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Theory and Practice of Concurrent Systems

Genffrey Fox
California Institte of Technology
Pasndena, CA 91125
Augusi 17, 1988

What are Fundamental Problems in Constructing and

Using Concurrent Systems?

We can consider the issues in three categories: (i)
Hardware, (i) Systems Software and Programming
- Environment, (iii) Application Sofrware.

(i) It appears to me that basic principles of the
hardware architecture and construction are under-
stood. One has a collection of nodes connected by
some sort of switch or ronter to a collection of
memories. Such machines can be built although
there arc several important questions.

(a) Arc the nodes powerful or wimpy? Is the

Teraflop processor 20,000 twenty nanosec
nodes or 1000 one nanosec nodes?

{b) What is the namre of switch and correct tra-
deoff between latency, bandwidth and depen-
dence on routing distance?

{c) Should one build “smart" memories or
switches?

{d) Should control be SIMD or MIMD? -

In each case, there will be an inevitable favoring of
local data references and varying penalties for access to
shared or non-local memaries.

There are other architectures to be explored and
discovered (using neural networks, dataflow, etc.) but
currently known general principles seem to be sufficient
to build high performance general purpose concurrent
COMmpuiers,

(iii) Experience such as that gained at Caltech [Angus
89, Fox 87f, Fox 88a, Fox B8b, Fox 88c] have
shown that a broad range of applications - including
the majority of those running on current sequential
supercomputers - perform well on concurrent com-
puters with speed ups that are typically at least 80%
of the number of nodes.

(ii) However, this experience was gained with unusually
talented users who rethought problems and rewrote
codes from scrarch, Further, the resultant programs
were quite small (500-5000 lines). In principle, this
experience is directly applicable to large industrial
and government (defense, national laboratories)
applications which use “essentially” the same algo-
rithms. However, these applications involve much
larger codes (100,000 lines or mere) and it is often

impractical to rewrite code - especially for today’s
concumrent computers where software productivity is
low. We need to develop the programming environ-
ment to allow semi-antomatic (user + compiler)
parallelization of existing code and to make it easier
to develop new code.  This will require both better
tools and perhaps new languages. I see little con-
sensus as to the appropriate approach to this issue
and not convincing evidence that a good solution
will exist in the near term. Thus, T consider that the
development of & productive programming environ-
ment as the key problem in concurrent computing.
What are fundamental differences between
sequential and concurrent  systems?  Should
differences be exposed and hidden and at what level
should they be addressed? !

Parallel algorithms are vsually guoite natural e.g. one
is often simulating the physical world - a well known
parallel system. So in this sense, concurrent computers
are natural and are not fundamentally different. However,
current programming environments - especially languages
such as C and FORTRAN - do not naturally support
parallelism. In this sense, there is a fondamental
difference berween today's sequential systems (hardware
+ environment) and concurrent systems.

At Caltech, esscotially all hypercube applicadons
have addressed concurrency at the spplicatdon program
level, Users decompose data, and write the programs to
control the different parts of the decomposed domain.
This was the correct approach to quickly show that
“parallel processing works" but it is certainly rather tedi-
ous and not very portable between concurrent machines
of different architectures. Currently, I view the operating
system as not gefting involved at the level of concurrency
within an application program. It should typically view a
given application - consisting of many processes on many
nodes - as a single entity. Concurrency should be han-
dled at the level of system utilities (e.g. for load balanc-
ing [Fox 86f, Fox 88¢)), compiler (e.g. for parallelization
and vectorizing FORTRAN code) and novel languages. 1
see several approaches to concurrency at this level for
example | Arvind 87, Allen 87, Callahan 88, Chen 88,
Fox 85d, Kuck 86, Mirchandaney 88, Rose 87, Taylor 88,
Wilson 27, Zima 88,] but T do not yet have a good feel-
ing as to the statos and promise of these very different
methods.
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Will there be a transition in mainstream comput-
ing from sequential to concurrent computing?

1 certainly hope that such a transition occurs but I
fear that, rather, we will evolve from sequential to con-
current computing. Consider Fig. 1 which plots computer
performance as a function of time. Messina and I have
adapted a plot due to Buzbee [Buzbec 87] to separate
sequential and concurrent performance. Current "conven-
tional supercomputers” are slready parallel machines with
up to 8 heads (ETA-10, CRAY-YMP) and several pipes
(functional units) per head. In three years, we can expect
this technology to lead to 64 processor machines. We
have plotted current distributed memory MIMD machines
scaling the number of nodes and hence performance to a
large machine with a price tag around $20M - we can
define a supercomputer as what you can do for this price.
Even with this scaling, the parallel machines are not of
significantly higher performance than their commercial
“sequential” competition. Thus, we expect the "conven-
tdonal” ([BM, ETA, CRAY in the U.5.A.) approach to
dominate high performance computers in the near term.
This approach offers competitive cost-performance and
typically - better  software environment than the
"massively-parallel” machines. This assertion assumes
that conventional supercomputers use their different heads
to mun different jobs and do not multtask within a job,
Parallelism is achieved by the compiler by using the
several pipes on a given head. This conventional
approach will lead to concurrent computing with 64 nodes
in the carly 1990°s and 1024 in the later part of the
decade, Thus; we have a natural commercial evolution to
concurrent computing with the convendonal approach
eventually needing the programming environment
advances discussed above to decompose over 64-1024
heads. A sharp wansition to parallel processing, rather
than an evolution is possible but it niseds development of
"massively-parallel" hardware that is clearly more cost-
effective than the conventiona! competition. It also needs
the prodoctive sofrware environment already discussed,
These are challenges to the parallel computing industry
and the computer science research community. :

Is there a difference between parallel and distri-
buted systems?

This is partly semantics! Let us interpret parallel to
mean tightly coupled cooperating processes such as those
involved in domain decomposition of a sclentific compu-
tation. Let us define distributed to mesn meore loosely
coupled processes such as those occurring in a funcrional
decomposition - say of servers for an operating system or
controllers of different parts of an antomobile, Then
these systemns can clearly be approached from a comrmon
point of view but this may have limited value. In my ter-
minology [Fox B8a, Fox 88b) parallel systems require
substantial i communication in a loosely syn-
chronous fashion; distributed systems often need less
communication and are naturally asynchronous. [ suspect
that it may be crucial to build these characteristics into
the support environment 0 achieve an efficient productive
system. For instance, distriboted systems are perhaps

naturally approached in an dbject-oriented fashion; paral-
lel systems by a language like C* or CPC [Felten 88a,
Rose 87].

What is the structure of future general purpose
concurrent computer hardware?

As discussed abowve, several of today's architectures
naturally scale to larpe machines and are essentially gen-
eral purpose e.g., can tackle all large scientific computa-
tions [Fox 85¢, Fox BEb, Gustafson 88]. Examples are
the hypercube, transputer arrays and their relations;
Butterfly, RP3, Ultracomputer and the SIMD Connection
Machine. The lawer can naturally address about S0% of
major computations on today’s supercomputers [Fox 88h].

It is important to improve the cost performance of
future machines to compete more favorably with conven-
tonal computers.

Is concurrency an artificial nuisance inflicted on
us by the deficiences of VLSI techniques?

No, computation is the modelling of one complex
system (the problem) by another (the computer)., The
essential task is to map these systems on 10 each other.
Both systerns are natwally paralle]l and in neither case is
the parallelism artificial. Today's nuisance is caused by
the available twols and is not intrinsic,

{OPERATIONS PER SECOND)
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