PROCEEDINGS OF THE INTERNATIOMNAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988, ©
edited by ICOT. € ICOT, 1988 '

B3

EXPERIMENTAL EKNOWLEDGE PROCESSING SYSTEM

Yuichi Fujii, Hirokazu Taki and
other researchers of the Fifth Research Laboratory

ICOT Researeh Center, Institute for New Generation Computer Technology

1-4.28, Mita, Minato-ku, Tokyo 108, Japan

ABSTRACT

This paper describes the research activities of the
fifth research laboratory at ICOT. In order to verify
ICOT developments such as the PSI and PIM, we are
dw-&lﬂ%iug next generation expert tool technologies
for real application systems on them. We selected
the following technologies as basic elements of the
new gleneratmn expert tools: hypothetical reasoning,
lenow & acq.uimtiun, constraint problem solving,
ohiect modeling, gualitative reasoning, and
distributed cooperative problem solving. This paper
dizeuszes these technologies and some experimental
ezpert systems,

1 INTRODUCTION

Experimental knowledge processing systems are
an Dbjﬂc:ti\"e of research and Eevelnpmt started in
the first yvear of the intermediate stage of the FGCS
Emject. The primary motives are to probe and werify

ierarchical interfaces between application %&m&
and ICOT devalﬂi-ment such as the FIM and 0B,
To develop knowledge system building technologies,
we have been researching expert systems as
application systems. During the first of the
intermediate stage, we studied and surveyed next-
generation tools and knowledge acquisition w
and developed a, protoiype tool, called PR .
During the second half of the intermediate stage, we
are striving to develop element technologics based on
the surveys. We also organized academic and
industrial experts into working group and subgrou
to join our surveys and discussioms. veri
element technologies, we devalnrpad experimen
expert systems for a number of applications, for
example, VL3I logic design and machinery design.

2 NEXT-GENERATION TOOLS

Conventional tools for building an expert system
have a prominent feature; rapid protoiyping.
Although such tools are effective for some
applications, they are not suitable for building large-
scale application systems because a buildin
methodology has not been established. An id
expert system ought to provide a vocabulary
matehing the scope of its tagks. Comventional tools,

based mainly on rule of thumb, provide only an
inference engine c¢common to knowledge
representations such as rules and frames, and thus
require uniformity of tasks, Under this constraint of
the tools, users must state their problems. This may
make the building of complicated large-scale
application systems diffienlt. To help build
knowledge systems, next-generation tools cught to be
organized into problem solving frameworlks
matching an application domain. In other words, we
think that a mt-%emaration expert system will be
realized by & set of generie tasks [Chandragelaran
86] or a set of I:-uildinr_g blocks, From the perspective
of problem solving frameworls, the research and
development trend of expert systems is shifting from
analytieal to synthetiec problems., Analytical
lems infer the characteristics of & whole system
om & given system strueture and subsystem
characteristics. Diagnostic and control problems are
typical examples of this type of problem. Synthetic
problems showever inwolve the determination of
the system strociure and subsystem features
which would result in a set of system
characteristics, Examples of symthetic problems are
design and planning problems {Kobayashi 36).
Synthetic problems are basgically combinatorial
problems, %['he number of solutions in a synthetic
problem may be infinite. That is, the problem may
resnlt in combinatorial explosion. In order to aveid
combinational explosion, next-generation tools are
d to ineorporate technologies for intelligent
ce control.
Taking these trends into account, we are now
researching the following five technological

(1) Tool architecture for design tasks
(Constraint- based problem solving and
: ol

ohject mo
(2) Hypothetieal reasoning
(3) Distributed -:.oagaraﬁve problem solving
{4) Utilization of deep knowledge and qualitative
PERS0MIT

(5) Kmm&edge acguisition support systesn

3 TOOL ARCHITECTURE FOR
DESIGN TASKS

As already explained, existing expert systemns are
broadly classified into systems for analytical

86

problems and systems for synthetic problems.
Analytical problems are, like diagnostie problems,
regarded as problems of selecting theses in a
limited solution space, because a set of hypothetical
solutions and a set of rules for selecting hypotheses
ean beég.:*edetermined_ Synthetie problems, however,
need efficient problem solving, since solution spaces
are so large that fabricating candidate solutions as
hypotheses beforehand is diffienls. Design problems
dre typical examples of synthetic prohﬁns. The
development of a design expert system requires a
large amount of knowledge that depends on a design
ohject. Representation of the design lnowledge and
a problem solving mechanism are important for
research om a design expert system. Our objectives
are to clarify the architecture of design expert
systems and to develop tools for building them.

3.1 Required Functions

Different groups of designers use different kinds
of standard such as desi%n methods, parts, and
compenent units. Thus, building tools, enabling
designers to build and maintain expert systems by
themselves, are required. This section overviews the
design knowledge representation and the problem
solving mechanism in the tools needed to satisfy this
requirment. .-

3.1.1 Enowledge Representation

To realize a design expert system building tool,
knowledge representation requires two facilities: one
is that knowledge must be represented snitably for
the tocl, and the other is that gesignm must be able
to rnc{nresent them easﬂ)jrg Design knowledge is
broadly classified into knowledge about design
uhf'e.cts themselves and knowledge about problem
solving. Knowledge about design ohjects consists of
the structures, shapes, and attributes of the design
objects. A set of items of knowledge about a design
ohject is called an ohject model. Knowledge about
problem solving, however, is composed of methods to
analyze object models, to evaluate and modif;
solutions, and plans to design the object and aaa.rcg
from candidate solutions. Aeccording to the above
classification, a design process can be re as a
design requirement satisfaction process [Tomiyama
85, Ohsuga 85]; operations such as selection,
modification and refinement with knowledge about
problem zeolving are repeatedly applied to an ohject
model, Furthermore, to enable designers to build an
expert system by themselves, an environment is
required where & design expert system can be built
only by declaratively m%reaenﬁng an object model
and knowledge about problem solving, To realize the
environment, we propose a building tool that
generates a design plan separate inputs of an
ohject model and knowledge about problem solving,
and that provides an interface between design
knowledge and the problem solver. We used a
constraint analyzer, similer to knowledge compiler
[Araya 87] and constraint compiler [Feldman 88], to
obtain these tool facilities.

3.1.2 Problem Solver

If a design plan is given explicitly, a desi
problem can be solved according tﬁt. There are nftegg
cases where a design plan cannot given explicitly,
but only constraints can be given, An effective way of
solving these cases is to employ constraint problem
solving, regarding a design process as a constraint
satisfaction process. In adgn;;t.mn to this, the whole of
a design process can be ca.[ptur&d from the single
cunwf)tn a constraint satisfaction process; an object
model represents constraints on the structures of the
design objects, and design requirements and
knowledge about problem solving also represent
constraints. These constraints are given priorities
and changed dynamically according to the designer's
intention and preference, and to trade off between
performance, due dates and cost. Therefore, a
constraint selver suitable for a design problem is
required,

3.2 Object Model
3.2.1 ObjectModelin Design Problems

Design objects in design systems are represented
in the form E?' model descriptions. A desip object
model represents information and knowle about
design ohjects, such as their attributes, shapes, and
structures. During a design process, a musel that
satisfies requirements is constructed; it represents a
solution,

Models used in conventional design systems
consist of data structures that are merely static. They
need to be interpreted and manipulated in terms of
design tasks or procedures. Only knowledge about
design methods is important. Knowledge about
design ohjects is embedded in model manipulation
procedures ordeilti#n methods, In conventional design
systems, it is difficult to make effective use of the
kEnowledge about design objects. Also, high
perfm;limnce deTIgnhandmtS;_ eﬁ?‘liiglsment of a
general methodolo w which to bui sign expert
systems will be h’i}&md because kuwlec%;e ahout
design object and knowledge about problem solving
are not distinguished between,

,Thus, to solve design problems effectively, it is
im t to represent the knowledge about design
objects as object models and to put these models to
practical use in the design process.

4.2.2 Use of the Object Model

A frame system has been used to represent
structures and attributes of objects in knowledge
systems. Recently, an object oriented paradigm
whose concept is similar to the frame system has
been generally used and also applied to design

roblems. Although c.unveutinna}i object oriented
guages are suitable for representing struetures,
attributes and behavior, they do not provide facilities
for representing or using constraints on design
objects. Therefore, introducing constraints to an
object oriented paradigm provides efficient
formalism for knowledge representation in terms of
declarative deseription. representation of a
design object, however, functions are required that
can describe and use not only constraints on
numerieal attributes (instance variables), but alse

constraints on the siructures. We are examining
two ways of using design object models. One is to
te a design plan by analyzing and compiling
nowledge about the design object and about
problem solwing [Nagai 88al. It is suitable for
parametric design, The second way is to provide a
system for supperting the design process interpreting
knowledge described on object models. This system
malkes it possible to construet not only models that
satisfy the constraints, but also support their
effective construetion, This second way iz suitable for
a problem in which the structure of the design object
is not given or is not fixed. In such a case, the
problem must be solved by trial and error or by
interaction with users. This system is briefly
gxplained in the next section,

3.2.3 Design Object Representation System

Currently, a knowledge representation system
for design object modeling DOM [Yokoyama
28], is being developed. To support &esiin tasks,
FEEEDOM provides the facilities that keep the
status of the model for constraint satisfaction by
interpreting constraints that are deseribed in the
object model and are dynamically added during the
design process. Know edgemgr&sentaﬁnn provided
in the FREEDOM system, based on the object
oriented paradigm, makes it possible to desecribe
comstraints about attribute values and structures.
The attributes of the design object model are
represented numerically or symbolically, and their
values can be obtained by solving constraints derived
from thern. Tn conventional object oriented systems,
the relation between a class and an instance is a
gtatic one, whereas in FREEDOM, the search for a

Enowledge about !

dusi A
esign object Design requirsments

87

class that satisfies design requirements is realized
using & constraint satisfaction mechanism. Thus,
when a structure or an attribute of an instance is
modified, if constraint satisfaction cannot be
executed in the class to which it belongs, the class
may be changed automatically to another class to
satisfy the constraints. In this way, it is possible to
search for a class that satisfies design requirements
not by describing the search Emcedure explicitly,
but by using constraints about the design object. As
described above, FREEDOM %mvides facilities for
supporting design processes by using constraints
described in the object model, and helps to build
advanced design expert systems.

