FROCEEDMNGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1088,
edited by ICOT. @ ICOT, 1988

MECHANISMS FOR CONCURRENT
COMPUTING

William J. Dally

Artificial Intelligence Laboratory and
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetis

ABSTRACT

Conecurrent computing is fundamentally different than
sequential computing, Task size is orders of magnitude
smaller making synchronization and scheduling majer con-
cerns, the critical resources are communication and mem-
ory, and programs distribute tasks rather than looping.
Conventional hardware and operating system mechanisms
are highly evolved for sequential computing and are not
appropriate for concurrent systems. This position paper
examines the mechanisms required by concurrent systems
and the structure of a system incorporating these mech-
anigms.
1 FUNDAMENTAL PROBLEMS

1.1 Primitive Mechanizsms

A fundamental hardware problem is te identify a set of
primitive mechanisms fhat efficienily support a broad
range of concurrent execution medels. Sequential ma-
chines have evolved stacks for memery allocation, pag-
ing for memory management, and program counters for
instruction sequencing. Concurrent machines have very
different demands in each of these areas; the sequential
mechanisms are no longer appropriate. However, no con-
current mechanisms have yet evolved to take their places.
Today's concurrent computers either interpret their ex-
ecution model using sequential mechanisms or are hard-
wired for a single execution model,

The message-driven processor (MDP) [4] [6] is demgned
to evaluate concurrent execution mechanisms for com-
munication, synchronization, and naming. A SEND in-
siruction and hardware message reception and buffering
allow efficient communication of short messages across a
high-speed network [7]. Synchronization is supported by
a dispatch mechanism that creates a new process to han-
dle a message in a single clock cycle. A general purpose
translation mechanism supports naming. These mech-
aniams provide the primitive support required by many
concurrent models of computation including dataflow [9],
actors[l], and eommunicating processes [11].

1.2 Resource Management
At the operating system level, a key problem is to develop

resource management techniques suitable for concurrent
systems. In a concurrent system, communication band-
width and memory capacity are the limiting resources;
processor cycles are almost free. This situation is the
opposite of the sequential case where processor cycles
are considered the critical resource and communication is
nol a consideration. To complicate the situation the re-
sources are physically distributed. Objects and processes
must be placed in a manner that balances memory and
processor use acrose the machine and reduces communi-
cation. The JOSS operating system [14] [15] is designed
to satisfy these unconventional requirements.

Methods must also be developed to regulate coneurrency.
Many programs have too much parallelism and thus gen-
erate more tasks than can be accommodated in the avail-
able memory. To avoid the resulting deadleck, the ays-
tem must regulate programs allowing them to generate
sufficient concurrency to make vae of all available pro-
cessors, but reverting to more sequential execution be-
fore exhausting memory. Examples of regulation include
controlled unrolling of loope [2] and adaptive (FIFO vs
LIFO) scheduling [10].

Te make efficient use of the communication resources,
memaory and tasks must be allocated in a manner that ex-
ploits locality. Placing objects near each other to improve
loeality is often at odds with the need to distribute ob-
jects for load balancing. Also there are some cases where
communication bandwidth can be increased by spread-
ing out a computation to make more channels available.
For static computations min-cut placement techniques
similar to those used to place electronic components [12]
work well. Dynamic computations rely heavily on heuris-
tics (e.g., placing an object near the object that created
it} supplemented by reactive load balancing,

1.3 Overhead

To make use of a computer with thousands of processors,



a program mmust be decomposed into many small tasks.
Each task consists of only a few instructions. In con-
ventional systems, however, the overhead of scheduling,
gynchronization, and communication is many hundreds
of instructions per task. This overhead restricts conven-
tional multicomputers to operating at a very coarse grain
sizge — thousands of instructions per task. Concurrency is
reduced because there are fewer large tasks. Also, the re-
source management problems become harder as resources
are allocated in larger chunlke.

Overhead can be reduced to just & few instructions per
task. The JOSS operating system, using the primitive
mechanisms provided by the MDP, can create, suspend,
resume, or destroy a task in fewer than ten instructions
{15]. This efficient management of fine-grain tasks is
achieved without sacrificing protection. Fach task ex-
ecutes in its own naming environment.

2 CONCURRENT COMPUTER.-
ORGANTIZATION

To make the most efficient use of projected VISI technol-
ogy, general purpose concurrent computers will be con-
structed from a number of fine-grain processing nodes [5]
connected by a low-latency, wireefficient interconnection
network [3).

2.1 Fine-Grain Processing Nodes

The grain size of a machine refers to the physical size
and the ameount of memory in one processing node, A
coarse-grain processing node reguires hundreds of chips
{several boards) and has == 107 bytes of memory while
fine-grain node fits on a single chip and has == 10* bytes of
memory. Fine-grain nodes cost less and have less memory
than coarse-grain nodes, however, because so little silicon
ares is required to build a fast processor, they need nat
have slower processors than coarse-grain nodes.

VLAI technology makes it possible to build small, pow-
erful processing elements. A 1M-bit DREAM chip has an
area of 256MA? () is half the minimum line width [13].).
In the same area we can build a single chip processing
node containing:

A 32-bit processor 16MA®
A floating-point unit J2MAR
A communication controller — §MA®
512K bits RAM 128MA2

Such a single-chip processing node would have the same
procesding power as a board-sized node but significantly
less mamery per node. The memeory capacity of the en-
tire machine is comparable to that of a coarse-grained
machine. We refer to & machine built from these nodes
as a jellybean machine as it i3 built with commedity pa.rf.
{jellybean) technology [8].

