta, <Pppes b=}
where pyy...,pp are all the predicates occurring in both Ty

Informally, putting theories together by union yields a
new theory in which the original ones cooperate during
deductions: in fact, Pedreschi (1988), Mancarella and
Pedreschi (1988) show that the success set of union(T}, T;)
includes the (set-theoretic) union of the separate success
sets. In a dual way, the success set of intersection(Ty, To) is
included in the (set-theoretic) intersection of the separate
success seis.The following simple example points out these
observations,

Ty+={ plsucc(x])) - g(x) : q(suce(succ(zero))) :- }

Tat=(plzero) :- ; p(succ(succ(x))) :- pix) }.

Then
union(Ty, Ty, pit = |
plsucc(x)) == qlx) ;
qQsucc(succ(zera))) :-
plzero) :- ;
plsecc(suce(x))) :- p(x)
1

union{Ty, Tz, p)-= |
g~{zero) == ;
g~(succ(zero)) - ;
g~{succ(succ(succix)))) - ;
p~{succ(zera}) :- g~{zero} ;
p~{succ(suce(x))) -

p(x), g~(suce(x))

Motice that in Ty p{n) holds when n=3, whereas in T;
p(n) holds on even numbers. Putting Ty and T4 together

with respect to predicate p, p{n) holds when n23 or n is
even, while p~(n) holds only if n=1.

On the other hand,

intersection(Ty, Ta,p)t =
[pisucc{socc(x))) - p(x), q(succ(x)) ;
qisucei{succ(zera))) -)

intersection(Ty,To2,p)- =
(p~(zero) - ;
p~{succizero) :- ;
p~(succ(suce(x))) - p~(x) ;
p~(succ(x)) :- g~(x} ;
g~{zero) - ;
q~(succizern)) - ;
q~(succ(succ(succ(x))}) - |}

Hence, in the intersection of the original theories with
respect to p, p denotes the empty relation, and consequently
p~(n) holds for each number n.

As a further example, consider again the Ancestors
theory defined at the beginning of this section. In order to
make it psable, it should be combined with some parents
database, defining the predicate parent, e.g.

wval ParentaDB={

parent (Bill, Jame} - ;
parant (Mary, Al) :-
....... —
The combined theory
val AncestorsDE =
union{Ancestors, ParentsDB}
does the job. Notice that the intensional operators allow to
model knowledge bases evolving over time, e.g. union can
be used to augment theories by asserting new facts or rules,
extending the behavior of Prolog built-ins like assert. When
the fact that John is a child of Bob comes to evidence, then
the Parentape theory can be updated accordingly as
followrs:
val ParentsDBE =
unicn ({FarentsDB, {parent (Bob, John)) .

2.5, Set expressions and extensional operators

As discussed in the introduction, set expressions are
provided in order to denote sats, which are nothing but the
set of answers obtained by evaluating a goal (i.e. a query)
with respect to a theory.

* For example the set expression
{i%, %) | Pix,v,8uccisucc(zerc))) wrt Plus}
where

679

val
Plug = {P(x, z&re, x} := §
P(x, succly), suce(z)) :=
Blx, ¥y =} |
evaluates to the set of pairs
(=¥} | = +y =2} = {{0,2), {1,1), (2,0)}.
As a forther example, referring 1o the AncesiorDBE
theary of the previous section, the expression
{x | adam{x} w=rt
union{ ladamiz) :- all y .ancestoriz, ¥y} },
AncestorDB) }
yields the individuals which are ancestors of everybody, if
they exists. Of course, if the ParentDB theory is well
defined, such a set is either empty or a singleton,

- Special set-expressions are

* empry set {)
= extersional set [Ey Ez ... Eg)

Of course, set expressions are lazily evaloated, in the
sense that the extension of a set is never computed unless
explicitly requested by the application of an extensional
operator. Nevertheless, set expressions can be intensionally
manipulated through some suitable operztors (union,
intersection,. ..} corresponding to the analogous operators on
theories. Their definitons are swaightforward and we omit
them for brevity, On the other hand, the following is a list of
some extensional operators over sets which, whenever
applied, cause the activation of the query evaluation process.
SE stands for a set expression.

