PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ONM FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT, © 1COT, 1988

735

CAP -- A Three-Phass Query Processing Technique For Indefinite Databases

8han Chi and Lewrencs J. Henschen

EECE Department
Northwestern University
Evanston, Illincis 60208

ABSTRACT

A new method, ealled the compile-
access-prove (CAP) algorithm, is pro-
posed for query processing in indef-
inite databases, & database is logic-
ally represented as a set of clauses
ameng which the non-Horn clauses rep-
regent indefinite informatien. Fhysic-
ally the database intemsiom, containing
view definitions, is compiled into)
aceess rules and the databaae extension,
containing elementary facts, is stored
as relations on digks. FEach accegs
rule is a procedure consisting of rel-
ational operationsa. In genaral, the
indefinite elementary facts need to be
processed with a thecrem prover. By
gtoring all slementary facts (ineluding
indefinite ones) into relations, it is
possibkle to replace the thecrem proving
gteps with more efficient relational
aperations.
changes the semantices of the database,
At query time, the related indefinite

Howavar, this process

elementary facts are collected and sent
to a thorem prover to recover the orig-
inal semantics. The CAP algorithm has
the following advantages: (a) 1t is
capable of answering gueries for recur-
sive indefinite databases, (b} the
theorem prover involves only the indef-
inite faets related to the guery, (e)
updating the database extension does
not require the recompilation of the

database, and {d) all techniques
developed for Horn databeses can
be used in this aigorithm.

1 INTRODUCTION

In this paper, we present the CAP
Ecumpilguaccaaﬂ-prova} algorithm for
angwering queries din indefinite data-
bases. A datebase iz logically rep-
resented as a set of clauses and is
gaid to be indefinite if it contains
non-Horn elausea. Most of the research
in deductive databases and logic prog-
ramming focused on the computation of
definite information represented by
Horr clauses. Horn elauses are aimople
and expressgive enough for many applic-
atione.
sive enough for those applications in-
volving indefinite information. For
exatple, the rule "if x is in C3 dep-

artment then his office must be in

They are, however, not expres-

building &4 or B" is represented by
"building (y,4) v building(y,B) :-
dept (x,08), office(x,¥y)." which is &

non-Horn clause,

A econventional approack to indef-
inite infermation processing is ex-
tending the relation model to accept
indefinite data, suck as a null value.
In this paper, we drop the relatienal
model completely and use the first-order
logic beceuse the latier iz more general

736

and the theories are well-founded. Won-
theless, the database is physically
gtored ms tables and is processed with
relational operators. Therefore, the
CAP algorithm is compatible with rel-
ational databases.

1.1 Non-Horn Clauses versus Null Values

One appreach to indefinite inform-
ation processing is to allow the attri-
bute values to be null, This approach
is & natural extension of the relational
model. There have been many atudiss in
the construction of formal semantics and
theories for null velues (Bisgkup 1981,
Codd 1979, Grant and Minker 1981,

Lipaki 1979, Yshys and Henschen 1985),

The null value approach is sometimes
inadequete. Coneider a battle command
system that receives from an intelligent
radar the information "deteeted(Mig-28)
v detected (Mig-29)." The informaticn is
net precise but can be very useful,

Such information can nct be represented
in a Horn system like PROLOG.
to circumvent this problem is using null
valueg: "detected (NULL)."
does not carry as much information as a
It is alse very
hard to draw any conclusicns from the
information containing null valueg, It
is shown in this paper that definite

One way

However, it

non-Horn eclause can.

information can be deduced from soms
indefinite information represented by
nen-Horn elauses,

1.2 Non=-Horn Clauses versus Wegative
Subgoels

Traneforming a nen-Horn clauase into
& Horn clause with negative subgoals is

not always desirable. For examplae,
vdeteeted (Mig-28) v deteoted(Mig-29)"
will probably be transformed into
*detected (Mig-28) :- noi detected{Mig-
29}." in PROLOG.
Mig-28}" will then be answersd "yes"
while "detected(Mig-29)" will be an-
gwaraed "no." Therefore the interpret-
ation iz bilased.

L query "detected|

A more sericus problem 1s that the
logic programs (or deductive databases)
become unstratified after such trans-
formatione. The gquery answers for this
clags of propraes are not even wall-
defined.
a non-Horn cleuse is changed by the
If the non-Horn clause

In general, the semantics of

traneformation.
represente indefinite information then
the transformation is imappropriate
ginee it disteorts the original meaning
of the clause.

