PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE

OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. © ICOT, 1988

165

THEORY AND PRACTICE OF CONCURRENT SYSTEMS
—THE ROLE OF KERNEL LANGUAGE IN THE FGCS PROJECT—

Kazunori Ueda

Institute for Wew Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

1 INTRODUCTION

An outstanding feature of the Fifth Generation Compu-
ter Project is the idea of designing & novel kernel lan-
guage that links parallel hardware and application soft-
ware, KL1 {Chikayams et al. 1888), the kemel lan-
guage for the Multi-PSI (Tald 1988) and the Parallel
Inference Machine (PIM) {Goto et al. 1988), is based
on the inherently parallel language GHC (Ueda 1588).
This means that we chose to expose parallelism to soff-
ware people and involve them in forming the culture of
parallelism, rather than to hide parallelism from them.
This paper will describe why we took this approach
and will answer the questions of Ehud Shapiro in the
light of our methodology.

2 LANGUAGE ISSUES IN
CONCURRENT SYSTEMS

The key to the success of concurrent systems lies in
how to construct and accumulate parallel softwars.

It is often claimed that parallel programming is dif-
ficult, but the fact is that we have never made as much
effort toward creating parallel software as toward ereat-
ing sequential software. We are too much accustomed
to sequential programming of von Weumann comput-
ers to change our programming style. It is very im-
portant to overcome these non-technical problems and
concentrate more research on parallel programming by
steadily finding solutions or clues to individual techni-
cal problems.

Technical problems include language issues, with
which [have been invelved for years. There are two
candidates for an easy-to-use parallel language: aug-
menting a sequential language with simple primitives
{like Qeeam) and designing an inherently parallel lan-
guage. The former might enable smoother transition
ifrom sequentiality to parallelism, but our project chose
the latter approach for the following ressons:

(1) The existence of sequencing tends to make control
overspecific. We wanted to distinguish between the
sequentiality essential for the correciness of the al-
gorithm and the other kinds of sequentiality.

(2) We wanted the kernel language to express any po-
tential parallelism of a program independently of
the granularity of the hardware we would design.

(3) Parallel programming will require the change of our
way of programming and thinking from the von
Neumann style. An inherently parallel language
will better enceurage it.

Another alternative might be to raise the level of
the kernel language to where programmers are not
bothered by control. However, we do require a par-
allel language with explicit control when implementing
such a high-level declarative language and, more impor-
tantly, when deseribing the communieation between a
program and the cutside world,

Tt is the atiention to communication that charac-
terizes concurrent systems both in theory and in prac-
tice. In theory, communication gives the most abstract
view of a whele program and its fragments, concurrent
proceszes. In practice, communication is the primary
source of bottleneck,

The reason why control is necessary for specifying
communication is that communication 18 a directed, ir-
reversible activity. A language without explicit control
is usually considered to be at a higher level than a lan-
guage with explicit control, but the presence or absence
of control is more & matter of formalism than a matter
of the level of abstraction. A language without con-
trol can be used only in the fragments of a program
in which communication is not made or need not be
specified.

We chose to expose parallelism to soltware people
by adopting an abstract kernel lanpuage with explicit
conkrol. It provides software people with an appropri-
ately abstract model of parallel computation, and yet it
is amenable to reasonably efficient parallel implementa-
tion. Owur choics does not necessarily mean that all ap-
plications programmers must care about control issues;
we could hide parallelism by implementing higher-level
languages (like constraint pregramming languages) on
top of the kernel language. The point is that applica-
tions programmers should have explicii access fo par-

166

allelism if they want, The development of concurrent
systems should be supported by many people at various
layers from hardware to applications. Our choice al-
lows enterprising applications programmers to consider
good use of parallelism for their applications, which
can be spread in the form of a programming peradigm
or an embedded language whose object codes zmbod:r
that paradigm.