3.3 Desiﬁn Plan Generation Using a Constraint
Analyzer

This section first describes representation of
design knowledge abput problem solving. Second,
design plan generation using a constraint analyzer
that enables desiners themselves to build design
expert systems is described.

3.3.1 Knowledge about Problem Solving

Enowledge about problem solving eonsists of
methods to analyze object models, to evaluate and
modify solutions, and plans to design the object and
se:arng from candidate solutions. The characteristics
of design knowledge about problem solving are
various representation types: there is lknowledge,
such as design formulas, where solving procedures
are ted explicitly, and knowledge, such as
that expressed by inegualities, where solving
procedures are not represented explicitly. In

Enowledge about

problem solving

[Inputs from a designer]

{object medel)
F E
Refer Refer
Inherit ¢ -.Ir Inherit
Madify] Modify
Libraries of — Constraint analyzer — Libraries of [Building tool]
ehject model -(enerates design plan knowledge about

~Provides interface batween

design knowledge & problem selver

problem solving

V

Design knowledge
(Object medel+ Knowledge about
problem solving)

Problem Solver

{constraint solver) [Dutput:

Specialized expert system]

Fig.3.1 Architeciure for an expert system building tool

a8

addition, knowl
object and heuristics that is closely dependenton a
certain design object are mixed. For example, design
formulas and searching from catalogues in design
knowledge about problem solving, and basic parts
and function units in object models are independent
of a design object. Therefore, with the aim of
enabling designers to represent this knowledge
easily, we employed an approach where those
independent kinds of knowledge are rega.red as
system libraries; we pre ar&dﬂ&lﬁnfdem}gn ormulas
and catalogues in knnwf'ed e about problem solving,
and sets of basic parts ang function units in object
models. These s of knowledge must be expressed
in a form that designers can easily refer to and
modify. Gnnsequcntlﬂ, designers' heuristics can be
expressed explicitly, by referring to or by inheriting
and modifying libraries,

3.3.2 Design Plan Generation Using a
Constraint Analyzer

A constraint analyzer can handle various types
of knowledge and can specialize knowledge by
eombining knowledge independent of a certain
design object and designers' heuristics which depend
on a certain design object. Since the constraint
analyzer can generate a design plan by a_ual{xing
dependencies among constraints, design knowledge
can be also represent declaratively. puts to the
tool are design requirements, ohject models, and
Inowledge about %rnblem solving, They are Eiven by
specifying system libraries, or b mndxggrﬁ ibraries
with referring or inheriting libraries. Reference to
results of previous design and designers' heuristies
about searching from alternatives are also
represented as knowledge about problem solving.
From these inputs, the tool analyzes dependencies
among constraints and parameters, generates a
design ila.u, and provides an interface between the
design knowledge and the constraint solver. The
output from the tool is a specialized expert system
incﬂ:‘:ﬁng designers' heuristics. Therefore, a flexible
environment in which build an expert system ecan be
built by designers themselves is obtained by dividing
design knowledge into object models and knowledge
about problem solving, and by employing design plan
generation using a constraint analyzer.

3.4 Constraints in Design Problems

The structural information derived from the
object model is constraints expressed exp]ic:itlgr, In
addition, design knowledge such as methods to
analyze ohject models and design requirements such
as cost ormance are also regarded as constraints,
from the single view of the constraint concept.
However, not many of the existing tools that support
the construction of expert systems provide an
environment that makes it easy to express the
constraint concept explicitly; the person constructing
the system must uge the lan depending-on the
tool to realize mechanisms for applying constraint
representations which depend on the design ohject.
This section discusses the characteristics of
constraints in design problems [Nagai 88b].

e that is independent of a design (1) Static and dynamic constraints

Many existing consiraint solvers consider
constraints as static entities. In design problems,
however, not all eonstraints are given in the
initial stages of a deslgn process; many are added
or deleted during the design process.

ermore, there are suggestive constraints as
deseribed below; constraints are dynamically
changed in design problems.

(2) Obligatory and suggestive constraints

Not all the constraints are selected and executed
on an equal basgis in design problems. In other
words, priorities are assigned to constraints, and
the priorities are based on design requirements
and designers' intentions. All obligatory
constraints must be satisfied, and these are
generally given explicitly. Suggestive
constraints, however, are used as guides in
choosing the optimum branch at a node in the
search tree, and they are given lower priorities
than obligatory constraints. Thus, if an obligatory
constraint cannot be satisfied, suggestive
constrainis may be changed so that the obligatory
constraints are satisfled.

(3} Local and global constraints

Many design problems are divided into
subproblems when an attempt iz made to salve
the problems, Thus, it is necessary to distinguish
whether the applicable scope of a constraing closes
locally within a subproblem or is globally related
to other subproblems. In addition, interactions
-among loeal constraints within a si blem and
interactions between local and global constraints
must be considered.,

(4) Propagation of values and interval bounds
Some constraints in design problems are
represented by inequalities. Therefore, not only
do constraints propagate values, they also
propagate over interval bounds in which
variables that can take certain values must he
considered.

When considering practical design problems, one
constreint may belong to multiple types of these
characteristics.

3.5 Architecture of the Building Tool

As stated above, we divide design knowledge into
object models and knowledge about problem solving.
This enables us to maintain knowledge and to mudi%
knowledge flexibly. Viewing knewledge an
requirements as constraints, constraint based

lem solving is employed. To help designers to
uild an expert system suitable for a design problem,
We propos: a bul.l.ag tool that regards inputs of
design knowledge as constraints, generates design
plans by analyzing their dependencies, a:d provides
an interface between design tnowledge and a
constraint solver. We used a constraint analyzer to
obtain facilities for this building tool. The expert
system which is the output of the tool can efficiently
obtain solutions that satisfy the design

requirements, according to the design plan generated
byﬁe tool, Fig 3.1 sghm.rs the arch?lt.ectqm of the
building tool. An expert system building feol,
MECHANICOT [Terasaki 88], is being developed
now. MECHANICOT is a tool for a mechanical

arametric design. It analyzes dependencies
Eetween structures of a design object and
parameters, produces a design plan, and builds a
specialized design expert system.

4 HYPOTHETICAL REASONING

4,1 Problem Solving with Hypothetical
Reasoning [Inoue 88¢]

Hypothetical rensoning [Inoue, ed. 88] is a type of
inference which is desirable to have when dealing
with alternatives amuntﬁ knowledge, or incomplete
knowledge (knowledge that may not always be true)
in problem solving. It assumes that uneclear or
ingufficient knowledge is true (establishes
hypotheses), and attempts to have the inference

rocesd based on the h&;putheses. Because the
E\)’cpluthescs and formulas derived from the knowledge
and hypotheses are not guaranteed to be true, it is
necessary to check consistency through constraints
or other means, If a contradiction cccurs in the
reasoning process, we must remove the original
hypotheses and select other ones instead. For this
reason, hypothetical reasoning can be interpreted as
a kind of non-monotonic reasoning, and belief
revision technology is required. Hypothetical
reasoning is in fact inference as practiced by
humans, and is one key to implementing advaneced
inference mechanisms such as commonsense
reasoning and learning. Conventional research into
hypothetical reazoning, however, has concenfrated
on establishing the basic inferential mechanisms,
and there has been little work done from the
viewpoint of application in problem solving., This
section discusses a prototype system called
APRICOT/O of the AP IEI COT project [Inoue 88c] as
& basic software tool for next-generation knowledge-
based systems.

A variety of frameworks for handling hypotheses
and incomplete knowledge has been p [Doyle
79, de Kleer 86a, Poole 88, Reiter 80], but from t

viewpoint of application, they have been faced with
maejor problems in that (1) there has been no
integrated handling of the generation, selection, and
verification of hypotheses, and (2} architecture has
not taken problem solving into account. As the basic
standpoint for the construction of APRICOT, we
stressed the following two points :

(1)By using domain-dependent knowledge,
especially deep knowledge (such as structure and
function knowledge), commonsense knowledge
(knowledge of physical laws, etc.) and constraints
APRICOR will antomatically generate and
enumerate hypotheses, It will be more
intelligent than the conventional approach
stressing heuristic rules.

(2) Positioning the inferential control mechanism
between the hypothetical reasoning mechanism

89

roblem solver will

al.