From éha above discussion, we con-
elude that processing non-Hern clauses
is sometimes unavoidable or even -desir-
able. 4n alporithm iz propesed in this
paper to make the proceassing more
manageable in the context of deductive
A brief review of the first
order logic is given in asection 2. The

detabases.

compilation appreach is introduced in
seetion 3, Minimal conditional anawers
and relevent theorems are derived in
section 4. The CAP algerithm is pre-
sented in section 5.

with related works are in section 6.

Some comparisone

2 PRELIMINARIES

The first-order logic considered in
this paper is functicn-free and guan-
tifier-free. An stom is written as
P{t1,...,tn} where P,t1,...,tn are sym-
bols. P ig the predicate sywbol of the
atom, Each ti is said to be a variable

if it starts with u,v,w,x,y or s, and a
constant octherwise.

A literal is an atem (positive lit-
eral) or an atom preceded by a negation
sign - (negative literal). A-clause is
a disjunction of literals, written as a
literal sequence (with the "or" conneet-
ive "v" omitted).
clauge are asgumed to be universally
guantified, A clause 18 positive if ell
literals imn it are pesitive. Sieilarliy,

it is negative if all literals in it are

The wvariables in a

negative, A clause is Horn if there i=s
ne more than one peaitive literal in the
elause; otherwise, it is non=-Horn. A
unit clauvse is a aingle-literal clause.
A elpuse ig ground if it conksins no

A subelause of a clause O is

a diﬁjunctinn of some literals in C.

variehles.

We use & set of clauases to mean a
A set of

clauses is Horn if every clause in it

conjunction of clauses.

is Horn; otherwise, it is non-Horn. The
Herbrand universe of a set 5 of cleuses
is the set of all the constants in 3.
The atom set of & ia the set of ground
atoms of the ferm P(t1,...,tn) for all
n-place predicates P, where t1,...,tn
are elements of the Herbrand universe
of 8. A& ground dinsltance of a clause ©
of a sat B of clauses is a clause ob-
tained by replecing veriables in C by
menmbers of the Herbrand universe of 3.

An interpretation I of a set 8 of
clanges is & subset of the atom set of
8. T ié saeid to satisfy an atom A if A
is in I; otherwise, it is gsaid to fal-
sify A. I falsifies (matisfies) the
literal -A if it satisfies {(falsifies)
L. An interpretetion gatifies a ground
instance of a clause if it patisfies at
leagt one literal in that instance. It
satisfies & eclause if it satiefies all

737

the ground instances of that clause., It
is a medel of 8 1f it satiafiez all the
It is minimal if none of
its proper subsets is a model of 5. A

clauses in S.

set of clauses is consistent (satiafi-
able) if and only if it has a model. . It
is inconsistent (unsatisfiable) if it is
not congietent.

& deduction tree of a clause C is &
binary tree whosge nodes are clauses such
thaet each parent node is the resolvent
of its two children and the reoot nede is
O« An 5 deduction tree, where 5 iz a
get of clauses, is one whose leaves are
all from S,
theory, we know if there exizts an 5
deduction tree of a clauee C then & de-

From the binary resclution

n

rivaes C and © is derivable from 8.
3 QUERY COMPILATION

A database DB is the union of two
disjoint sets of clauses, IDB and EDB,
repregenting the intensional and the
extensional detabasze, respectively. The
EDB consists of all the ground clauses,
representing facts, and the IDE consists
of ether elauses, representing rules and
view definitions. The EDB is further
divided inte two disjoint subaats..DEDE
and IEDB, containing Horn and non-Hern
The IFDE clauses
can not be directly stored into rel=
ations. Instead esch lditeral in the
IFLE is stored as a tuple in a disk rel-
ation and is interpreted as a unit
clause. The set of all such literals
is denoted ms IEDB', On the other hand,
an IEDE clause simply contains pointers
to the tuples that represent the 1it-
erals.

elauses, respectively.

The fellewing cenvention is adopled
Predicate symbola P, @
A and B

in this paper:
and R are used in IDE literals.

