PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1985,
edited by ICOT. © [COT, 1988

157

Theory and Practice of Concurrent Systems

Genffrey Fox
California Institte of Technology
Pasndena, CA 91125
Augusi 17, 1988

What are Fundamental Problems in Constructing and

Using Concurrent Systems?

We can consider the issues in three categories: (i)
Hardware, (i) Systems Software and Programming
- Environment, (iii) Application Sofrware.

(i) It appears to me that basic principles of the
hardware architecture and construction are under-
stood. One has a collection of nodes connected by
some sort of switch or ronter to a collection of
memories. Such machines can be built although
there arc several important questions.

(a) Arc the nodes powerful or wimpy? Is the

Teraflop processor 20,000 twenty nanosec
nodes or 1000 one nanosec nodes?

{b) What is the namre of switch and correct tra-
deoff between latency, bandwidth and depen-
dence on routing distance?

{c) Should one build “smart" memories or
switches?

{d) Should control be SIMD or MIMD? -

In each case, there will be an inevitable favoring of
local data references and varying penalties for access to
shared or non-local memaries.

There are other architectures to be explored and
discovered (using neural networks, dataflow, etc.) but
currently known general principles seem to be sufficient
to build high performance general purpose concurrent
COMmpuiers,

(iii) Experience such as that gained at Caltech [Angus
89, Fox 87f, Fox 88a, Fox B8b, Fox 88c] have
shown that a broad range of applications - including
the majority of those running on current sequential
supercomputers - perform well on concurrent com-
puters with speed ups that are typically at least 80%
of the number of nodes.

(ii) However, this experience was gained with unusually
talented users who rethought problems and rewrote
codes from scrarch, Further, the resultant programs
were quite small (500-5000 lines). In principle, this
experience is directly applicable to large industrial
and government (defense, national laboratories)
applications which use “essentially” the same algo-
rithms. However, these applications involve much
larger codes (100,000 lines or mere) and it is often

impractical to rewrite code - especially for today’s
concumrent computers where software productivity is
low. We need to develop the programming environ-
ment to allow semi-antomatic (user + compiler)
parallelization of existing code and to make it easier
to develop new code. This will require both better
tools and perhaps new languages. I see little con-
sensus as to the appropriate approach to this issue
and not convincing evidence that a good solution
will exist in the near term. Thus, T consider that the
development of & productive programming environ-
ment as the key problem in concurrent computing.
What are fundamental differences between
sequential and concurrent systems? Should
differences be exposed and hidden and at what level
should they be addressed? !

Parallel algorithms are vsually guoite natural e.g. one
is often simulating the physical world - a well known
parallel system. So in this sense, concurrent computers
are natural and are not fundamentally different. However,
current programming environments - especially languages
such as C and FORTRAN - do not naturally support
parallelism. In this sense, there is a fondamental
difference berween today's sequential systems (hardware
+ environment) and concurrent systems.

At Caltech, esscotially all hypercube applicadons
have addressed concurrency at the spplicatdon program
level, Users decompose data, and write the programs to
control the different parts of the decomposed domain.
This was the correct approach to quickly show that
“parallel processing works" but it is certainly rather tedi-
ous and not very portable between concurrent machines
of different architectures. Currently, I view the operating
system as not gefting involved at the level of concurrency
within an application program. It should typically view a
given application - consisting of many processes on many
nodes - as a single entity. Concurrency should be han-
dled at the level of system utilities (e.g. for load balanc-
ing [Fox 86f, Fox 88¢)), compiler (e.g. for parallelization
and vectorizing FORTRAN code) and novel languages. 1
see several approaches to concurrency at this level for
example | Arvind 87, Allen 87, Callahan 88, Chen 88,
Fox 85d, Kuck 86, Mirchandaney 88, Rose 87, Taylor 88,
Wilson 27, Zima 88,] but T do not yet have a good feel-
ing as to the statos and promise of these very different
methods.

158

Will there be a transition in mainstream comput-
ing from sequential to concurrent computing?