* . for each x in SE de E

evaluates to the set of values obtained by computing E

with respect to each element of SE.
* all x im 5E suck that BE

evaluates to the subset of elements of SE satisfying the

boolean expression BE
- get % in SE with BE

evaluates to the unique element of SE satizsfying BE, if

such an element exists, otherwise it yields a failure.

o v imin SE

evalnates to true if v is an element of SE.

The query evaluation process used in LML, called
SLDN, is introduced in (Barbuti et al.1988,
Mancarella 1988). SLDN is essentially SLD resolution
angmented to deal with intensional negation. Since both the
positive and the negative knowledge are explicitly expressed
in an LML theory T=<T+, T->, the evaluation of a negative
literal p~(t) with respect to T consists simply of an SLDN
refutation using the clauses for p~ in T-. The only real
extension of SLD is introduced to deal with universal
quantified literals, of the kind all zL. The refutation of
such a goal exploits negation as failure as a way to check
universally quantified theorems (Clark 1978, Lloyd 1984).
For instance, the sobgoal all vy, g(x,y) is actually
implemented as the conjunction qix,y), naf q~{x,w).
Roughly speaking, SLDN evaluates qx,y) first, providing

680

candidate solutions sq,...,8; for x, while naf g=(x,w)
discards thosc solutions s; in correspondence 1o which the
evaluation of g~(sj, w) does not finitely fail. In other words,
we use'the failures of the predicate g~ o filter the success set
of q with respect to the universally quantified variable,
Using the failures of a negative predicate requires some care.
The problem falls in the realm of so-called general programs,
in which negation is freely used in a logic program. An
example can help to illustrate the problem and the kind of
solutions we are pursuing,

Consider the clause

p(x) - q{x),rx)

Our intensional negation algorithm yields the clauses

p{x) - g~{x);

peix) - r=(x)

Such a program, although it works perfectly well for
computing the negative information contained in p, is not
logically equivalent to the logical negation of the original
program, which is the non Hom clause

p{x) == g~{x) or r~{x)

In our system, the computation of such a clanse is
approximated, generating, for the negation of the clause p(x)
= q(x),r(x), either

pr(x) - g~{x);

p~{x) - g(x);r~(x)
if rrecursively depends on p and q does not, or

p(x) = r={x);

p(x) - r(x), g~(x)
if q recursively depends on p and r does not. If both r and q
depends on p the negation is performed as usual. If the
conditions hold, such a trick provides an effective way of
computing the non Hom clause, providing the correct failure
set for p~. The implementation of the technigue obviously
requires a static analysis of the program.

3 AN EXAMPLE

Game playing is a typical environment for Al
applications, at least for exemplifying the expressiveness of
Al formalisms, In this section we show (part of) a program
which simulates a Cluedo's player, which has been used asa
significant test case for our prototype system. Briefly,
Cluedo is an investigation game, in which each player has
some incomplete information about a crime and (s)he should
identify the guilty person (there are six potential criminals),
where the crime has been committed (there are six potential
locations) and which weapon has been used (there are six
possible weapons). Initially, three cards identifying the
criminal, the weapon and the location are put in a box, and
nobody can sce them, Moreover, the remaining cards are
distributed among the players. In this way, each player
initially has just partial information about the crime, for
instance if (s)he possesses the card identifying person e,
then (s)he knows for sure that p is not guilty. Each player in
turn may perform one of the following actions:

i} try an answer, namely a location, a weapon and a’

person;
ii) ask for three cards, a location, a person and a weapon.

In case i} if the answer is correct, the player wins and
the game is over. If the answer is incorrect then the player is
out of the game, in the sense that from now on (5)he should
just answer to the others’ requests. In case ii) the first player
{within a predefined order) who possesses one of the three
cards asked for, shows it 10 the enquiring person and only to
him. So, in this way, the asking person increases iis
knowledge about the crime; moreover the other players’
knowledge increases too, even if by hypothesis and not by
certainity.