738

are used in EDB literals.
symbel, such ap @ or A, can be used to
denote a literal. Clauses sre rep-
resented by G, D and B. For exampls,

GC represente & clausze with an IDE lit-
eral § and a pubelause C. 4n EDB {IEDE,
DEDB) literal is simply a literal occur-
ring in the EDB (IEDB, DEDEB) while an
IDB literal is an instance of a positive
literal in IDB.
€ and a set of clauses S5, denoted as

C U &, is the set obtained by adding the
glause 0 to 5 (therefore, the trackets

A predicate

The union of a clause

around C ere omitted].
3.1 Horn Database Compilation

The simeplest approach to gusry pro-
cessing is to treat each guery asz a
theorem to be proved, using a theorem
prover (Figure 1). The theurem.pruv&r
reaclves clauses from the IDE and the
EDE, disregarding the fact that EDEB
clauses are stored on disks. The per-
formanee of such systems is usually
uﬁécc&ptablo due to the impedance mis-
match between the theorem prover and the
disk accesses. The performance can be
improved aignificantly by using the
technigues developed for conventional
database systemsa. Besged upon this idea,
Reiter {1978) proposed the compilation

approach to query proecessing (Figure 2).

== Answer

Figure 1: The Theorem Proving Approach

G

Filgure 2: The Compilation Approach

In the compilation approach, the IDB
Each
access rule represents & seguence of
ralational nperations;
the access rules are atored sz programs
In this
papar, they are represented aszs clauses
for meta-theoretical derivetioms.) 4t
query evaluation time, the related

ia eompiled into accesa rules.
(In praetice,

containing database calls.

gccess rules are used to trigger corres-
ponding datebase operationa. Thare are
at least two advanteges of this ap-
proach: {a) relational operators are
much more efficient than a theorem
prover, and (b) dus to the separation of
compilation and query evaluation, the
accags riles can be well cptimized at
compile tipe. The compilation of Hern

databasea is based on the following:

Theorem 3.1 If DB ie 2 Horn database,
then for any clause C derivable from DB,
there exists a clavae D such that IDEB
derives D and D U EDB derives C.

Proof If DB is Horn and derives C then
there exists a DB deduction tree T of C.
A new deduction tree T' iz obtainsd from
T by meving all the FDB clauses to the
roeot. An IDBE deduction tree of D is
obtained by removing all the reasclutions
with the EDE clauses from T'. Thereforse
IDB derives D and D U EDEB derives C. QED

Fxample 3.1 If IDE contains -AP and -BP
while EDB conteins AR then DB derivea F.
However IDB doess not derive any clause
which, together with EDE, darivga P.

The above rexample shows if the EDB
is non-Eorn then there might exist =
clause derivable from the DE but not
derivable by applying an acecess rule to
the EDB.
from the acecess rules and the EDE are

Therefore, the answers derived

not complete.

3.2 Indefinite Database Compilation

Example 3.1 shows the problem in
direetly epplying the compilation tech-
nigue to indefinite detabases. Henschen
and Park (1986) proposed the solution in
which the IEDE clauses are included in
the compilation (Figure 3).
et guery time only Horn elauses remain
in the EDB., This sclution has several
drawbacks: (a) updating the EDE requires

Tharafore,

a database recompilation, (b} the com-
piller gensrales too many access rules,
sach representing a sequence of databaze
operations at guery time, snd (c) recur-
sive datebaces can not be compiled.

The EDE represents the current
gtate of the database, which wvaries with
time.
pilation process, then the database is
limited: to retrieval-only applications.

If every update triggers a com-

When the database contains recursive
rules, the nen-Horn slauges may resoclve
with the recursive rules indefinitely.
In general, the approach in (Henachen
and Park 1986) can not deal with recur-
give dindefinite databases. In the case
when there are no recuraive rules, the
number of mccess rules generated atill
inereases exponentially with the number
of IEDE literale, as illustrated in the
following example.

Example 3.2 Congider the database with
the following clausea:

C1 = Ri{x,¥)...-A(z,w)

C2 = R2{x,y)..-=4(z,uw)

C10= R10(x,y)...-A{z,w)

611= Afa1,b1)...A{a10,b10)

To derive all the non-Horn elauses with
B1 literals, we use 011 to reasclve with
1. There are 10 choices of the literal

739

to resclve upon. The resclvent can
further resclve with one of C1,...,010.
The process continues until all the
positive A literals are resoclved away.
More than 11]1{:I differant clauses (access
rules} containing H1 can be derived.

To anawer a guery Rl{a,x) will then
trigger that many access Tules.