3 FUTURE RESEARCH

Much research remains to be done on concurrent sys-
tems. Making & good parallel implementation of the
kernel lengusge will not be sufficient to motivate ap-
plications people to write parallel programs. We must
show them parallel programming methodologies. We
have found that altheugh it is net very diffieult to write
paralle]l programs, it is difficult to write good parallel
programs. We must take two more things into aceount:
the locality of communication and load balancing.

In sequential programming, we rely so much on the
flat storage structure. Large and flat memory space has
made programming easy by not letting programmers
think much about locality. To make full use of & par-
allel computer with the processing power distributed
over the storage, however, we must consider storage
and processing at the same time and keep the locality
of communication. The notion of constant-time access
is by no means scalable.

Paralle]l programming requires theoretical support,
ton. We do not yei have a practical computational
model with which to argue the real efficiency of paral-
le] algorithms running on, say, the Multi-PSL Previous
theories of paralle]l computation were concerned mainly
with whether parallelism improves time complexity.

However, the computers we are building are intended

to improve iime and not time complexity.

Some applications programs may have irregular
structures that are too difficult to analyze statically.
Such programs require a mechanism for keeping the
load balsnce and the locality automatically. In gen-
eral, a future eoncurrent system will be supported by a
lot of techniques whose basic ideas may be discovered
on the analogy of what we do in the real world as mem-
bers of some community. The actual implementation
of those techniques will necessitate statistical analysis,

We must also continue language and implementa-
tion research to create a more expressive and more effi-
cient language. As for expressiveness, we must consider
how to introduce meta-level operations gracefully. By
meta-level operations I mean the operations that refer
to and/or modify the “current” status of computation
(including physical configurations and time). GHC ide-
liberately excluded meta-level operations to reveal the

essence of concurrent logie programming, It is expres-
sive ecnough for ordinary programs, but is too weak
for an operating system like PIMOS (Chikayama et al.
1988). Accordingly, KL1 has featured necessary meta-
level operations to describe PIMOS, but we have yat
to clarify their semantics by developing an appropri-
ate model of the parallel computers running KL1 pro-
grams. Research on reflection in parallel computation
(Tanaka 1988) will be helpful in the design of meta-
level features.

As for efficiency, we have two directions of research:
the simplification of the kernel language {without loss
of expressiveness) and the development of high-level
optimization technigues. The purpose of the simplifica-
tion is to make processes and streams more efficient by
tuning KL1 for programming with many small commu-
nicating processes. Ib is my consistent view that GHC
is a base language from which an appropriate subset
should be made. A good subset will be found through
the research on sophisticated optimization that em-
ploys techniques such as abstract interpretation.

An efficient implementation of processes and
streams will better support user languages such as
A' UM (Yoshida and Chikayama 1988). It will alsc en-
able us to use processes as building blocks of a database
that allows coneurrent access. However, such storage-
intensive use of processes requires a new kind of opi-
mization. While most of the current implementations
of KL1 are tuned for computetion-intensive programs
that do not suspend so often, now we need optimiza-
tion techniques for processes that are almost always
dermant.

REFERENCES

Chikayama, T. et al. (1988) Overview of the Parallel
Inference Machine Dperatmg System (PIMOS), in this
volume,

Gote, A. et al. (1988) Overview of the Parallel Infer-
ence Meachine Architecture (PIM}, in this volume.

Talki, K. {1988) The Parallsl Software Ressarch and De-
velopment Tool: Multi-PSI System, in Programming of
Future Generation Computers, Puchi, K. and Nivat, M.
(eds.), North-Holland, 1988, pp. 411-426.

Tanala, J. (1888) Meta-Interpreters and Reflective Op-
erations in GHC, in this volume.

TUeda, K. (1988) Guarded Horn Clanses: A Parallel
Logic Programming Language with the Concept of a
CGuard, in Programming of Future Generation Com-
puters, Fuchi, . and Nivat, M. (eds.), North-Holland,
1088, pp. 441-456.

Yoshida, K. and Chikayama, T. (1988) A'HAM — A
Stream-Based Coneurrent Object-Oriented Language,
in this velume.