There are two points to be considered in the use of
hypotheses. The first is a dependency of what
knowledge is established on the basis of what
hypotheses. Truth maintenance systems (TMSs)
manage dynamically contradiction-free
characteristics in a database (working memory}
including the hy&put.heaes, and have been proposed
[Doyle T9] and in the assumption-based TM
(AT;{HS} [de Kleer 86a]. The second is called
abductive reasoning, where hypotheses that do not
contradict the database explaining the observed
events are selected. A hypothetical reasoning system
of this type has been proposed in [Poole 88]. Both
have in common management of cunsismnnf,
however, and can be unified model-thoretically
[Inoue 88b). In other words, the former maintains
the contradiction-free style of the database from the
input hypotheses, and the latter determines goal
hypotheses from the input observations.

APRICOT provides a basic framework for using
hypothetieal reasoning in problem solving, but as the
p;rclu?blam solver is dependent on the problem domain,
only one of the above approaches may be stressed,
depending on the problem domain, For example, the

erential strategies for dicgnosis and constraint
satisfaction would be as outlined below.

and a domain-dependent
enhance efficiency [Inoue

4.1.1 Problem Solver for Diagnosis

If components are assumed to be working
correctly, and predictions from those assumptions are
inconsistent with behavioral observations, the
conflict set (the set of disjunctions of negated literals
of assuraptions) are determined, and possible
combinations of faulty components can be caleulated
theoretically by converting the conjunctive normal
form (conflict set) into the disjunetive normal form,
This means that it is sufficient to find a consistent set
of assumptions that explain the observations and
goals through backward reasoning.

4.1.2 Problem Solver for Constraint Satisfaction

Assumptions are regarded as assignments of
values to some variables, and so when results derived
from them through forward reasoning are
inconsistent with the specifications, the
combinations of assumptions that support the
observations or their negations ave determined. In
planning, a set of parameter values satisfying
varions kinds of constraints is collected as a context.
In design, mulﬁ?h}f design models are maintained,
structured with hierarchical contexts so that the
upper layers are the design model assumptions and
the lower layers the parameter assumptions.

4.2 Hypothetical Reasoning System APRICOTI

The APRICOT/O system for hypothetical
reasoning consists of the .KTMS [de Kleer 86a], which
maintainz conzistency based on combinations of
asswmptions (called environments), and a rule-based
oblem solver. APRICOT/D is implemented in ESP
ijima & Inoue 88, Fujiwara & Inoue 88].
APRICOT/ treats the ATMS and a rule-based
problem soelver called the assumption-based

Data (facts & assumptions)
& justifications

Baliefs &
states Enowledge
maintenancs
module
Facts &
. justifications ATMS
—
Assumptions &
justifications
Enowledge
Y
- base
Hypothesis
generation Rules
Problem salver Premisa
facts
AlE <= User

Fig 4.1 Configuration of APRICOTVD

inference engine (AIE) as independent modules, As
shown in Fig, 4.1, ATE provides the ATMS with data
1[ﬂ:tr:rn‘.s and assumptions) and their justifications, and

e ATMS efficiently determines all contexts (sets of
all data which hold in each consistent environment).
AIE proceeds with inferential processing while
checking whether the ATMS data holds in some
contexts, o

In multiple worlds of the ATMS, each time a new
fact is inserted it causes other events such as the
addition of a justification and the sceurrence of a
contradiction. To express these activities accurately,
APRICOT/O0 :zzpresses components such as
assumptions, justifications and contradictions as
ESP objects. Attribute information for each is
contained in the object slot, and the truth
maintenance algorithm is implemented through
inter-object message }:assin

AItEi: & mtiiacﬁa hypoth 1
operating within the hypothetical re ing system
to link ga user-input premise facts and ﬁﬁaé}r from
the knowledge base with the belief states from the
ATMS. To avoid firing unnecessary rules and
generate only the minimum essential number of
justifications, an inference control mechanism

pmhﬁ;:m solving mechanism,

similar to the Rete algorithm is used. The ESP
unification funetion is used in matching assumptions
and facts to rule conditions. A rule consists of the
condition part, which is matehed with obtained facts
and assumptions taking all contexts inte account,
and the action part, which provides additional facts
and assumptions, and their justifications to the
ATMS. Each condition of the condition part is an
ESP predicate, variable or atom, whose valuation is
troe if the ATMS node corresponding to the object
fact or assumption is believed (called IN), that is, the
ATMS node holds in some environments, or, a
method call or ESP built-in, whose valuation is true
if its ESP execution, such as a numerical caleulation,
guceeeds. If all conditions of the condition part are
true, a justification of the form : <condition
part>=b<action part™> is passed to the ATMS,
Rules without an action part indicate that they

enerate contradictions if they are executed, and
they will be executed with maximum priority within
the same environment in action part guene
scheduling, Several AIE rule examples are given

Example 4.1

1) rule9l:: temperature (X,Y), {Y>=25} -»
cooler_ON (X).
%If the temperature Y of room X is 25°or
higher, turn on cocler X,

2) birdfiy:: bird(A) -» assume(f1y(A)).
9If A iz a bhird, assume it can fly,

3) contradiction:: not{X), X -» [].
%I both affirmative and negative of X exist
at the same time, it is contradictory.

4.3 Enowledge Compiling on APRICOT/0

As discussed in 4.1, the basic coneept of APRICOT
is to utilize various kinds of knowledge, including
incomplete knowledge, linked together functionally,
to solve problems effectively. Model knowledge
expressing principles {callegl' deep knowledge) is
combined with constraints and heuristics to generate
5uwer_'ﬁ.11 Iknowledge that iz directly helpful in the

omain task; this is called knawledoge compiling.
Wh_lle_ the problem solver of APRICOT/0, namely,
ATE, is a rule engine and handles AIE rules only,
APRICOT/0 ecan simulate the funection
implementation of knowledge compiling, only if all
knowledge such as default knowledge, logical
inference rules and constraints are converted into
A]l:mEdmlles’ and are passed through a sophisticated
scheduler,

4.3.1 Dynamic Hypothesis Generation and
efault Reasoning

When humans solve problems, they perform
inference as establishing a succession of assumptions
depending on their cirenmstances. In this process, all
Eusaxhle hypotheses are not listed beforehand; rather,

ypotheses can be generated or deleted as required.
To implement this process, in APRICOT/A), a function
ig provided that dynamically introduces hypotheses.

Use of this function allows defazult rules to be
represented that produce results as long as no
evidence contradiets them. For example, a normal
default "a(x) : MbizW/b(x)" [Reiter 80] can he
expressed as an ATE rule “a(x) -> assume(b(x))".
Internally, an assumption Dy (A is a ground term)
is introduced, and b(A) is expressed as an assumed
node supported by I‘*m. The justification

91

friend (himself} was not that type of person, and
thought that therefore Huek could not be, and denied
tha]be.!jaf that “that day was a school day”. (See Fig.
4.2

rulel:: not(X), X ->[]. %Logical contradiction.

rule2:; day(weekday) ->»
assume(not{close(school)})).

“al =h(A)" [de Kleer B6b] is passed to the
ATMS, allows inference to proceed using Ty % Typically, go to school, school not closed
as a defanlt assumption. on weekdays.
Example 4.2 ruled:: not({close(school}), see(X,movie}
When Tom Sawyer met Huckleberry Finn, who -» go_slow(X,school).
watched movies on a weekday, he wondered if Huck %School not closed, sa%en?lawamhing
was a delinguent, He then remembered that Huek's movies are skipping school.
C—n
Node 4 (premise)
not(wicked(tom)) e
" Node 10
| not{wicked(fin))
O » mn
Mede 9 (premise)
@fauﬁliarffoemﬁn}
m
{inserted after node 8
generated)
Assumption 1 O
T-not({close(school)) " Node 1
contradiction
ot
(node 1 alwa
contradiction
Wode &
temporary(not{close(school)))
in—out
Node 2 (premise}) Node &
day(weekday) not(close(school))
in in—ouf
OO
Node 7 Mode 8
gu-s'inwl:ﬁn, school) wicked(fin)
® | tn—out in—+out
Node 3 (premise)
g.m[ﬁn,muvie]l
in '

Fig. 4.2 Huckleberry Finn justification network

92

ruled:: go_slow(X,school) -> wickeﬁ:f}(},
%People skipping school are juvenile
delinguents.

famiTiar(Manl,Man2} not(
wicked(Manl))~>not{wicked({Man2}).
%Man not a delinguent, so his nota
delingquent.

4.3.2 Inference Hules for Natural Deduction

ruleh::

Production rules, with which inference is
executed through Modus Ponens, have been
conventionally used in heuristie rule description.
With this framework alone, h ing more logical
struetures such as cirenits leads to a situation where
logical completeness cannot be assured. If logical
inference rule deseriptions are expressed by the ATE
rules, it becomes possible to deseribe And
Elimination, Or Elimination, Modus Tollens, and so
on, '

4.3.3 Handling Constraints
One of the uses of the ATMS in constraint-based

problem solving is constraint satisfaction, where
solutions satisfy the set of all constraints. This

Dx+y—2'=0

[Set of constraints |

regards assignments of values to variables as
assumptions, and determines consistent sets of
assumptions that do not viclate the constraints fo
make them solutions. A solver equipped with an
assumption generator and a constraint checker can
allow the ATMS functions to obtain all solutions.
This type of assumption-based problem solving can
be applied to combinatorial problems and design
problems [Tnoue 88].