The CAP alporithm (Figure 4) uses a
different epproach in complling indef-
inite databases. BEach IEDE literal en-
tered into the database is stored as a
tiple in the corresponding disk rel-
ation. By applying relational operators
to the relations at query time, =ach
tuple iz trested as if it were a unit
clause, Therefore, the semantics of the
databage is temporarily distorted to
facilitate the storage and processing of

these indefinite tuples.

JEDG
Ips

Compile

Figure 3: The Henschen-Park Algorithm

IEDE"
DEDE

Figure 4: The CAP Algorithm

To recover the semantics of the
database, in the third phasge the origin-
al TEDE together with the minimal con-
ditional answers (defined in the next
geetion) is brought to memory and fed
into a theorem prover. In this phase,
only ground clauses are involved and
they are relatively few in number. Thus
the theorem proving process at guery
time should be fast encugh in gensral.

740

4 MINIMAL CONDITIOWAL ANSWER

In thisz section, we shall derive the
theorems on whieh the CAP algorithm is
baged. To simplify the proofs of the
theorems, we have the following assump-
tlon abeut the databese: {a) the daia-
base ocontains no negetive clauses, (b)
every clausé in the EDE is positive and
minimal, (e} the predicate symbol of an
IDB literal is distinet from that of any
EDB literal, and (d) clauses are range-
restrieted, i.e., any variable cecurring
in a pesitive litersl must also occur in
a negative literal in the same clause.

A clause C subsumes a clause D if
there exists 2 substitution 8 such that
CB=D. C is said to strictly subsume D
if CB<=D., A clavse is nminimal with rea-
pect to & set 3 if S does not derive any
clauee strictly subsuming the elause, It
is locally minimal if it is minimal with
respect te the set from which it ia de-
rived, It is globally minimal if it is
minimel with respect to the database.

The CAF algerithm derives query an-
swers according to the generaliged
elosed world assumption (GCWA) (Minker
1982) which assumes a ground atem %o be
false only if it does not occur in any
globally minimal pesitive clauae. For
exapple, 1f DB contains only P{a)F(b)
and Pla), then P{b) iz mssumed to he
false since the only globally minimal
clause is P(a).

The head of a clauge iz defined to
be the subclause with all peozitive IDB
literals. The %tail is the remaining sub-
clause. An accese rule is a clause de-
riveble from DB with at least one pos-
itive IDE literal and no nagative IDE
literals. It is ealled access rule be-
cauge its negative subclaunse can be used

to access the database, ag will be shown
later. We use ACC to denote the set of
all the accese rules. ACCY denotes the
set of their ground instances.

A pogitive ground clause can be used
ag & subacript for selection. For ex-
ample, 3, means the set of clauses from
8 whose heads (or tails) contain C.
SG1,...,ﬂn denctes the union of all the
gselections 531""’50n‘ If C is not
ground, then SG denotes the union of the
gelections using the ground irnstances of
C. Also=C (£0,3C,»C) denotes all the
heads or tails subsuming (sgtrictly sub-
suming, subsumed by, sirictly subsumed

by) C.

Definition POS {MPOE) denctes the ast
of all (minimal) positive clausea de-
rivable frem DB. PO3' (MPOS') denotas
the set of all (minimal) positive
clauses derivable from ACC U EDB.

- Hote that POS and MPOS imply the
theorem proving approach to guery an-
swering while POB'" and MPOS"™ imply the
compilation approsch. We kmow POS' and
MPOS' are aubsets of POS apd MPOS, res-
pectively (it is easy to show that PCS!
is a proper subset of POS). In order to
have complete guery answers from the
compilation approach, we must have

HPOS=MFOS',

Defindition A gquery is an atom. It is
open if it containe variables; otherwiae
it ia aloaed.
guery 4 is &true if Q is in MPOS, i.e.,
if DB derives Q. It is possible if
ig not in MPOS but occeurs in a clauge in
HPOS.

The answer to a closed

Otherwise the enswer is false.

A conjunetive query can be consider-
For open
gueries, we collect all tha'ground ina=-

ed as a guery and an IDE rule,

ances which are answered trus and those
that are answerad possible inte two sets
and call them definite answers and in-
definite answers.

Lemma 4.1 If M is a minimal model of a
set 5 of clauses and § is in M then
there exigts & ground instsnce QC of =
elause in 3 such that M falsifies the
gubelause C.