In Cluedo each player should:
a) maintain somehow its knowledge about the crime, which
augments over Hme;
b} decide which question is a good one for case 1) above;
c) decide if the actual information is strong enough to
determine the right answer.

LML provides the right mechanisms to simulate these
three components of a player's behavior and, as we show in
the rest of this section, each one can be handled at the right
abstraction level,

First of all, Jet us define the data types identifying the
game's Components:

typa Players = plaver of nat;
type Suspects = a3l | 82 | 83 | =24 | 85 | a&:
typa Locaticms = 11 | 12 | 13 | 14 | 15 | 1&;
type Weapons = wl | w2 | w3 | wd | w5 | wB;
type Cards = susp of Suspects |

loc of Locations | weap of Weapons.

Let us assume, for the sake of simplicity, that the LML
program we are writing comresponds 0 playerz (1}. The
knowledge base of playec(1) consists of several kind of
facts which the player knows for certain and of several kind
of hypotheses, typically corresponding to disjunctive
information, The following is a list of some of the predicates
corresponding to these kinds of knowledge, which are self-
explanatory: '
* has(p, C}

has_not (P, C)
has_not_all threa(P;, Cl, CZ, C3)
* has_not_beth(F, Cl, C2)
has _at_least_one of three(P, CL, €2, C3)
where p is of type Players and e, c1, c2, ¢3areof

t:.ch Cards.

First of all, notice that the predicate has _not must not
be confused with the (intensional) negation has~ of has. In
fact, the intended meaning of has_not (#, ©) is that we
know for certain that player » has not got card ¢, which is
not the same as has~ (B, <), which holds whenever, from
the current (incomplete) knowledge base, we can not
conclude hasi(p, c©). More formally, the following

implication, but not the converse one, holds
has _not(F, C) = has~{P, C)

The LML program simulating the Cluedo’s player will
augment the knowledge base by a fact of the kind
has_not (P, C) for o=C1, c=c2 and c=c3 whenever a
player asked for the triple c1, <2, <3 and player ¢ was
able to show none of them.

The predicaie has_at_least_one_of thres i5 an
example of disfuncrive knowledge. In fact, player (1) can
infer the fact has_at_least_ome_of_three(f, C1, C2,
©3), whenever another player asked for the wiple (c1, cz,
©3) and player ¢ showed one of the three cards {we dont't
know exactly which one) to the asking person,

Whenever player (1) must ask for a triple, some rule
has to be applied in order to find out which cards may be in
the box. This is achieved simply by the following definition
of the predicate request

request (P, L, W} :-
may _be_in the box{susp(B)),
may be in the box(loc(L}},
may be in the boxiweap{W))

where .

may be in the box(Card) :-
all has~(P, Card),
all is_bettec~(C, Carcd)

The definition of iz _better is omitted here, but
intuitively is_bettericl, ©2) holds whenever the
Inowledge base implies that c1 is in the box, Motice the use
of has~ instead of has_not in the above definition; the goal
all has~ (P, Card) succeeds when for each player g, the
information in the knowledge base does not allow to state
that player ¢ has got card card which means exactly that
cazxd may be in the box. The following definition of the
relation clarifies further this point

ig_in_the box(Card) :- all has_not (F, Card).

We can now define the logic theory cheice which
embeds the above definitions of the predicates involved in
determining either the solution or a good request:

theory choice =
{request (F, L, W} = ciee
may be in the box{Cacd) = .- -
ig better(C, Card) :=
is_in_the box(C} - —...}

A separate theory, named infer, is defined,

containing the deduction rules which allow to infer facts

from the knowledge base. The following are some of the
definitions included in such a theory

theory infer =
{has_not_both (P, Cl, €2} :-
exists has_not_bethl (P, C1, C2, C3).