If some mechanism of constraint prupag‘unan can
be incorporated ﬁrgamcﬂl}f‘rhepmblem solving
becomes even more flexible. interface between
the ATMS and a problem solver handling constraints
has been proposed in the form of the consumer
architecture (CA) [de Kleer 86¢] incorporating the
data-flow mechanism, In this concept, consumers are
unit problem solving steps attached to the
corresponding ATMS nedes tﬂmugh an analysis of

the set of constraints (called precompiling). The
consumer generation procedure (precom 1hng} is as
follows. First, consumers are shaped ugh the

data-flow anajyms of the set of constraints (input by
the user as relational expressions amomg variables)
based on heuristics related to the nsage of
constraints. Then, the action parts are attached to
the ATMS nodes related to eacl}; condition part. The
consumer execution procedure is as fo When
the ATMS node becomes IN during the inference

Constraint solver

R‘[xl}r:z}; x""j’ —3-“3 =C|' - {i}
i ®
l = g=2
il ¥=5
| Precompiler 2=ITy
@ Heuristics: z is . Sch%i}uler
not an inpot
-
|Set of cnnsumers| AIR @Justification
x=3 Ny=5§ = z=2
@xy—~z="Vxty) 1
@
! B ATMS
Rule ecompiler e
Dx—in (x=3)
y—in (y=5)

Fig. 43 CA by APRICOT/O

process, the attached consumers are passed to the
gscheduler, and passed to some solver when
appropriate, and then the results are passed to the
A along with its justification.

The implementation of CA using APRICOT/O is
as follows and as shown in Fig. 4.3. Consumers in [de
Kleer 86¢] are attached to the ATMS nodes, but here
they are converted to AIE rule formats. This enables
simultaneous handling of heuristic rules and
constraints through the common framework, that is,
AJF and a scheduler. In this architecture, if a value
of a variable, say “a", is assigned or updated, then the
predicate “equal{a, A)" is introduced (indicatin
that“a” has a value, say &, and is unified with E
variable “A™). In , this predicate is interpreted
as IN when variable *a" is bound by A in some
context, and so delayed execution of consumers is
possible, This means that constraint propagation is
possible as a data-driven evaluator, and can be
implementad,

Example 4.3 (A process of consumer generation and
exscution (See Fig. 4.3))

(1) Relationship among x, y, 2: g +y-28=0"iginpnt.

{2) In the way of nsi.nﬁ the constraint, it can be seen
that “2" is only used as the output.

(8) Data-flow in the variable set iz determined, and
the constraint is converted to a rule.

(4) Inan inference process, x and y become IN.

(5) Eule conditions are satisfied, and the action part
iz sent to the scheduler.

(6) The consumer is scheduled to the queue according
to a certain strategy.

(7) The consumer is picked up from the gueue and
passed to the solver when appropriate.

(8) Eie result given by the solver is returned to the

(8) The CA registers the justification “x=3 A y=5
=z =2" in the ATMS.

Example 4.4

The following constraints (and heuristics related
to their usages) areconverted into ATE rules below,
taking constraint analysis into account.

= —Geasa+0.Tsh+c
g iz only used as an output}
> 3sat+bsec)
%this isused as a test after caleulating the value of g)
g< ashec
(this is used as a test after calculating the value of g)

rulelll::equal(a,X), Bquﬂéh.‘l‘], equal{c,Z)
> {G is ~EsXeX+0. TeY+L},
equal(g,G).
rulelf2::equai(a,X), equal{b,Y), equa'l([c,l}.
equal{g,G), {G<=3«X+¥eI} => [1.

93

rulelld::equal{a,X), equal(b.Y), equal(c,Z},
qequé]{g.:lﬁj ,q{G}=}[t‘|"*I} - 17

4.3.4 Scheduling

The knowledge compiling function handles
various types of knowledge (such as constraints,
heuristic rules, defaults, and logical inference rales)
under the common framework, so it is not enough for
its implementation merely to converi that
knnwlaﬁe into the single AIE rule representation; it
must schedule action parts of invoked rules. This
can be accomplished by adding the following
functions to the action part guene.

(1) Sort the gueued action part list in ascending
order of environment size,

(2) If consumer execution causes a contradiction to
be detected and then some action parts to be no
longer IN, they are removed from the queue. This
prevents unnecessary justification generation and
consumer execution,

(8) Add some kind of priority as heuristics. For
example, higher priority is given to rulesintrdducin
contradictions, Set the priority according to types
knowledge and circumstances where to use it

{4) Incorporate various kinds of search algorithms
[Mnoue 88a].

4,4 Conclusions and Fuiure Research

This section discussed the architecture of the
APRICOT/0 hypothetical reasoning system,
composed of the ATMS maintaining concurrent
representation of all contexts and the rule-hased

roblem solver, as well as the techniques used fo
implement knowledge compiling. Application is
currently being considered for design and E‘lanning
problems such as the design problem of the main
spindle head in a lathe [Inoue et al, 88] and the
problem of automatic generation of the disassembly
se:iuenae of machine tool head stocks (see 8.2), as
well as distributed cooperative problems such as a
delivery planning problem (see 8.3), Future plans
include extension and generalization of the A s
and garalla], implementation of the ATMS and ATE in
GHC.

5 DISTRIBUTED COOPERATIVE
PROBLEM SOLVING SYSTEM

A cooperative problem solving system solves
problems for which optimum solutions are difficult to
obtain. A typieal model of such a system is the
blackboard model. To improve automation system
performance, cooperative problem solving functions
may be useful particularly in the field of designing.
Instance where they are useful are large-scale c%nju
such as L3I circuits, because (1) combinations of
constraints must be considered in phases of a design
Emcas.s (including the verification phase) to solve

esign Prubl&ms; and (2) a conventional design
process 18 divided into phases which are executed

94

separately; thus it may not be able fo produce the
best product or design the required production this
field, A typical conventional system is the
HEARSAY-II system developed in the early '70s by
the %ri:‘ech understanding project at CMI,

is system was designed to obiain solutions
from ambiguous incomplete data (including noise)
and knowledge, The architecture of the system was
very promising [Nii 86]. Howewver, it gave rise to
difficulties in representing knowledge about
inference control and in processing a large volume of
data. For this reason, it has been left unused without
finding out its full advantages. However, the recent
progresg in LSI and network technologies is
spotlighting this architecture again, The system has
turned out to be able to exhibit the originally
expected performance if the. architecture is expanded
to cover a multiprocessing environment. Theoretical
researche has also progressed in problem solving
with uncertain incomplete data and knowledge.
Distributed cooperative problem solving techniques
have been developed, mainly by the members of
Digtributed Al workshops in the United States.
Target environments pursued by the members for
system models are versatile; they range from an
environment for connectionist models {massively
parallel machines) to a conventional computer
environment {Davis 80, Fehling 83, Gasser 87, Smith
85]. Nevertheless, the environments lack clear hasie
conceptz that serve as criteria or assessing their
features. This fact darkens the outlook of the
research. We are now trying to clarify the concepts of
distributed cooperative problem solving,
enumerating technical objectives, and probing
possible methods, '

5.1 Definition of distributed cooperative
problem solving

Distributed cooperative problem solving is
defined typically by S8mith as follows [Smith 85].
“Distributed cooperative problem sclving is
cooperative solving of a problem by.a group of
decentralized and loosely coupled knowledge sources.
Knuwla-dﬂga gources here mean knowledge systems
described by some knowledge representations in
various processors. They are cooperative because
none of them has the necessary information or
information processing capability to solve the whole
problem. They are said to be decentralized if no

lobal control and no global data storage site exist.
ey are said to be loosely conpled if they spend more
time on computation than on communication”.

As in above, distributed cooperative problem
solving is irrelevant to a specific knowledge
representation form and inference method, It
stipulates a coarse system architecture for problem
solving, It does not determine what sorts of
knowle sources are decentralized or how they are
decentralized. Nor does it clarifglhnw knowledge
gources cooperate, A distributed AT system like tﬁe
connectionist model includes tightly coupled problem
solvers which are assi small taslks, ngever,
thag are not regarded as distributed cooperative
problem solvers [Decker 87].

8.2 Struecture of a problem solver

The system consists of multiple problem solvers.
It divides a problem, sclves subproblems, and
synthesizes the solutions, Various architectures can
be considered for this svstem. We present only the
strueture common to problem solvers making up the
system, Each ﬁmhlﬁm solver consists of the following
components (Fig. 5.1):

(1} Communicator; Exchanges processing results
with other problem solvers.

(2) Controller; Borders refrieval spaces for tasks
and performs focus contrel to reduce
communications, Focus control selects the least
costly, most efficient subtask when subtasks are
connected by OR logic. When subtasks are
connected by AND logic, the controller analyzes
parallelism.

{3) Reasoner: Performs inf‘erencg,

(4) Enowledge base: Contains knowledge of
experts. Knowledge is dispersed to problem
solvers, and no problem solver has the necessary
Lnowledge to salve the whole problem.