Proof Suppese this is not true. Let
QC1,4..,Q0n be all the ground instances
containing Q of the clauses in 5 and M
geatigfies each of C1,....0n. Then
M-} is still a model of S---contra-
dieting the minimality of M. QED
Theorem .2 MPOS=MFOST,

Proof We only need to prove MPOSEMFOSY,
i.e,, svery minimal poaitive clause ©
derivatle from DB is mlse derivebls frem
ACC U EDE. Obviocusly ACC U EDB does not
derive any clause strictly subsuming C
becausge ¢ is minimal, Suppese ACC U EDB
does not derive G. Then ACC U EDE U =C
is consistent and has a2 minimal model M.
Note that M falsifies C. We shall show
that M. is alsc a model of DE.
it is neot, then there exists a ground
instance D of an IDB clause falsified by
M. Let D=P1...FPmn-Q1...-Qonl', where D!
is the subclause with negated EDB 1it-
In order to falgify D, M must
contain all the § atoms and no P atoma.
Since M is & minimal model of AGC U EDB
U -C, for sach Qi there existe a ground

Suppose

arals,

instance of an acceas rule QiEi such
that M falsifies Ei (Lemma 4.1). HRe-
golving these ground instences with D
will derive P1...PmE1...EnD, which is
falsified by M and is & ground instancs
of an access rule (since all the IDB
literals are positive)---contradicting

that M is a model of ACC. Therefore M

741

must be & model of DE and must satiasfy C
(as DB derives C)---a contradictiom.
Henee, ACC U EDB U =0 must be inconsis-
tent and ACC U EDB derives C. QED

Definiticon If C-A1,.:=An=-Bl.,.-Bm is a
clause in ACC¥ such that C ia the head,
each A literal comes from IEDB' and each
B literal, from DEDB, then C-Al...-4n 1=
gaid to be a minimal conditional anewer.
MIGCA denctes the set -of all minimal
gonditional answers of DEB.

Theorem 4.3 (Completeness Theorem) If
CEMPOS then either CEEDE or MICA U IEDBE

darives G.

Theorew 4.4 (Soundness Theorem) If MICA
U IEDE derives a locelly minimel clause
G then CEMPOS.

The proofs of ell the theorems in
thie peper ecan be found in Chi (1988},
Phase 1 in the CAFP algorithm invelves a
theorem prover with the IDB to generate
the access rulea. In phase 2, the accasa
rules are applied to the DEDB to derive
the related minimal conditicnal answers.
In phase 3, this subset of MICA and the
IRDE are used to derive the query an-
gwers. We have shown that the answers

derived are sound and complete.
5 THE CAP ALGORITHM

In practice, there is no need to
genarate the entire MICA to answer =
query. The fellewing obeservetions,
baged upon the assumptions about the

database, are used to choose the relevent

gubget of MICA for processing gueriea:
{a) Bach clause in MICA contains a non=-
(b)
Each clause in IFDE is minimal and pos-
itive and contains only IEDB literala.
{e¢) If CEMPOS contains only EDE literals

eipty head and a negative tail.

742

then C is a clesuse from *the EDd., {d) If
CEMPOS contains an IDB literal Q, then
MICA-U IEDB derives C and at least one
cleuse from MICA containing Q@ ig in-
volved in the deduction. (e) If MICA U
IEDB derives a positive clause C and §
is an IDB literal in a elause invelved
in the deduction, then § is alsc in C.

5.1 EDE Query

Observation (e) makes processing
gueries with only EDE literals wvery
simple. Consider a closed query Q{a).
foeording to (e}, if A{a}EHPDS;A{aJ then
A{a)€ETB. Note that the EDE is physic-
glly stored ss tables with marked in-
definite tuples. If the tuple Afa) does
not exist then the answer is false: else
if the tuple is marked indefinite then
the anewer is possible; slse the answer
is true,.

5.2 IDE Query

If the query iz an ID3 literal Qfa)
then the answer depends upon whether
MICAqn(g) U IEDB derives Q(a).

Theorem 5.1 For any positive IDB 1it-
eral Q, Q€MPOS if and only if HIGAQ U

TIEDE derives Q.

This is a direet result from Theorens
4.3 and 4.4 by using the observations.
In the following example, an indefinite

recursive database is used.