681

has not _bothl(P, Ci, C2, C3) :=
has_not_all three(P, C1, C2, C3),
has{P, Cl1},
has_mnot bothl{B, €1, C2, C3) = ...
has_not_bothl (P, C1, €2, C3} 1= ..
haa_at_lm:tﬁmu‘{?, Ccl, c2) :=
exists haa at_least onel(P, Cl, C2, C3).
has at least onel (F, Cl, CZ, C3) :-
has_at_least_one of three(®, C1, C2, C3),
haz_not (P, C1}.)
has_at_least_onel(P, Ci, €2, C3) - ...
haa_at_least onel(F, Cl, C2, C3) 1= ..
hag (P, C) :- exists owns(®, O, Cl).
ownsa (F, €, Cl) -
has_at_least_one (P, C, €1},
haa_net (P, C1),
owns (P, C, Cl) :=
has at least_ona(F, Cl, C),
has_not (F, Cl}.
has_not (B, C)} :- e=xists owns_not (P, C, C1).)

We omit for the sake of brevity the definitions of
other relations, which indeed are straighiforward. Notice the
presence of deduction rules for the predicates has and
has_not. These rules are needed since there are several
chances to state that a player ¢ has got (resp. has not got) a
certain card ¢, beyond the fact that the knowledge base
contains the agsertion has(?,C) (resp. has_not (B, C}).

Up to this point we have defined the logical part of
the whole system, that is the theory choice containing the
deduction rules allowing either to find the solution or to
establish new requests, and the theory infer allowing to
deduce new facts from the knowledge base. Of course, this
logical part should contain a theory, say Initinlks,
containing a fact has (player(1),¢) for each card ¢
player(1} i§ given at the very beginning.

We are now in the position to define the functional
part of the system, which implements the actual game
playing. First of all, let us assume that the interaction-
between player (1) (i.e. our program) and the other players
takes place by means of an input swream, defined as a list
which can be consomed by the program itself (this approach
to the modelling of input/output by means of streams is
typical of non strict functional languages (Richards 1982)).
In our case, after a request by playvec(1) of the kind (o1,
c2, c3) the first element of the input stream will be
hasa{j,c) withc=C1 orc=cz orc=c3, comrsponding to the
fact that player (§) possesses card c. Analogously, after a
request by playec (n), nwl, of the kind (c2, c2, cn
the first clement of the inpu: stream will be
has {plavesz {j),-), corresponding to the fact that each
player, including playes (i), knows who gave the answer,
but only the asking person knows which particular card
player(j) posscsses. Moreover, let us assume that the
number of players is defined by the constant &,

682

The functional part contains a function FremMyGuess
which, given a wiple of cards (F, L, W) denoting the
current question raised by player (1), yields a logic theory
containing the new facts which player (1) is able to derive
from the answer to the question. The core of £romMyGuess
iz the auxiliary function FremAnswer which deduces a
collection of facts involving the predicate has_not from the
fact that no player before a given one answered the question
{we assume the ordering player (1) < player(2) <.<
player (m)) . Notice the definition by cases of this recursive
funetion, :
fun FromMyGuess P L W Inpuk =

lat has{i; C} :: Rest = Input;
fun Frominawer 1 = EmptyTheory |
Frominswer k =
union{{has_not ({playerik}, suspi(Pf)}:
has_mot (player(k), lee{l)):
has not {(playeri{k), weap(Wl}}l,
From&nswer (k-1));
in
{unien{ (has{playeri{i), C}},
FromAngwer {i=1)],
Rest)

The function FromothersGuess is analogous (o
FromMyGuess, except that the derived facts are of different
kind since plawer (1} is able to know only part of the
answer given to the reguest raised by other players. The
definitdon is omitted for the sake of brevily., Notice that
FromMyGuess (a5 well a5 FromothersGuess) returns a pair
{7, R} where T is the theory containing the new facts
inferred and r is the rest of the input stream,