1 certainly hope that such a transition occurs but I
fear that, rather, we will evolve from sequential to con-
current computing. Consider Fig. 1 which plots computer
performance as a function of time. Messina and I have
adapted a plot due to Buzbee [Buzbec 87] to separate
sequential and concurrent performance. Current "conven-
tional supercomputers” are slready parallel machines with
up to 8 heads (ETA-10, CRAY-YMP) and several pipes
(functional units) per head. In three years, we can expect
this technology to lead to 64 processor machines. We
have plotted current distributed memory MIMD machines
scaling the number of nodes and hence performance to a
large machine with a price tag around $20M - we can
define a supercomputer as what you can do for this price.
Even with this scaling, the parallel machines are not of
significantly higher performance than their commercial
“sequential” competition. Thus, we expect the "conven-
tdonal” ([BM, ETA, CRAY in the U.5.A.) approach to
dominate high performance computers in the near term.
This approach offers competitive cost-performance and
typically - better software environment than the
"massively-parallel” machines. This assertion assumes
that conventional supercomputers use their different heads
to mun different jobs and do not multtask within a job,
Parallelism is achieved by the compiler by using the
several pipes on a given head. This conventional
approach will lead to concurrent computing with 64 nodes
in the carly 1990°s and 1024 in the later part of the
decade, Thus; we have a natural commercial evolution to
concurrent computing with the convendonal approach
eventually needing the programming environment
advances discussed above to decompose over 64-1024
heads. A sharp wansition to parallel processing, rather
than an evolution is possible but it niseds development of
"massively-parallel" hardware that is clearly more cost-
effective than the conventiona! competition. It also needs
the prodoctive sofrware environment already discussed,
These are challenges to the parallel computing industry
and the computer science research community. :

Is there a difference between parallel and distri-
buted systems?

This is partly semantics! Let us interpret parallel to
mean tightly coupled cooperating processes such as those
involved in domain decomposition of a sclentific compu-
tation. Let us define distributed to mesn meore loosely
coupled processes such as those occurring in a funcrional
decomposition - say of servers for an operating system or
controllers of different parts of an antomobile, Then
these systemns can clearly be approached from a comrmon
point of view but this may have limited value. In my ter-
minology [Fox B8a, Fox 88b) parallel systems require
substantial i communication in a loosely syn-
chronous fashion; distributed systems often need less
communication and are naturally asynchronous. [suspect
that it may be crucial to build these characteristics into
the support environment 0 achieve an efficient productive
system. For instance, distriboted systems are perhaps

naturally approached in an dbject-oriented fashion; paral-
lel systems by a language like C* or CPC [Felten 88a,
Rose 87].

What is the structure of future general purpose
concurrent computer hardware?

As discussed abowve, several of today's architectures
naturally scale to larpe machines and are essentially gen-
eral purpose e.g., can tackle all large scientific computa-
tions [Fox 85¢, Fox BEb, Gustafson 88]. Examples are
the hypercube, transputer arrays and their relations;
Butterfly, RP3, Ultracomputer and the SIMD Connection
Machine. The lawer can naturally address about S0% of
major computations on today’s supercomputers [Fox 88h].

It is important to improve the cost performance of
future machines to compete more favorably with conven-
tonal computers.

Is concurrency an artificial nuisance inflicted on
us by the deficiences of VLSI techniques?

No, computation is the modelling of one complex
system (the problem) by another (the computer)., The
essential task is to map these systems on 10 each other.
Both systerns are natwally paralle]l and in neither case is
the parallelism artificial. Today's nuisance is caused by
the available twols and is not intrinsic,

{OPERATIONS PER SECOND)

YEAR

References
[Allen 7]

[Angus B5]

[Arvind 87]

[Buzhee §7]

[Callahan 38]

[Chem 8E]

[Fox 85¢)

[Fox 85d)

Allen R., Callahan D., Kennedy K,
“Aotomatic Decomposition of Scientific
Programs for Parallel Execotion®, in
proceedings of *14th ACM Symposivm on
the Prmciples of Programming
Languages", Jan. 87, ACM, New York, M.
Y.

Anguz, 1., Fox, G., Kim, J. and Walker, D.
"Solving Problems on Concurrent Proces-
sor: - Soltware Supplement,” to b pub-
lishesd by Preatice Hall 1989,

Arvind and Mikhil, R. 5., "Exccuting a
program on the MIT mgged-token
dotaflow architecture,” PARLE Confer-
cnce, in Leciure Netes in Compurer Sci-
ence, 257 edited by G. Goos and J. Hart-
manis, Springer-Verlag, MNew York (1987),
I

Buzbes, B., "Supercomputers: valoes and
trends," Jfat Jowrnal of Supgrcomprter
Applications I (198T) 100,

Callahan, D., Keanedy, D. 1988 “Compil-
ing Programs for Distnboted-Memory
Multiprocessors,” in proceedings of “1988
Workshop on Programming Lanpuages
and Compilers for Parallel Computing,”
Comell, Augost 2-5, 1985,

Chen, M., Choo, Y. Li, I, "Crysal:
From Functional Description te efficient
Parallel Code™ in procesdings of the Third
Conference on Hypercube Concurrent
Computers and Applications, edited by G.
C. Fox, pablished by ACM, New York, M.
Y., [Fox 88c)

Felten, E. and OQtto, S, W, 1988 "Coherent
Parallel C." In proceedings of the Third
Conference on Hypencube | Concument
Computers and Applications, edited by G.
C. Fox, published by ACM, New Yok,
M.Y., [Fox Bc], Caltech repont £7P-527.