(5) Working memory: Stores processing results of
tasks,

5.3 Advantages of distriﬁuted cooperative
problem solving

A distributed cooperative problem solving system
improves, as do existing distribution systems, in
performance. It heightens its processing speed and
reliability. Routine programs have difficulty in
performing knowledge processing subtasks,
Therefore, if the subtasks were distributed to
existing data processing subsystems, communication
overhead would increase and thus would the
advantage of distribution be offset, Cooperation
functions are uecessarg in an environment whers
these subtasks can be efficiently distributed.
Introduction of cooperation functions also improves
the expandability of the system. When the system is
expanded, cooperation between modules eliminates
the need to change existing system resources.
Ancther advantage of cooperative problem solving is
the capability to obtain appropriate solutions. A
feature of problems now under discussion is
uncertainty. Uncertainty here means lack of data
and lack of puarantee for completeness, correciness,
and consistency of processing results supplied to a
problem solver from others. Cooperative problem
solving may obtain justifiable solutions under this
uncertainty. '

5.4 Features of a distributed cooperative
problem solving system

Distributed cooperative blemn solving ean bhe
regarded as a framework 0??:11:&1'&116& control over
multiple Fﬁl‘ﬂblem golvers to solve a problem
cooperatively by using inference functions rather
than knowledge representations. The optimum

framework may depend on problems. An inference
control frame has the following facilities:

(1) Integration mechanizms
Multiple problem solvers in a distributed
cooperative problem solving system work in
harmony solve a problem. An integration
mechanism is thus necessary in the system to
integrate the actions of problem solvars.

(2) Communications between problem sclvers

Suitable communications facilities are important
resourees for a distributed cooperative problem
solving system, The facilities may take various
forms from the perspectives oft communication
paradigms, communication contents, and
communication protocols.

Communication paradigms refer to the
following two communication [orms:

(2)Communication through global memory

{blackboard madel)
(b)Message passing

(a) may be asynchronous communieation, and (b)
synchronous, Synchronous communiecation lowers
processing speed, whereas asynchronous
communication makes it difficult to guarantee data
compatibility between problem solvers.

5.5 Technical objectives

Advantages of distributed cooperative problem
solving can be divided into the following two groups:

(1) Advantages given by distribution processing,
that is, ease of system construction, hig
execution speed, and high reliability

(2) Advantage given by cooperation processing, that
is, generation of alpprnpriate. solutions by using
limited data, knowledge, and proeessing time

In a distributed cooperative lpmhlem solving system,
taslks and intermediate solutions are exchanged
through communications, The communication d
iz ienemlly slower than computation speeds in
Ero lem solvers. Nevertheless, working towards a

etter solution inereases communication frequency
and guantity. Therefore, improvement in efficiency
of communications is a major technical objective.
How to. obtain agmeriata solutions through
cooperative processing is another major technical
objective, To achieve these objectives, we are now
studying the following technigues:

(1) Efficient communication in a distribution
environment
In @ distributed problem solving environment,
each problem solver assumes self-contrel over its
inference function. In this environment, problem
solvers share tasks, processing results, or
regources, and thus must be coordinated
functionally, A technigue for satisfying this
requirement is the inference control technigue
proposed by Durfee and Lesser, called partial
global plans [Durfee & Lesser 87]. This nique
makes each problem solver create tactics for

935

solving a problem, which arises in the whole
network but is viewed from the local standpoint,
and exchange the tactics with other problem
solvers. Whether one problem solver should
employ tactics offered by another depends on
evaluation standards implemented by the
problem solver. The above technique may be a
meta-communication technigque. Another
technique for efficient communication is the
expectation-driven communication, which is
performed by anticipating the actions of partner
problem solvers. For one problem solver fo
anticipate the action of another, it must know the
intention and action plan of the latter. The
sitnation theory may ge used to find out the
intention action plan. This theory was first used
by SRI to devise a cooperative work plan for
multiple robots. Concerning this plan, Georgeff
proposed an action theory, and Honelige
presented a belief mode[Konolige 85].

(2) Cooperation for cbtaining an appropriate
solution
A problem solving technigque used in an
environment where applicable knowledge and
input data fall short is inference based on
evidence. Human beings copy flexibly with
problems by assuming the presence of exceptions
in incomplete knowledge about the real world.
The knowledge assuming exceptions are called
default knowledge. Inference based on evidence
uses default knowledge and instances supporting
the correctness of default knowledge. When an
inference process encounfers conflictiiﬁ
assumptions, it selects an appropriate one bas
on supporting values[Shastri 85]. Through the
above atudies and analyses, we will propose a
framework of distributed cooperative problem
solving.

Communicaicr “"_“"_'_4
1 Cantraller
m ——] Ramsorar ...—I
n

Fig. 5.1 Structure of a problem solver

6 USE OF DEEP KNOWLEDGE AND
QUALITATIVE REASGNING

6.1Use of Deep Knowledge and Its Effects

One problem with conventional expert systems
involves the complete inability of the system to solve
a problem if it does not have inference rules for the
problem, Because the basic ability of the
conventional expert systems for solving a problem is
based on the range of the inference rules in the

roblem domain. Moreover, as the expert system
e not in essence understand the knowledge in

96

problem domain, there are limitations in the
intelligent problem solving and the explanation of
reasnnin%‘ processes, As one solution to overcome
this problem, reasoning using decp knowledge {(deep
reasoning) has been proposed. Shallow and deep
knowledge are defined as follows,

Shallow knuwle&ie: Enowledge directly related
to the tasks performed by an human expert.

Deep knowledge: Basic knowledge close to the
aniversal laws or principles in the problem domain,
or knowledge of general validity such as
r\eblpreseutatinns of the structure and function of the
abject.

Usze of deep reasoning is anticipated to have the
following effects,

(1) Completeness of knowledge :
As each item of deep knowledge iz expressed at a
more basic level, the range covered Eea single
iece of l:nuwlecige is more broad. Hence, deep
nowledge can cope with sitnations which cannot
be predicted in advance on the basis of direct
cause-effect relations, such as produetion rules,

{2) Understanding and axplaining causality :
As the knowledge in the problem domain is in a
form which is close to physical laws and prineiples
.or the structure of the object, the system iz far
more capable of explaining the results of
reasoning processes.

(3) Antomatic generation of shallew knowledge ;
By compiling and storing reasoning results for
varions situations in a rule format, deep
knowledge can be used in the auntomatic
Eenaratiun of shallow knowledge, General deep
nowledge in the domain can be used in the
construction of various expert systems for
different applications in the domain (for instance,
design knowledge can be used to generate
diagnostic rules}. That is, deep knowledge
acquired can be used efficiently., On the other
hand, shallow knowledge generated can be ussd
for high-speed inference.

One means to achieve deep reasoning is
gualitative reasoning. Its basic procedure is to
EXPress &hysical Euanﬁtieﬂ and constraints existing
among them qualitatively, and to reason about the
system behavior. Methods for current qualitative
reasoning systems (simulators) may be broadly
divided into two catagories ;

(1) Qualitative modeling type :

In this type of simulator, variables and
constraints re{:rasenting the system ics
(& set of simultaneous gualitative differential
equations) are given and fived, All of these
variables and constraints are used to reason
the gualitative behavior of the whole system,
An example is @SIM [Eunipers 85).

(2) Qualitative Ipmaess theory type :
Basic knowledge representations of this type
of simulator ar= objects and, process or
physical rules. Process and physical rules
contain the constraints to change the states of

each object. Process or physical rules which
are currently aclive are identified to construct
a set of constraints representing the system,
System behavior changing over time is
reasoned using the constraints. Not only are
gualitative states determined, but an
understanding of causality iz alse sought.
QFT [Forbus 84] is an example of such a
system,

6.2 Qualitative Reasoning Mechanism

The Fifth Besearch Laboratory is studying
walitative reasoning mechanisms from the
ollowing two approaches.

(a) Ressarch and development of Qupras [Ohki 88], a
QPT-type litative reasoning system:, which
aims to deal with ical laws in their original
form (without qualitative modeling).

{b) Research for improving the efficiency of the
reasoning processes of the two types of qualitative
reasoning systems mentioned above.

6.2.1 Outline of Qupras

Az gtated above, QPT is closer to the reasonin

using deep knowledge than the approaches orien

to gualitative simulation. - However, the QPT
framework is in some respects inadequate to express
knowledge at the level of general physical laws as
basic knowledge. Hence, Qupras (for the qualitative
physical reasoning system), a qualitative reasoning
systern which overcomes these difficulties is under
development. As shown in Fig. 6.1, Qupras consists
of a knowledge representation supporting subsystem
and & reasoning subsystem.

{1) Enowledge representation in Qupras

Knowledge representation in Qupras involves
descriptions of the object, physical rules and initial
states. Objects are described in terms of (i) atiributes
(definition of atiributes which describe the object),
{ii}lcﬁaﬂs {definition of parts of the object), (iii)
conditions (the object becomes active only when these
conditions are satisfied), and (iv) relations (relations
among physical quantities which are valid when the
object is active). Fig. 6.2 is an example of an object
describing a boiler class,

Physical rules are expressed in terms of (1) ohjects
(to which the d]jhysi:;al rule can be applied), (ii)
conditions (conditions under which the physical rules
may be applied}, and (iii) relations (between the
attributes of objects or other guantities). The
ph:arsu'.;:'l ruler;i arg gcﬁve only when ‘Inuf;hif {f) and (ii)
are active, Fig, 6.3 gives an example of a ical
rules deseribing heatﬁow. ? ik

The initial state defines the state of the target
system at the beginning of reasoning (that is,
instances of objects and definition of facts).