What follows is the definition of the main function of
the program, implementing playes (1) "s tum, which returns
a value of the following type result

datatype result = win of int | loss of ink;
fun Turn KB Input =
let
wal HBl =
union (choice, union(KE, infer)):
fun IsEmpty Set = (Set = {})s
val Answer =
[(F; L, W) |
is_in the box(suap(B)),
is_in the box(loc(Li),
ig in the bowx(weap (W)

wrt KBLl]:
in '
if not IsEmpty Answer them win{l)
alse let

val (P,L,Wi=
choose (| {C1,C2,C3) |
cequest (C1,C02,C3) wet EBL);
val (HNewFacts, Reat) =
FromMyGuaess P L W Inpuk;
val HewKB = union (KBl, MHewFacts)

in OthersTurn NewKB Rest

The function otheraTurn takes care of increasing
the kncwledge of player (1) when it is the turn of the other
players. It can be defined in a very similar way as function
rurn, making use of function FromothersGuess, Finally,
the function cheose randomly selects an element of a set
{alternatively, some suitable heuristics can be.adopted for
choosing an item}.

The example points out how the logical and
functional components of LML play the appropriate role in
making the construction of Knowledge Based Systems more
expressive. Indeed, the playing strategies have been coded,
in a natural way, using logic theories whereas the actual
process of playing, which is inwinsically algorithmic, has
been coded using the functional component. The example
sheds also light on how LML is apt to handling siteations in
which knowledge is split into modules and evolves over
time.

4 IMPLEMENTATION TECHNIQUES

The architecture chosen for our interpreter (Fig. 1) is
rather traditonal. First, input from the user passes through a
parser, which checks its syntactic comectness and builds up
a representation of it in an intemal form. The ransformed
input is then passed to the type checker, whose role is o
check the static semantic correctness, Finally, the phrase is
passed to the executor, which evaluates it, using two sub-
modules. The logical one implements the intensional
operators on theories and SLDN resolution.

The Environment records all information about the
objects currently known to the system. It is nsed by all the
modules of the system. Note that even the parser use the
environment, since in situations such as formal parameters
analysis and type forcing we have to know whether a
syntactic item is a data consiructor or not.

The system has been implemented in NIP Prolog on
a SUN workstation. This means that LML is not a winner in
performance. Nevertheless, as we have experimented, a
careful implementation of SLDN, together with delayed
evaluation of negative information (see later), improves
efficiency considerably.

Let us now see some specific aspects of the
prototype. We will not give a deep description of the details
of the interpreter. Instead, we shall see some aspects peculiar
to the implementation (and some of the problems we have
encountered), to show the design philosophy underlying
LML.

4.1. Type checking

LML highly resembles ML in its syntax and in the

interaction with the user. If one is wsing only the functional
constructs of LML, he would not be able to distinguish it
from ML, unless for some minor resirictions on the syntax,
which do not affect the expressiveness of the language.
Hence, the type checker iz basically that of ML
{Cardelli 1985).

I Parser |d-

E
Type checker —™ o
v
Executor
Logical Functional
Madule Module
Fig. I

Type checking a theory is rather different from the
same operation on, say, a letrec (the functional constuer
semantically closer to a theory definition) because when one
wants to determine the signature of a theory, a fixed-point
operation on the types of the predicates has to be carried on,
For example, in the following fragment of a theory:

pix) := gix).

glz) =
one has to say that the type of the argument of p must not be
more general than that of g, but this imposes no constraints
on the type of q, which may be any type. This is different
from the typing of functions in ML. In the fragment:
letrac

fun £ x = x + {g 1) and

fun g x = 1
g would come to have the type int -> int, even if its
definition does not make any restiction on the domain, This
depends on the implementation of the type checker: the type
of g (and f) in a letree is determined considering all usages
of g in the letrec. Notice that in ML, because of its block-
structure, a fixed-point operator is not required, since the
declaration:
let fun g x = 1 in let fun £ x = x + {g 1)
im . . .
could be used to obtain the desired (polymorphic) type.