155

A fine-grain processing node has two major advantages:
density and memory bandwidth. Several hundred single-
chip nodes can be packaged on a single printed cirenit
board permitting us to exploit hundreds of times the con-
currency of machines with: board-sized nodes. With on-
chip memory we can read an entire row of memory (128 or
256 bits) in a single cycle without incurring the delay of
several chip crossings. This high memory bandwidth al-
lows the memory to simultaneously buffer messages from
& high bandwidth network and provide the processor with
instructions and data.

Fine grain machines are area efficient. Area sfficiency is
given by ey = ATy fAnTy (where A; is the ares of § pro-

cessors, T; is execution time on { processors and N is the
number of processors). Many researchers have measured

their machines effectiveness in terms of node efficiency,

en = T3/NTy Proponents of coarse-grain machines ar-

gue that a machine constructed from several thousand
single-chip nodes would be inefficient because many of
the processing nodes will be idle. N is large, hence ey

is small. A user, however, is not concerned with IV, but

rather with machine cost, Ay, and how long it takea to

solve a problem, 7", Fme.-gmn machines have & very high

e, because they are able to chplo:t INOre CONCUrrency in

& smaller area.

2.2 Wire-Efficient Communieation Networlks

VLS5I systems are wire limited. The cost of these systems
is predominantly that of connecting devices, and the per-
formanece is limited by the delay of these interconnections.
Thus, an interconnection network must make efficient use
of the available wire, The topology of the network must
map into the three physical dimensions so that messages
are not required to deuble back on themselves, and in a
way that allows messages to use all of the available band-
width along their path. Also, the topology and routing
algorithm must be simple so the network switches will be
sufficiently fast to avoid leaving the wires idle while mak-
ing routing decisions. Our recent findinge suggest that
low-dimensional k-ary m-cube interconnection networks
[3] are capable of providing the performance required by
fine-grain concurrent architectures,

3 TRANSITION TO MAINSTREAM
CONCURRENT COMPUTING

Select areas of mainstream computing will switch to con-
current computers when (1) concurrent software has ma-
tured to the point that it can support a large evolving
application and (2) the performance advantage of these
machines is sufficient to justify an investment in new soft-
ware. Concurrent machines are appropriate for applica-
tions that are (1) limited by CPU performance (e.g., sci-



156

entific computing and signal processing) and (2) limited
by memory system bandwidth (e.g., transaction process-
ing). It is also expected that the availability of these
machines will create new applications that were not pre-
viously possible.

REFERENCES
References

[1] Agha, Gul A., Actors: A Model of Coneur
rent Computation in Distribuled Systems, MIT
Press, Cambridge, MA, 1986.

[2] Arvind, and Caller, D., “Managing Resources
in a Parallel Machine”, Massachusetts Institute
of Technology Laboratory for Computer Science
C3G Memo 257, 1985.

[3] Dally, William .J. “Wire Efficient VL3I Multi-
processor Communication Networks,” Proceed-
ings Stanford Conference on Advanced Research
in VLSF, Paul Lozleben, Ed., MIT Press, Cam-
bridge, MA, March 1987, pp. 391-415.

[4] Dally, W.J. et.al, “Architecture of a Message-
Driven Processor,” Proe. 14 ACM/IEEE
Symposium On Compuler Architecture, 1987,
PR 189-196,

[5] Dally, W.J., “Fine-Grain Concurrent Comput-
ers”, Proc. 37 Symposium on Hypercube Con-
current Computers and Applications, 1988,

[6] Dally, W.J. et.al, Message Driven Processor Ar-
chitecture, Version {1, MIT VLSI Memo, 1088,

[7] Dally, W.1., "Performance Analysis of k-ary n-
cube Interconnection Networks,” IEEE Trans-
actions en Computers, To appear,

(8] Dally, W.J., “The J-Machine”, to appear.

[9] Deanis, Jack B., *Data Flow Supercomputers,”
IEEE Compuler, Vol. 13, No. 11, Nov, 1880, pp.
48-56.

[10] Halstead, R., “Parallel Symbelic Computa-
tion,” JEBE Computer, Vol. 19, No. 8, Aug,
1986, pp. 35-43.

[11] Hoare, C.A.R., “Communicating Sequential
Processes,” Clomm. ACM, Vol. 21, No. 8, Au-
gust 1978, pp. 666-677.

[12] Kernighan B.W. and Lin, S., “An Efficient
Heuristic Procedure for Partitioning Graphs,”

Bell System Technical Jouwrnal, Vol. 48, No. 2,

Feb. 1970, pp. 201-307.

[13] Mead, Carver A. and Conway, Lynn A., In-
troduction to VILSI Systems, Addizon-Wesley,
Reading, Mass., 1980.

[14] Totty, B.E., An Operating Environment for the
Jellybean Machine, MIT Al-Memo, 1988,

[15] Totty, B.K., and Dally, W.J., “JOSS: The Jelly-
bean Operating System Software,” to appear.