Conditions and relations of objects and physical
rules are expressed as equalities (using addition,
subtraction, multiplication and division),
inequalities, or terms which deseribe facts such as
positions. Further, Qupras is capable of handling

these formulas not only qualitatively, but also
guantitatively.

Enowledge about ohjects and physieal rules is
given in the form of templates. Prior to the inference
process; the knowledge representation supporting
subsystem of the Qupras applies template knowledge
toinstanees in the initial state, to generate instances
of the ohject and physical rule, then converts them to
an intermediate format which the reasoning

subsystem can understand.
(2) Gualitative reasoning in Qupras

The qualitative reasoning subsystem in Qupras
has the structure shown in Fig. 6.4. Beginning from
the given initial state, the succeeding behavior of the
target system is reasoned. The qualitative reasoning
is performed by two processes, intra-stale analysis
[prrga.gatinn} and limit analysis (prediction), in turn,

intra-state analysis, the reasoning subsystem
searches for active objects or physical rules whose
conditions are satisfied, and collects constraints in
them to construct the simultaneous differential
equations describing the target system at that time,
T%I.B subsystem propagates known attribute values to
undetermined attribute values through constraints.

In limit analysis, the reasoning subsystem
predicts a qualitative value at the next time for each
attribute changing with time, It is selected from the
nearest limit points of the present value searchin
for the equalities and inequalities of conditions o
objects and physical rules,

object boiler:Bodar

parts_of
conlainer—coniainer;
heal _sgurce—heat__source,;

relatians
on {Container| Boiler, vest_sounce] Boller);
melting—paint @ container! Bollar
< temperature @ heat—source| Baiar;

end.

Fig. 6.2 Definition of a Boiler

(3) Peatures of Qupras

(a) Knowledge related to physical laws can be
represented in a single formulation. {(QPT
handles dynamic and static phenomena
separately.)

(b} Formulas describing physical laws may be
represented without qualitative modeling:
further, physical quantities may be handled in
gither a qualitative or a quantitative manner, as
the situation demands.

(c) No statements of the partial ordering between
the values of varying physical quantities, or of
guantity spaces, are required.

(d) Representation and reasoning abou} states
changing of physieal variables is possible. In

97

Hemﬁm Initial Slate
Kreswizdge Representation
Support Subsysiem
Carverted
Knm Converled
Rapresentation Initiak State
']
Aaazening Subsyshem
Reasoning Resuits

Fig. 6.1 Outiline of Qupras

physics heat—fiow
objects
Heat__source—heal_source;
Container-—container;
conditions
on (Cantainer, Heat__source);
lemperatura@Heaat_source < lemperature® Container;
redations
odt (heat Conlaingr) :=:
temperature@Heat_source—Ilempearatureg Container;
end.

Fig. 6.2 Definition of Heat Flow

Cosaita i ol fnira Slatis

|wwlmmhulw
Aty
fnreciotion of vakes 8 3 Subseguent moment
ol - Pyifeg i e

Coediton Evitusion Subsystom {eheek sondiions and cvalusied
g i il iredopu i usang)) doms

Ol Inthv Reasoning
Buberysinm

Fig. 6.4 Structure of the Qupras Qualitative
Reasoning System

other words, Qupras expresses physical laws in a
more primitive form.

{4) Remaining subjects for study

{a) Studies of better t\E‘\—I1:|:|it]":|.|-e'5 for representing such
physical laws as the conservation of energy

(b} Tmprovement of the condition evaluator
We have partially enabled the soclution of non-
linear simultansous inequalities by combining
the Sup-Inf method for linear simultaneous
inequalities [Shostak 77) and the Groebner-base
method for non-linear simultaneous eguation

a8

[Buchberger 83]. We have also enabled control of
the sequence of evaluation of equalities and
inequalities (freeze function). However, we have
to increase the execution speed.

(c) Constructing a hierarchical structure of object

definition, and generalizing definitions of

* physical rules. At present, an improved version

pras ver,2,which adopts these functions and
features, iz under development, .

6.2.2 Improvement of Qualitative Reasoning
System

One of the problems with the current qualitative
reasoning system is that it cannot predict the
behavior of large target systems because of the
limitations of computation time and memory
capacity. Even the Q&M algorithm, which presently
performs reasoning at the highest speed of all the
qualitative reasoning systems, can handle only a
small continuous system. One method to realize a
gualitative reasoning system which can reason the
behavior of large target system including multiple
physical domains is partition of the target system.
We propose two methods for partition based on the
heuristics with the structure and propertfies of the
targt system. We estimate the effect of the partition
methods for computational complexity of qualitative
reasoning and diseuss the applied conditions of the
methods.

(1)Partition method of target system based on
heuristics with their structure and properties

{a) Method 1 : Partition method of variables
aceording to the independence of each subsystem.
Agsume a target system which consists of
many parts that have close interactions betwesn
internal mannents and only weak interactions
with external cornponents. Such a target system
can be divided into loosely connected subsystems
corresponding to the parts. All variables
belonging to only one part are assigned to the
subsystem as its internal wariables. Each
external variahle (that is. an output from a part
and/or an input to the other) is shared by both of
these subsystems as a common variable, The
behavior of each subsystem can be simulated
independently as response to the input state. The
simulated results of each subsystem are
communicated to others via common variables,
They are integrated to constitute the hehavior of
the whole target system.

(b) Method 2 :Partition method of a system by the
field of applicable rules.

Assume another target system, each of whose
eomponents is designed and operated according to
the rules of a different physical field (for example,
electronic circuit, thermodynamics, electrostatics,
and quantum mechanics) to satisfy a different
function. In this case, the target system can be
partitioned into subsystems. Each subsystem
consists of parts whose fields of dominant rules
are identical. As the range of rules applicable to
each object is limited, the number of ohjects

contained in each subsystem is also reduced.
Because the rules of different physical fields have
little effect, the target system is divided into
independent subsystems. Therefore, the hehavior
of each subsystem can be simulated
independently,

(D)Effect of partition methods on the computational

efficiency of Qupras

This section estimates the effects of a plying
partition methods 1 and 2 to the qualitative
remnin&;ystm Glupras. (For more details, refer to
[Sakane88],)

(a) Effecton propagation process

Suppese that an object system is partitioned
into ‘L'? subsystems of the same size by partition
methods 1 and 2. We estimate the computational
complexity required for simulating the system
behavior using the equally partitioned model.
Because the number of instance rules generated is
reduced to 1/W, the computational complexity
required to find active physical rules is also
raiuced to 1/W. Thus, the computational
%pqgaﬁon process is reduced

complexity in the
times under the following

to ahppmxlmatelg
conditions:

(i) application to large target systems without
feedback loops consisting of relatively
independent subsystems.

(ii) Expression of each physical rule in a general

[b) Effect on prediction process

The cost required to prediet the next value of
each variable changing with time is proportional
to the number of instance rules generated. The
cost is reduced to YW times using the equally
partitioned model. However, if there are many
variables changing with time, all the
combinations of their next values must be
checked for consistency. The total computational
complexity in the prediction process increases
sharply as the number of variables changing with
time, Y, increases. Then, the computational
complexity is not reduced unless ¥V decreases. To
reduce the number of such variables, some
knowledge to control the order of changes among
variables is needed.

The partition methods also have advantages in
acquiring this kind of knowledge. When the
simulator simulates the system behavior as a
whole, only the knowledge of the order of

anging among variables is available. However,
it is very rare in practice that sufficient
knowledge is given to specify a variable to be
changed first. When the system is partitioned
into subsystems by the partition method, the
knowledge with the order of variable changes
among subsystems is also availahle. This
knowledge is likely o be known, even if the

orders of changing among variables are not
known,

(3 Remaining subjects for study

{2} Studies of efficient methods of partition of target
systems other than the above two methods

(b) Study of . method of mapi;ning the qualitative
time of each subsystem to real time

(c) De.a]ing with discontinuous change which occurs
at the beginning and/or end of the interval of
qualitative time in each subsystem,

(d) Controlling reasoning: controlling the order of
changes among variables and controlling the
order of propagation using the dependency sumong
variables,

6.3 Systems Which Apply Deep Knowledge

The range of application of deep reasoning (and
qualitative reasoning in particular) may consist of
analytic problems and synthetic problems; here we
consider a malfunetion diagnestic system em;iln}i"in
deep knowledge as an example of an analytica
problam. The following two types of use ave possible.

{1)Generation of diagnostic rules (knewledge
compilation) '

Qualitative differential equations of the faulty
system are constructed for each candidate of
malfunction. Qualitative behavior of the fauliy
systems is acquired, using the model to obtain
malfunetion symptoms. By conneeting the
mealfunction to the symptoms, the system generates
diagnostic rules in the form of “If (symptom) Then
(malfunction)”. Because the diagnostic rules are
generated for all the malfunction candidates, this
method iz not efficient with regard to the execution
time. Therefore, it is suited to off-line generation of
diagnostic rules.