Fox, G., "The performance of the Caltech
hypercube i scisneific calculations: A
preliminary analysis" in Supercompriers-
Algorithms, Architectures, and Scientific
Compuigtion, edited by F. A Matsén and
T. Tajima, University of Texas Press
{1987}, Caliech repert C3P -161.

Fox, G. "Use of the Caliech Hypercube™
IEEE Softwars, Vol, 2, p. 72 (July 1985),
Caltech report C7P-162.

[Fox B6£]

[Fox &76)

[Fox 88a]

[Fox 88k)

[Fox 88¢]

{Fox 88e]

[Gustafson 88]

[Fuck E6]

159

Fox, 4. C., "A Review of Antomatic Load
Balancing and Decompesition Methods for
the Hypercube,” MNovember 1986, The
Proceadings for the Workshop on Numeri-
cal Algorithms fior Modern Paralle] Com-
puoter - Architectures, held at the IMA in
Movember 1285, published as Volume 13
in the IMA Volumes in Mathematics and
Itz Applications, Numerical Algorithrs for
Modern Poralisl Computer Architectures,
{(Springer-Verlag), Mew Yok, Caltech
report C9P <385,

Fox, G. and Frey, A. 1987 "High Perfor-
mance Parallel Supercomputing Applica-
tion, Hardware, and Software Issees for a
Teraflop Computer,” Caltech report £8P -
451h.

Fox, G. C,, Johnson, M, A, Lyzenga, G.
A, Oup, 5. W., Salmon, J. K, and
Walker, D. 1988 *Sclving Problems on
Concurrent Processoes,” published by
Prentice Hall 1988,

Fox, G. C. 1988 "What Have We Leamt
from Using Real Farallel Machines to
Solve Real Problems?" Tnvited talk at the
Third Ceonference on Hypercobe Con-
current Computers and Applications, spon-
sored by the Jet Propulsion Lahosatory,
Pasadena, CA, Jan. 1920, 1%BB, in
proceedings of the Third Conference on
Hypercube Concurrent Computers and
Applications, edited by G. C. Fox, pub-
lished by ACM, New York, N.Y,, Caltech
report CP -522.

Proceedings of Third Conference on
Hyperopbe Concureent Computers amnd
Applications, edited by G. C. Fox, pub-
lished by ACM, New York, N.Y.

Fox, G. C, and Furmanski, W. 1988 "Load
Balancing Loosely Synchronous Problems
with a Neural Metwork,” in proceedings of
the Third Conference en Hypercube Con-
current Computers and Applications,
edited by G. C. Fox, pablished by ACM,
Mew York, N.Y., [Fox 88c], Caltech report
C*P-363h.

Custafzon, J. L., Maentry, G. R., Benner,
E. E. 1988 "Development of Paraflel
Methods for a 1024-Processor Hypercube,
SIAM journal on Scientific and Statistical
Computing.

Knck, D, I, Davidson, E. 5., Lawrie,
H., Sameh, A, F,, “Pamllel supercomput-
ing today and the Cedar approach” Sei-
gnce 231, (1985}, D67,

160

[Mirchandaney 8]

[Rose 871

[Taylor 88]

[Wilson §7)

[Zima 88]

Mirchandaney R., Saliz I. I, Smith R.
M., Mieol D. M., Crowley K., "Principles
of Runtime Support for Paraflel Proces-
sors”, in proceedings of “1988 Interma-
tional Conference on Supercompuating”, St
Malo, July, 19838, poblished by ACM,
Mew York, M. Y.

Rose, L, Swiele G. 1987 “C*: An
extended C Language for Dats Parallel
Programming”, Thinking Machines Cor-
POTALON,

Taylar, 5., Shapire, B. and Shapire, E.
1988 "FCP: A Summary of Performance
Fesults” in proceedings of the Third
Conference on Hypercube Conconrent
Computers and Applications, edited by G.
C. Fox, published by ACM, Mew York,
N.Y., [Fox 88c).

K. Wilson, "The Gibbs Project” in Super-
compuiers - Alparithms, Architectures and
Scientific Compatation”, edited by FA,
Matsen and T. Tajima, University of
Texas Press (1987).

Zima, H, P, Bas, H-L, Gemdt M.,
"SUFERE: A wol for semi-automatic
Computing 6, 1 (1988).

