PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 1COT, 1988

The Panel on Theory and Practice of Concurrent Systems

Ehud Shapiro
The Weizmann Institute of Science
Rehovot 76100, Israel

September 14, 1988

The panel on theory and practice of concurrent
systems brings together researchers who approach the
problems of concurrency from radically differemt an-
gles. It iz my hope that by exposing and confronting
the different perspectives of the penalists all of us
will enhance cur understanding of what are the prob-
lems, concepts, current research directions, and the
long term visions of this area of investigation.

In this short note I will attempt to outline the
perapectives represented by the penalist. This presen-
tation does not attempt to convey the present ideaa
and positlons of the penaliste; these will be presented
in the accompanying position papers, written concur-
rently with this note. Rather, it represents my sub-
jective impressions of the research directions pursued
by the panelists. The description Is necessarily rough
and $erse, and since it waas not screened by the other
panelists, may contain impressions which are either
wrong or not up to date. Specifically, the panelists may
present a position different than the one ascribed to
them in this note,

William Dally represents a research direction that
beging with architectural considerations and ends in
system and language design. Like the dataflow peo-
ple a decade ago, hardware architects such as Dally
and Chuck Seits find computational models based on
fine graln concurrency to be the best match for parallel
computer architectures. At the time, dataflow research
faced an immature hardware technology and hardware
development tools and, more importantly, the lack of
abstract computational models and programming lan-
guages sultable for their purposes. This required the
development of dataflow languages based on single-
assignment (or write-once) variables.

Presently, there are an abundance of models and
languages to choose from. The differences batween the
ohject-oriented models Dally and colleagues are inves-
tigating and early dataflow meodels js primarily the
grain-size: each unit of sequential execution consists
of tens or hundreds of the equivalent of conventional
machines instructions, compared to one or few instruc-
tlons In early dataflow models. This makes practical
the use of the well-understood and highly optimized

von Newman processor as the building block of the
concurrent computer. The research effort is invested
mainly in the interconnection network, the communi-
cation protocols, rescurce management, and efficient
message handling.

Goeffrey Fox represents the practitioners of com-
current computing. While many are still contemplat-
Ing whether there is enough concurrency in real-life
problems to justify large scale concurrent comput-
ers, Fex and his colleagues, working closely with Seitz
gince the days of the Cosmic Cube, have demonstrated
that many computational problems encountered in
Physice and Chemistry are amenable to efficient solu-
tion on concurrent computers, They have found many
“gmbarrassingly parallel” problems, that is problema
amenable to concurrent solution with almost no in-
tellectual effort, and with relatively little implementa-
tion efforts. They have also found many other prob-
lems that are amenable to efficient parallel implemen-
tation using more sophisticated algorithme. They have
demonstrated, contrary to what many computer aci-
entists haunted by FORTRAN want to believe, that
FORTRAN augmented with send and receive primli-
tives can go a long way on non-shared memory con-
current computers.

Carl Hewitt represents the object-orienfed ap-
proach to concurrent systems. This approach suggests
that a concurrent system be structured as a collection
of communicating objects. The baaic eperations of an
object are receiving and sending messages, changing
state, and creating new objects.

Although the object-oriented approach to concur-
rency was quite radical when first suggested, its fdeas
have by now penetrated almost all other approaches
to concurrency, incleding the architecbure-orlented ap-
proach to concurrency mentioned above, the thecret-
ical message-passing models of concurrency, as well
as the concurrent logic programming approach, men-
tioned below.

Related to the object-oriented approach are open
systems concerns. In a world of ever-sxpanding com-
puter communication networks, the concept of a com-
puter system being a closed entity with a fixed set

of entities to interact with is no lomger valid. Com-
putational sbjects may join & network, cease to exist,
or even change thelr protecols of interaction dynami-
cally. The goals of research in open systems is to devise
techniques and languages that can be used to specify
computational ohjects and systems that can survive in
such a dynamic open world. It is stipulated that the
object-oriented approach to concurrency may offer a
foundation for such open eystems.