Example 5.1 Let DB contain the follow-
ing clauses:

Gl = H{x,y}-ﬂ{x,y} Relation A
02 = E{x,zghﬂ Xy)-4(y,s) a

C3 = Ala,1t a =2 %

G4 = Ala,3) a 3

Cs = A(2,5 T 4 ¥

G6 = Al4,T 1 11 #

C7 = A(5,8 2 5

08 = 4(6,9 3 6%

C9 = A(8,10) 4 7
C10= A(1, 11}4{11,12) 4L B %
C11= Ala,2)A(1,4)A(3,6}) 5 8
C12= A{a,2)4 ¢,a;a§?,10; & 9
C13= A{1,4)4(9,8)a(6,10 6 10 *
7 10 *
& 10
g 8 %
11 12 #

The physical storage of relation A is
aldo shown., A4 tuple is marked * if it
comes from the IEDB, i.e., if it is in-
definite. Let the query be Rla,10).
HIG&H{a'1a} is obtained by epplying the
tranaitive elosure algorithm (Chi and
Henschen 1988) to relatiom Az

~A(1,4)-4(7,10)

Cl4= R
“A{1,4)=404,8)

C15= Ria,10
016= Rie,10)~A(a,2
G’I'T' R{ar1ﬂ -A.[B-ﬁj-l(gus}
¢18= E(a,10)-4(3,6)-4(6,10)

a,10

HIGLH(&.1U} U IEDE derives HR{a,10} as
shown balow:

C19=R a,1ﬂ;A{a.E}£{3p5}Af¢p3}
G20=R(a,10)4(a,2)4(3,6)
C21=R{a,10)A{a,2)A(1,4)A(6,10)
C22=R(a,10 ﬂéa,Z}ﬁ 1,4
€23=R{a,10)A{a,2)A(4,8
C2iek({a,10)A{a,2)

C25=Ria,10

11,712,714
11,15,19
13,17,20
11,718,217
12,14,22
15,2R2,23
16,24
The nuebars preceding eaech clause are
the clauses involved in the resolutiomn.
Hote that the definite fact R{a,10) is
derived from some indefinite clauses.-
The query answer is true by Theorem 5.1.

5.3 Redundancy Eliminetion

Theorem 5.1 shows that the inform-
ation in MIDAQ U IEDB is sufficient feor
computing HPGSq. However, for & nen-
unit head C the information in HIE‘-Aﬂ U
IEDE is in general insgufficient for com-
puting HPGSG. We need 2 relevant subset
of MICA to gensrate the guery answers
and some redundant resolutions sheuld be
aveided. The theorem developed below is

used for such purpose,

Definition A zet 5 of clauses ig aaid

to be saturated if every clause it de-
rives is subsumed by a clauwae in the
IEDE.

Lenmeg 5.2 For any set of minimal con-
ditional snawera MIEAC, if }*'II'IJ.ULL.‘.I 0 IEDE
is saturated then every minimal model of
the IEDB satisfies MICA,.

Theorem 5. If MICA, U IEDE ie satu-
rated then every minimal positive clause
derivable from MIGA U IEDB is also de-
wivable from MICL U IEDE - HIEAU.

The proof followa directly from Lemma
5.2 by ghowing that every minimal model
of MICA U IEDE iz alsc a model of MICA
U IEDE - MICA,. The CAP algorithm uses
5.3 to eliminate unnecessary
resolutions in the process of finding

Theorem

all query answers.
fellows:

The slteps are ag

1., Compute the ACC by resclving clauses
in the IDE.

2. Let @ be the query and apply the
access rules ACC. to disk relations
to generate MICA..

3. If HIGAq T IEDE derives [then answer
true and stop.

4o If HIEAq U IEDB is not saturated then
answer possible and stop.

5. If there are no more acoess rules
eontaining § then answer false and
atop.

6. Apply one access rule, say AEGQG, to
digk relations to generate HIGRQG.

T. If HIGAQC T IEDE is saturated then
go to 5.

8. If every positive clause derivable
from HI{]AQG U IEDB is subsumed by a
clause derivable from HIGA£E U IEDE,
then go to 53 elae answer posaible
and atop.

NHote that the saturation 1s tested by

743

If the IDE
contains only Heorn clauses, then the

using a theorem prover.

first 4 steps are sufficient for finding
all the anawers.

& RELATED WORES AND CONCLUSIOR

Eenschen and Park (1984&) first in-
troduced the compilation approach to
non-Horn (indefinite) databases. The
number of access rules generated in
their approach increases exponentially
with the number of IEDE literals. The
theorem prover in the CAP algorithm can
also invelve many resclutions. However,
the process is taking place in memory
with only ground clauses invelved,

therafore is much faster.