The type checker performs this fixed point operation
(on theories), then maintaing this information, since the
application of an intensional operator to two theories as well
as 2 set expression may yield a vielation to such type
constraints.

83

4.2, Handiing laziness

Another aspect of the interpreter which distinguishes

it from Standard ML is laziness. Laziness is a computation

rule that says "Don't evaluate anything unless you can't
proceed without the result of the evaluation”. With laziness
one can handle infinite structures without necessarily

diverging.

LML tries to push laziness to its extreme. Basically
one can say that LML does not evaluate anything, unless
explicitely requested from the user. When the printer asks
for some part of a value to print, it starts the evaluation
process, which evaluates just one value. The process
propagates backwards, asking for just the evaluation of
small pieces of the composed values, until the value has been
instantiated enough to satisfy the request,

One can usc laziness for different purposes. The
implementation of SLDN is one of these. If one tries to
implement it as described in the preceding pages, the user
will be submerged by a lot of clauses (of the order of a
hundred to a thousand for a program the size of cluedo)
produced by the mere application of the negation rule. This
is a time and space consuming operation, which in some
cases is even unnecessary (negative information is not
always needed for all predicates).

‘What we have done is to delay the evaluation of the
negative information for a predicate, doing it only when we
are faced with the request to solve a negative goal involving
that predicate. The negation of that predicate (and only of
that) is then evaluated, and we can now try to satsfy the

negative goal,

Another place where we are lazy is in presence of
nafs, which are delayed until the end of the goal, in order to
have their variables instantiated as much as possible. The
reason is that a nof is evaluated exploiting the not of the
underlying Prolog, which explores the whole refutation tree
for the predicate. More instantiated is the predicate, less
solutions are possible. Delaying the nafs reduces, in many
cases, the solution space to be searched.

- 5 CONCLUSIONS

This paper has presented LML and its nse from a
pragmatical viewpoint. On the other hand much effort has
been spent to provide the language with sound theoretical
foundations. Two are the critical issues: proving that the
intensional negalion operator, along with the SLDN
resolution, are a correct way of handling negative
information and finding a suitable denotational domain for
LML theories, amenable of being the basis for a complete
denotational semantics of the language.

As to the first problem, the results in (Barbuti et al,
1987, Barbuti et al. 1988, Mancarella 1988) give the correct

684

solution, allowing to state the soundness and completeness
of SLDN with respect to programs completions, in the case
of definite Hom theories, while work is still in progress for
the general case of theories using negation and wniversal
quartification within clause bodies. On the other hand, the
domain for LML theories is currently under investigation.
The most promising idea is to consider the space of
continuous mappings from Herbrand interpretations to
Herbrand interpretations as the semantic domain, Each
mapping is actually a pair <T*, T> of mappings, which,
roughly speaking, mirrors the idea that a logic theory has
both a positive and a negative component (the latter being the
intensional negation of the former). Hence, the denotation of
a logic theory F is the pair <Tp*, Tp> where Tp™ is the
immediate consequence operator, as defined by Apt and
vanEmden (1982), associated to P, whereas Tp® is the one
associated to its intensicnal negation (of course the definition
of Tp has been suitably extended to general programs).
Some preliminary results on this issue can be found in
{Pedreschi 1988, Mancarella and Pedreschi 1988).

The definition of the language itself and its execution
environment is still in propress. Among several interesting

issues one is worth to be mentioned, i.e. finding a neat and -

coherent way of embodying in the functional layer primitives
for the metainterpretation of logic theories, like, for example,
clause and call in Prolog.

REFERENCES

Apt, K. R, and vanEmden,M.H. “Contributions to the
Theory of Logic Programining”, Journal of the ACM,
29,3 (1982) 841-862.

Barbuti, R., Mancarella, P., Pedreschi, D. and Turini, F.
““Intensional Negation of Logic Programs: examples and
implementation techniques”, in: Proc. TAPSOFT "7,
LNCS 250, (Springer Verlag, Berlin, 1987} 96—-110.