{2)1dentifying faults based on symptoms

First, the gualitative value of the variable
representing the malfunetion symptom is prup%md
to other variables through the constraints. en
propagated qualitative values contradict at a certain
variahble, the wariable is considered to be the point
where the malfunction canses. In thiz method,
contradiction may be detected at many variables.
Therefore, it is necessary to eliminate secondary

symptoms by some knowledge and select only the

direct cause of malfunction. Because only & set of
differential equations must be considered, this
method is suited for on-line use with respect to the
execution efficiency.

7 KNOWLEDGE ACQUISITION
SUPPORT SYSTEMS

A major problem which tends to arise, when
econstructing knowledge-base systems concerns
bottlenecks at the knowledge acquisition stage.

99

Knowledge acquisition inveolves the collegtion of
knowledge from human experts, arrangement and
systematization of this information, and constructron
of a knowledge base for use in a knowledge-base
system. At present, this task is performed by
knowledge engineers (KEs); that is, knowledge
acquisition relies entirely on human efforts. And,
since systematic methods of knowledge acquisition
have not yet been established, the process of
kenowledge acquizition is an extremely troublesome
one for the knowledge engineer. Our goal is to
improve such bottlenecks. Somewhat more
concretely, we are responsible for the clarification of
the types and structures of knowledge possessed by
human experts, and with the establishment of
effective methods for the extraction and organization
of expert knowledge. In considering knowledge
acquisition support systems, we may analyze the
work of the knowledge engineer in the following four
broad phases,

(1) Problem analysis:
In this phase, the tasks of system to be developed
are determined, and the system feasibility and
significance of development are analyzed.

(2} Expert model building: .
The technical terminolegy, task procedures
(problem-solving strategies) and conceptual
structure used by human experts are clarified,
and the methods and environments of expert
system use are determined.

(3) Expert model instantiation: .
Expert knowledge is elicited and crganized in the
fnrﬁn arl.uf the expert model, and the knowledge base
is built.

{4) Enowledge-base management:
The knowledge base is modified, added to, or
deleted to correct any contradietions,
redundancies, deficiencies, or unnecessary
(isolated) data.

HKnowledge acquisition support systems capable of
supporting each of these phases are required. Below,
we disengs the basic technology required for such
knowledge aequisition support systems, and briefly
sketch some systems {G&%'S and EPSILON/One)
which are now being researched. :

7.1 Basic Technology for Knowledge
Acquisition Support Systems

Enowledge acquisition support systems are
hybrid systems, consisting of a number of basic
technologies, We list some of these here.

{1) Enowledge acquisition interface (interface with
knowledge source)
Interfaces for knowledge acquisition are divided
into interpreiive and interactive interfaces,
according to the manner in which information is
exchanged with the knowledge source, In
interactive interfaces, knowledge is obtained
directly from human experts through that
interaction. Conversational representations

100

employ symbols, numbers, or. words, ete.), tables
(spread-sheets, for instance} and other means of
expression. Interpretive interfaces, such as thnse
used in protocoel analysis and text analysis, on the
other hand, involve the direct one-way flow o
information from the knowledge source to the
knowledge acquisition support system, Here,
technigues for interpreting knowledge
representations used by the knowledge source
(i.e. technigues for natural language
understanding) are required.

(2) Interviewing techniques

In interactive knowledge acquisition, only the
necessary information must be extracted from the
human expert if the acquisition process is to be
Efﬁcient.x%urthﬂr, knowledge which is to he
acquired must be educed through association.
Methods for prompting associations include
pairwise comparison, personal construct theory
(used with CATS, discussed below) and the pre-
post method (uzed with EPSILON/One, below),

(3

—

Building of coneeptual structures (domain
models, expert models and knowledge
representation)

In general, the knowledge representation
supported by expert shells is extremely basic (for
instance, rules and frames), Because of this, it is
difficult for experts to express their specialized
knnwladge.?nuwladga acquisition support
systems can facilitate the extraction of
knowledge, by su porting knowledge
representation in specialized operations or tasks.
Such representation may take the form of domain
models (basic conceptions of the objects with
- which the expert deals, and relations between
objects) or of expert models (expressions of the
task performed E}r the expert in terms of basic
operations; used with EPSILON/One).

(4) Refinement of task models (expert and domain

models)
During the process of aequisition, aecquired
knowledge contains deficiencies, redundancies
and contradictions. A refinement method
appropriate to the model structure is thus used to
perfect the task model,

(5) Enowledge base evaluation The acquired
knowledge (task representation knuwlegge} is
translated to the knowledge representation of an
expert shell, and the inference engine of the
expert shell is used fo evaluate the extent to
which the system is capable of the intellectual
activity of the expert.

7.2 Classified Task Acquisition Support (CTAS)
System

CTAS [Yamazaki et al, 87] is a knowledge
acquisition support system which builds an initial
knowledge base for classification-type problems,
Enowledge-base systems may be broadly classified
inte a s?thetic class and an analytical class; of
these, CTAS is applied to the analytical class. In
general, problem solving for the analytical class

consists of a hierarchical classification tagk and an
ordering task. The hierarchical classification task
classifies the elements (items to be classified) on the
basis of broad, clear traits. The ordering task, on the

f other hand, classifies elements that can no longer be

classified by clear}y distinguishable traits, accordin
to the str of correlations between traits an
elements, CTAB enahles the acquisition of
Enowledge bases in which these two tasks are done
using knowledge acguisition methods based on
George Eelly's Personal Construct Theory, Using the
elements, traits by which elements are classified, and
scaled ratings(a scaled rating is the correlation
between elements and traits), CTAS generates
production rules with a certainty factor. CTAS
consultation consists of five stages — elicitation,
arrangement, refinement, rule generation, and
testing. In the elicitation process, elements for
claaadg‘ ication, traits and scaled rating are elicited;
the arrangement stage involves making graphs and
tables using the elicited information so that the
acquired knowledge can be perceived visually. The
refinement process comprises refinement of
elements, traits and scaled ratings, while the rule
generation process is concerned with the
generation of production rules, In the testin
process, the rules thus generated are evaluated,
Consultation for each of tﬁasa processes is explained
below. In the elicitation process, support of
hierarchical classification t.asﬁ and ordering tasks
relies on the elicitation of classification elements,
traits, and scaled ratings. In hierarchiecal
classification tasks, traits which can be used to
clagsify elements into hierarchical levels are elicited,
and elements are thereby organized into groups; this
process may be performed either top-down or bottom-
up. In top-down classifieation, division into
hierarchical levels is first performed; this method
is effective when experts]fave already organized
elements (into a hierarchy). In bottom-up
classification, elassification is performed after
elicitation of eiemants; this method is advantageous
when elements have not been organized, or have not
been organized throughly, by experts. An orderi
task involves the elicitation of traits, and scal
ratings between elements and traits for every group.
Four types of graphs and a table are prepared in the
arrangement process - hierarchicalp trees, ratin
grids, implication graphs, and cluster trees. Aﬁ
except hierarchical trees are prepared for each group
in a hierarchy, The h.iermllzrir: tree indicates the
hierarchical relationship between groups of classified
elements. A rating grid indiecates, in table form, the
elements, traits and scaled ratings contained in a
group. An i'm%lieaﬁnn graph shows the implication
relationships between fraits in a group. A cluster
tree is prepared for each of the elements and traits
contained in a gruu?. Each cluster tree indicates the
similarity of relationships between items
(classification elements and traits). The graphs and
table facilitate visual inspection and verification of
elicited knnwledﬁe by human experts. In refinement
processes, several types of relinement methods hased
on the Personal Construct Theory are used in the
refinement of elements, traits and scaled ratings.
Additiens, deletion, integration and renaming ara
performed for the different items (elements and

traits). Scaled ratings are also corrected. In the rule
neration esg, three types of production rules -
ierarchical rules, conclusion rules and intermediate
rules - are generated. Hier ical rules are used for
hierarchical classification, and express the
hierarchical relationships between elements.
Conclusion and intermediate rules are used for the
ordering tashs; and the correlations between traits
end elements contained in a group are expressed
using the certainty factor. In the testing process,
rules thus generated are evaluated through use. In
this process, the hierarchieal rules are inveked, and
oups of elements which are to be assessed are
etermined. Then the conclusion rules and
intermediate rules are first invoked, and result in
classified elements which are displayed in order of
the certainty factor. The advantage of CTAS lies in
its support of knowledge acquisition focusing on the
structure of tasks which the knowledge-hase systems
perform. Also, the g'mph.s and table enable efficient
refinement of the acquired knowledge baze. By using
the CTAS system, a high-quality knowledge base for
classification-type problems can be obtained, and the
knowledge base can be refined efficiently. Possible
applications of CTAS lie in classification tasks in the
wvarious areas of diagnostics and planning. CTAS was
developed using ESP running on the P8I, and
knowledge bases thus acquired are performed using
the CTAS inference enpgine.,)

7.3 Knowledge Acquisition Eli?é;urt System
Based on Expert Model (EPSILON/One)

The EPSILON/One [Tsubaki et al. 88) [Ohsaki et
al. 88] is a knowledge acquisition support system
which gathers intelligent expert work in small units
called ugeratiuns and builds a knowledge base. We
designed an expert model [Taki et al. 87] to represent
a knowledge base consisting of these operations. We
also developed the pre-post method as a means of
acquiring knowledge for the expert mode, Fig, 7.1
shows the configuration of the EPSILON/One. The
knowledge acquisition strategy of the pre-post
method acquires knowledge through the knowled
acquisition interface and builds an expert model.
addition, as a knowledge representation model of
structural information, the struetural information
knowledge representation comstruction module
acquires structural information knowledge throu
the knowledge acquisition interface. Then, the
refinement module refines the expert model based on
structural information knowledge. The expert model
and structural information knowladge are converted
into a knowledge base for expert shells by the
knowledge representation translator. In the
following, we discuss the basic concepts employed in
expert models, representations of the structure and
functions of the expert meodel, and pre-post method.

