PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. @ ICOT, 1988

167

THEORY AND PRACTICE OF CONCURRENT SYSTEMS
~—A POSITION PAPER

David H. D. Warren
Department of Computer Science

University of Bristol
Bristol BS8 1TR, U.K.

What do we mean by concurrent systems?

We have to be careful what we mean by a concur-
rent system. Computer systems are built in levels one
on top of another, for example an application on top of
a high-level language emulator on top of microcede on
top of hardware. Concurrency at one level doss not nec-
essarily imply concurrency at another. For example, a
pipelined processor has concorrency that manifests itself
at the microcode level, but is irrelevant and invisible to
the higher levels. Equally, there may be concurrency at
a higher level but no concurrency at a lower level. For
example, an operating system running on a sequential
machine supports concurrent activities at a high level
without there being any parallelism at the machine level.
In this case, the concurrency at the high level is appar-
ent rather than actual. There is no true parallelism in
the sense that operations are in fact performed simulta-
neously leading to an increase in speed. In this paper,
I shall reserve the word “parallelism” for concurrency in
this more restricted sense, and use “concurrency” as the
more general term. The two concepts are often confused.

I shali call a system a concurrent system only if there
is concurrent activity apparent at the highest level. Thus
an application should not be regarded as 2 concurrent
system simply because it is running on a parallel com-
puter.

Is concurrency irrelevant to the real problems we
wish to solve with computers?

Some applications are intrinsically concurrent {e.g.
an operating system or an airport simulation), and are
best expressed in a concurrent programming language.
However most problems that we want to solve on a com-
puter are not intrinsically concurrent, and do not require
a concurrent programming language. Thus concurrency
is indeed irrelevant to most (but by no means all) real
problems.

Of course, we would like our applications to run faster,
and parallel computers are one very promising way to
achieve this. However we should not confuse parallelism
with concurrency and feel obliged to reprogram our ap-
plication in a eoncurrent programming language. Paral-
lelism is best exploited at a lower level, and concurrency
should then only be of concern to the implementor of

that lower level.

What are the fundamental differences between
sequential and parallel systems? Should these
differences be exposed or hidden?

The only fundamental difference between & sequen-
tial and & parallel system should be that the parallel sys-
tem runs faster! Any other differences should be hidden.
I I ask a builder to build me 2 house, it shouldn® con-
cern me whether he nses one workman or many. Equally,
if I want a computation performed, it shouldn't concern
me whether the computer has one processor or many.

Do you envisage a transition in mainstream com-
puting from sequential to parallel systems? Can
you specify preconditions and milestones for such
a transition?

I believe parallel computers will only gain widespread
use when parzllelism ean be exploited invisibly to the
normal programmer (or user), Computers are hard enough
to use, and applications are difficult enough to program,
without introducing a further dimension of complexity.
Parallel computers will only supplant sequential ones
when they can be treated as "black boxes" that happen
to run faster.

Thia is very difficult to achieve with conventional pro-
gramming languages. Conventional languages have a no-
tion of time and change of state built into them, and de
pend on assignment as the basic eperation. They can be
classified into sequential languages (e.g. Fortran) and
parallel languages (e.g. Occam). It is difficult for the
language implementor to extract parallelism from a se-
quential language because the semantics of the language
is so much bound up with a particalar order of execution.
This has led to the development of parallel languages. In
these languages parallelism can be exploited, but only at
the expense of making it very visible lo the programmer.

To exploit parallelism invisibly, [believe the most
promising approach is to switch our attention to declar-
ative languages (e.g. Prolog and other logic program-
ming languages). Declarative languages define a compu-
tation through a declarative description of the problem,
plus some control information which serves to shape the
computation of a solution. Declarative languages have

168

two big advantages. Because the language is declarative,
it is easier to produce correct programs to solve complex
problems. Because the language is not based on assign-
ment, and doesn’t foree any particular execution order,
it is easier to exploit parallelism.

Frolog is often viewed-wrongly in my opinion-as a
sequential language, probably because the original im-
plemntations were sequential, and because the langnage’s
operational meaning is generally explained in sequential
terms. Howewver, I would argue that the Prolog con-
trol information (goal ordering, clause ordering and cut)
serves only to define the size and shape of the compu-
tation that is to be carried out, and leaves largely un-
specified the order of operations. Thus in the Aurora
system which we have implemented (and is deseribed in
this Proceedings), the computation tree is consiructed
in or-parallel fashion while supporiing the full Prolog
language. This idea can be extended to encompass and-
parallelism as well as or-parallelism while preserving the
same language semantics and abstract view of a com-
putation. This we have called the Andorra model (par-
tially described as part of a paper in this Proceedings by
my colleague Seif Haridi, and implemented in prototype
form by my colleague Rong Yang).

Thus declarative languages are in general neither se-
quential nor parallel, but should be viewed as neutral
towards parallelism. Control information is also ideally
largely neutral towards parallelism, although certain lan-
guage features tend to force a sequential view (e.g. side
effect predicates in Prolog), and certain language fea-
tures tend to force a parallel view (e read-only vari-
able annotations in Concurrent Prolog).

Can you envisage the structure of future general
purpose parallel computing systems?

1 believe parallel computers of the fwture must be
truly general purpose, and must allow multiple proces-
sors to treat all data as shared and unifermly accessible.
This implies shared virtual memory but does not neces-
sarily imply shared physical memory. Our proposal for a
scalable multiprocessor with these properties, called the
data diffusion machine, is described elsewhere in these
Proceedings. The machine is completely general purpose
in that it can potentially support any kind of application
in any kind of language. However it was motivated by
the desire to exploit parallelism transparently through
declarative language systems such as Aurora and An-
dorra.

Is concurrency a nuisance inflicted upon us by
hardware capabilities? Or is it a blessing that will

lead us to better ways of thinking about prob-.

lemsT?

Parallelism is in some sense & nuisance that we must
endure if we want our applications to run faster. How-

ever, hopefully it is a nuisance that need only concern
the implementors of the lower levels of a computer sys-
Lem.

Concurrency, as I have mentioned, is an essential fea-
ture of certain kinds of applications, and demands new
kinds of programming language. Ii has led to the devel-
opment of an imporiant new family of declarative lan-
guages, the committed choice languages (Parlog, Con-
current Prolog, GHC). These languages are better able
to express applications where concurrency is intrinsic,
However, in other respects they are more restrictive than
Prolog and not so widely applicable. The Andorra model
gives Prolog much of the capability of committed choice
languages, and it is my beliel that the advantages of Pro-
log and committed choice languages can be combined in
asingle language, which I will call Andorra Prolog. Ideas
in this direction are still emerging; Seil Haridi presents
one appreach in this proceedings.