Robin Milner represents the approach of studying
concurrency via abstract caleuli such as CCS, CSF,
temporal logle, and, more recently, UNITY. This ap-
proach devizes mathematical models of concurrency
and studles them with the goal of Increasing our un-
deratanding of the fundamental properties and prob-
lems of concurrent aystema.

Within an abstract setting it is easier to address
questions such as program equivalence, compesitional-
ity and equivalance of program parts, and fairness, as
well as the superposition of algorithms for detecting
propertiea of process networka. _

Sometimes, as in the case of CSP and OCCAM,
an abstract model gives rise to a concrete program-
ming language that preserves many of its ancestor's
properties. However, often there Is an undeairable gap
between the theoretical and experimental Investiga-
tions of concurrency. One example is research in se-
mantics. The dominant theoretical message-passing
models are synchronous, whereas the majority of
concrete models are asynchronous (inclading object-
oriented langnages, logie languages, and FORTRAN
+ send [receive, excluding OCCAM). Another example
iz research in complexity, where the dominant model
used in studies of parallel complexity and parallel al-
gorithms iz the synchronous shared memory PRAM.
However, moat succesaful experimental work on paral-
lel algorithm was carried out on non-shared-memory
asynchronous parallel computers.

It i= my hope that the interdisciplinary nature of
this conference in general and of this panel in partic-
ular will help to bridge this gap between the theory
and practice of concurrent systems,

Karunori Ueda represents the “middle-out™ ap-
proach to the atudy of concurrent systems, faken by
ICOT and related research groups. In this approach
an abstract computational model, with associated pro-
gramming langiuages, serve as the starting point for
both top-down and bottom-up Investigations. The goal
of these Investigations is the construction of a compre-
hensgive parallel computer system based on this medel.
ICOT has chosen the concurrent logic programming
model and the languages GHC and FGHC as the ba-
siz for their investigations.

In the top-down investigation implementation
questions are conaidered: what are pnitable architee-
tures for the computational model, and how to imple-

153

ment the langnage efficiently on target architectures.
In the bottom-up investigations the use of the lan-
guages, 28 wall as ita properties, are investigated. Use-
ful programming techniques are identified, methods for
implementing both system programs and application
programa in the langnage are studied, and questions of
program developments, program analysis and transfor-
mation, including semantics and program equivalencs,
are pursned, _

The integrity of such a broad-spectrums investiga-
tion is maintained by adhering to the principle that the
abstract computational medel is a striet layer of ab-
straction. This layer of abstraction serves aa the plat-
form from which both the top-down and the bottom-
up investigations begin, and a meeting point for those
who maps the abstract computational model on a con-
crete architecture, and for those who use the compu-
tational model

David H.D., Warren represents the research zimed
at harnessing concurrent computers by parallelizing
“conventional” languages. Such research aime at pro-
viding better cost/performance ratics by expleiting
concurrency without changing language semantica.
This research efforts were carried out for FORTRAN
and more recently by Warren and eolleagnes, for Pro-
log. The philesophy behind this research direction is
that concurrent languages (i.e. lJangunages that can ex-
press concurrency) are harder to use, and don't have
a large software base. Consequently, one should of
fer programmers a language they know and like (e.g.
FORTRAN or Prolog) which does not contain explicit
copstructs for expressing and controlling concurrency
{(and in this sense may be higher-level). The task of
mapping such a language effectively on a concurrent
computer resides with the compiler and runtime sys-
tem, and not with the programmer.

Such research iz often torn between two conflicting
goals: one is to provide the programmer with a high-
level notation that can be parallelized effectively. The
other is to preserve the original, sequential, semantica
of a known programming langnage, which often has
constructs that hinder parallel execution without hav-
ing other clear benafita.

This dilemma suggests defining nowvel high-level
languages that still shelter the programmer from the
complexities of concurrency, but differ from their
sequential ancestors in being “cleaner” and better
amenable to parallel execution. An example of such
a language ia Andorra, developed by Warren and col-
leagues.