Grant and Minker (1983} proposed =
query processing method under the GOWA,
It requires the generation and storage
of all database meodels. Yahya and
Herschen (1985) developed a deductive
approach to query answering under the
extended GOWA,
need o be proved at query time with
this approach, Bossu and Siegel (1985)
proposed an algorithm for answering
gueries baged upon the so-called sub-
implication.

4 large group of clauses

The saturatien (theoremn
prcving} algorithm is applied to the en-
tire database for ansvering a query. In
these approaches, the physicel storages
aof the IDE and EDB are not different-
iated. Therefore, the possibility of
replaeing some deductions with relational
operations was not explored.

" ¥We presented the CAP algorithm for
processing gqueries in indefinite data-
bageaas, The posgaibility of using a rel-
ational datebase and compilation tech-
nigusg to process indefinite information

is explored. The improvement in perform-

744

ance 1a based upon the following: (a)
relational operators fnstead of a
theorem prover is used for accesaing
disk relations, (b} redundant disk
accesses are reduced to the minimum by
applying the redundancy removal thesoren
and by delaying the indefinite inform-
ation processing t111 the theorem
rroving phase, {(c) only related indefi-
nite infermetion reeds to be processed
by the theorem prover, and (d) the
theorem proving is taking place in main
memory and invelves only ground clauses,
Aa In reality wery few applications re-
quire deductions from a large amount of
inter-related indefinite informetion,

g0 the CAP slgorithm should be efficient
encugh for practieal use,

Our pajor contributions are {a)
eliminete the need of using a theorem
prover over the entire indefinite data-
base, (b) remove the exponential growth
of the number of disk accesses, and (e)
maintain the compatibility with rel-
ational databases and recursive query
processing techniques (Bancilhon and
Ramakrishnan 1986, Chang 1981, Henschen
and Hagvi 1984).

REFERENCES

1. Bancilhon, F. and Ramakrishnan, R.,
"An amateur's introduction to re-
cursgive query processing strategies!
ACM SIGMOD Conference on Management
of Data, (198&).

2, Bigkup, J., "A forwal approach te
null values in datebase relations”
Advances in Data Base Theory 1, H.
Gallajre, J. Minker, and J.M.
Nicolas, Edg., Plenum Press, New
York, (1981), pp. 299-341. .

3. Bossu, G. and Siegel, P., "Satur-
aticn, nonmonotonic reasoning and
the closed-world assumption® Art-
ifieial Intelligence 25, (1985),
pp. 13-63.

.?I

10.

11.

12,

13.

14.

Chang, C.L., "On evaluation of que-
ries conteining derived relationsn
Advances in Data Hase Theory 1, H.
Gallaire, J, Minker, and J.M.
Hicolaaz, Eds., Plenum Press, New
York, (1981), pp. 235-260,

Chi, 8., "A three-phase query pro-
cessing technique for in&afini%&
databases" Ph.D, dissertation,
Northwestern Univeraity, (1988),

Chi, 8, and Henschen, L.J., "Recur-
Bive query answering with nen-Hern
clauges" Conference on Automated
Deduction, Argonne National Lah.,
{198a),

Codd, ®.F., *Extending the database
relational model to capture more
meaning" ACM TODS 4, 4, (1979), pp.
339-434.

Grant, J, and Minker, J., "Answering
queries in indefinite databases and
the null value problems" University
of Maryland, College Park, (1981),

Henachen, 1.J. and Nagwi, 8., "On
cﬂmpilin% gueries in recursive first
order databaszea"™ JACM 31, 1, (1984},
Pp. 47-85.

Henschen, L.J. and Park, H., "Com-
plling queries in indefinite deduct-
ive databases under the GOWA"™ Ph.D.
dissertation, Northwestern Universi-
ty, (1986),

Lipski, W. Jr., "On sepantie iesues
connected with incomplete inform-
ation databases" ACM TODS 4, (1979)
p‘pl 262 "29'61

Minker, J., "On indefinite databese
and tha elosed waorld agaumption®
Lecture Notes in Computer Science
138, Springer Verlag, (1982), pp.
292-308,

Reiter, R., "Deductive question an-
swering on relational data bagea"
Logic and Databases, H. Gallaire and
J. Minker, Fds., Flenum Frese, New
York, (1978), pp. 149-177.

Yahye, A. and Henschen, L.J., "Dg-
duetion in non-Horn datsbasesh
Journel of Automated Reasoning 1,
2, (1985}, pp. 141-160,