Barbut, B, Mancarella, P., Pedreschi, D. and Turini, F. “A
Transformational Approach to Negation in Logic
Programming”, to appear in Journal of Logic
Progravming (1088).

Bowen, K.A. and Kowalski, R.A. “Amalgamating
Language and Metalanguage in Logic Programming”, in
Logic Programming, Acadcmic Press (1982), 153-172,

Cardelli, L. “Basic Polymorphic Typechecking”, in:
Polymorphism, vol. 11,1 (1985).

Clark, K.L. “Negation as Failure”, in: H.Gallaire and
JMinker (eds.), Logic and Data Bases, Pleuum Press,
New York, (1978), 292-322.

Darlington,J.,Field A.J. and Pall, H. “The uwnification of
Functienal and Logic languages™, in Legic
Programming: Functions, Relations and Equations,
Prentice-Hall (1985).

Gallaire, H. “Boosting Logic Programming™, in: Proc.
Fourth Int. Conf. on Logic Programming, Melbourne,
Australia (1987) 962-088.

Henderson, P. Functional Progrmmin. Application and

Implementation, Prentice-EHall (1980).

Kowalski, R.A. Logic for Problem Solving (Elsevier
MNorth Holland, New York, 1979),

Kowalski, R.A. “Logic Programming”, in: Proc. IFIP'83
{Morth Holland, 1983} 133-143.

Lassez, J.-L. and Marriot, K. “Explicit and Implicit
Representation of Terms Defined by Counter Examples”,
Journal of Awtomated Reasoning 3 (1987).

Lloyd, LW., Foundations of Logic Programming
{Springer Symbolic Computation Series, Bedlin, 1984).

Lloyd, I.W. and Topor, R.W. “A Basis for Deductive Data
Base Systems”, Journal of Logic Programming, Yol
2,2 (1985) 93-103.

Lloyd, 1.W. and Topor, R.W. “A Basis for Deductive Data
Base Systems II", Journal of Logic Programming, Vol.
1 (1986) 55-67.

Mancarella, P. [ntensional Negarion of Logic Programs.
Ph.D>. Thesis, University of Pisa (in [talian) (1988},

Mancarella P, and D. Pedreschi. “An algebra of Logic
Programs”™, in Proc. of Fifth International Conference,
Symposium of Logic ngranunmg. Seattle {1988)
1006-1023.

Mancarella,P., Martini,5. and Pedreschi,D. “Complete
Logic Programs with Domain Closure Axiom". To
appear in Journal of Logic Programming (1988a).

Mancarella,P., Pedreschi,D. and Turini,F. “Functional
Metalevel for Logic Programming”, in: D.Nardi and
P.Macs {eds.), Mera-Level Archirectures and
Reflections, (North-Holland, Amsterdam, 1988b)
320-344. '

Milner, R. “A proposal for Standard ML, in: Proe. of 1954
ACM Symp. on LISP and Functional Programming
(1985) 184197,

Pedreschi, D Logic Programming: Compositional
Semantics, Algebraic Structures and Complete
Programs. Ph.D.Thesis, University of Pisa (in [talian)
(198E).

Reiter, R. “On closed world data bases”, in: H.Gallaire and
I.Minker (eds.), Logic and Data Bases (Plenum Press,
Mew York, 1978) 55-76.

Richards, H. “The pragmatics of SASL for programuming
applications”, Technical Report ARC 82-15, Ausiin
Research Center, Borroughs Corporation (1982).

Robinson, I.A. and Sibert, B.E. “LOGLISP; an alternative to
PROLOG", in Machine frtelligence 10, (1982).

Sato,T. and Tamaki,H. “Transformational Logic Program
Synthesis”, Proc. Conf. on Vth Generation Computer
Systems (1984).

Shepherdson, 1.C. “Megation as Failure: a Comparison of
Clark's Completed Data Base and Reiter's Closed World
Assumption”, Journal of Logic Programming, Yol 1,1
(1985)