7.3.1 Basic concepts of the expert maodel

‘We propose an expert model based on two different
ideas - a simplified expert task model, and analysis
and grouping of diagnostic expert knowledge for
production expressions,

101

Knowledge acquisition interface

!)

Knowledge Structure

acquisition knowledge
strategy representation
(pre-post construction
method) module

Structure

E=zpert model knowledge

/

Expert model
iufer?nae
engine
Translator Refinement
madule

Enowledge basze

for expert tool

Fig. 7.1 EPSILON/One overview

Fiering of Foesitie

Mallunslions

LLacation of Mallunclion

Fig. 7.2 Bimplified diagnostic task model

(1) Simplified expert taslk model

The operations performed by an expert system
may be divided into a number of task types, such
as diagnostics, desipn and contrel. We attemuied
A es using simple models.
w this approach beczuse simplified expert

to represent these task
We s

102

tasks allow us to provide images of expert system
operations to human experts, to ena le them io
give expression to their own knowledge. We here
present one example of this (Fig. 7.2). On
studying simplified expert task models, we found
that such models (that is, operations) could be
conceived to consist of the object (source element
gTuuP). rocessing {evaluator), and processing
results (destination element group).

{2) Rule analysis in diagnostic expert systems
Production rules are the general means of
representing knowledge in expert systems. The
knowledge engineer must possess knowledge
representation technigues having a production
rule form. We assumed that such techniques
appear in rule forms, and discovered the following
seven description forms in sets of production
rules: selection, classification, sort, comhination,
translation, input and output forms. The result of
combining these twoideasis generie operation,

7.3.2 SBtructure of expert models

As just explained, expert models consist of types
of operations and the relations between o tions.
These operation relations contain information on the
order of execution of operations. Next, as an example
of an operation, we consider a classification into
types (Fig. 7.4). In the figure, group animals-1 is the
source element group, while animals-2, animals-3
and animals-4 are destination element groups.
Suppose that the evaluator’s task is to divide the
elements into three groups according to size. In this
example, the elements are dog, cat, wolf, porpaise,
rat, whale, elephant, and the size of each animal is
its attribute,

Expert Modsl —— Operation Retation inksmmation (Fre-sost Retatiors)
Cparatins: Sowss Elament Gegups —— Alritute, Valusy
Evmiuation
Ctisation Element Gioups

Fig. 7.3 Expert model structure

Animalgy Evaluatar i Animals-2
tiog, cat, weall,
parpaise, rak. e
whala, alephan!
diide elements imo : Animaie
Hheree grevps
RCorcing o size
— Animals-4

Fig, 7.4 Example of an operation typs
{classification) '
Method of knowledge acquisition
{pre-post method)

7.5.3

The main strategy of the pre-post method
stimulated the expert to remember the associative
operations before and after (pre- and post-) & given
operation, It is relatively easy for the expert to state
what operations are necessary before and after a
given operation. For instance, when a car will not
run, if a human is asked “What should be done before
checking the engine?”, it is easy to answer “Check if
there's gasoline in the tank"” or “Check the battery”.
Further, in the pre-post method, the details of
operations are determined, and the operation
management structure (meta-seript) is configured.
The knowledge acquisition process by the pre-post
method proceeds as follows.

(1) Collection of operations serving as the starting-
point of knowledge ac?uisltiun Arbitrary
operations are extracted the expert. (An
example is the “engine check” just mentioned.}

(2) Extraction pre- and post- operations

Extraction of operations preceding and following

each of the above operations %in the above

example, “Check the gasoline” and “Check the
battery™).

(2) Checking of pre-post relations
Graphie illustration of the operations preceding
and following each operation, and checks for
differencesin these relations.

{4} Determination of operation types
Types are assigned to o erations; when
assignments cannot be made, operations are
further divided into smaller units. Operation
types are chosen from among seven types, such as
selection and sort.

(5) Operation merging operations in which the same
processing is performed are merged.

(8) Evaluator determination
By extracting the necessary information for
ggeratinn types, the details of the evaluator are
cided. en the type of operation is selection,
gelection criteria are extracted.)

(7) Determination of spurce element groups
The elements to be processed by the evaluator ave
determined. (When the type is selection, ohjects
for selection are extracted.)

(8) Determination of element attributes and values
The attributes and attribuie values for each
element, to be evaluated by the evaluator, are
determined.

(9) Grouping of operations into blocks
Operations which rely on identical reasoning
methods are combined.
{10) Determination of reasoning method
The operation reasoning metheod is
determined sequential or parallel, full-
solution or partial-solution search.

7.3.4 Refinement method by usinﬁ different

knowledge representation models

Human knowledpge consists of a variety of domain
knowledge. Accordingly, it is desirable that each
piece of knowledge should be acquired in a format
snited to its representation. However, 2 knowledge
base of a single knowledge representation must be
refined from many points of view. Besides the expest
model of the E ON/One, there is a k_nnwled?e
representation model which can hierarchically
represent the structural information of the system. It
seems useful to refine the expert model by comparing
this knowledge representation model to the expert

1, so we are presently studying this method,
7.3.5 Future reseach

We have introduced an expert model derived
from analysis of production rules in diagnostie expert
systems and the simplified expert task model, and
acquisition method (pre-post method) for this model.
We are developing the EPSILON/One by ESF on the
PSI. At present, it is equipped with a sequential
inference engine for the expert model. The expert
model iz a framework which can represent parallel
operation knowledge, so we will have to study the
possibility of alpfﬂ:,ring it to knowledge acgquisition
suited to parallel inference, Moreover, we will have
mafirelup parallel inference engines for the expert

el

8 EXPERIMENTAL EXPERT
SYSTEMS

8.1 Expert System for VL.SI Logic Cirenit Design

A mu?emﬁva expert system for logic eircuit
design, called wLDIxIEK. accepts input u% the VL3I
behavioral algorithm speci?icatinns, datapath
structure and constraints to support automatic
design of CMOS standard cells, Constraints on gate
count {(or more plreciael;r, basic cell count) and
constraints on delay time can also be input. As
indicated in Fig, 8.1.1, co-LODEX performs overall
design through cooperation between the agents
designing the finite-state machine and control
cirenit, and those imglemanting the datapath
suructures (registers and multipliers) in the CMOS
standard cell. Cooperative operation is handled by
requesting one agent to alter something when an
other agent prevents the constraints from being
satisfied. For example, if a datapath satizfying the
constraints cannot be implemented under the
controls generated by the control design agent, the
data path design agent request changes the control of
the control system design agent. In design work,
there are cases where redesign is unavoidable,
Especially in cooperative systems, where changes
may be requested from the outside, efficient redesign
is essential. In co-LODEX the problem is resclved
through assumption-based reasoning. '

(1) Alternatives occurring in design are regarded as
assumptions, and chanpge is mansged through
use/non-use of assumptions in redesign.

103

(2) Viclation of constraints is a contrediction, and
redesign cancels the contradiction.

{3) Constraints can also be ireated as assumptions,
considering that design may be repeated while
changing constraints.

{4) Redesign must be handled through operations on
the conjunction of delay time conditions
conditions related to basic cell count, an
assumptions expressing the cause of the viclation
of constraints.

B.2An Expert System for Automatic
Determination of Disassembly Sequence of
a Head Stock

This system aims at studying efficient inference
control mechanisms. To accomplish the aim,
problems in automatie generation of disassembly
sequence of machine tool head stocks are employed as
specific examples. An example of machine tool head
stocks is shown in Fig, 8.2.1. This example consists of
80 eomponents, which are represented by the
connective relations based on a fitting tolerances and
by three-dimensional data nsing generalized cylinder
expression, This system generates the dizaszembly
sequence with the connective relations and from {1)
knuw]ed%e to extract candidate components for
disassembly, (2) knowledge to select the component
to be disassembled from the list of candidates, (3)
knowledge to evaluate the disassembly cost and to
check the infer-component interference, and (4)
knowledge to wpdate connective relations, The
g;‘ucessiu sequence is given in Fig. 8.2.2, The
isassembly sequence is generated as follows. First,
extraction knowledge is applied to connective
relations, and components that can be disassembled
are listed. Next, selection knowledge is used to
determine the component in the list that is the
easiest to disassemble. Selection knowledge is given
a priority and ordered, based on ease of disassembl
derived from connective relations. Components wi
the same disassembly priority are evaluated by
disassembly cost and checked by inter-component
interference knowledge, When a component is
removed, connective relations are renewed by
knowledge to update connective relations. This
rocess is repeated until all components are
sagsembled. Even with evalnation knowledge, the
sequence will have alternatives because ease of
disassembly and cost are equivalent for multiple
components. The seguence will also be forced to
change inter-component interference. To solve
these problems, this system emploved the following
approach.
(1) Alternatives of disassembly seguence are
handled as multiple contexts,

(2) A hypothetical reasoning mechanizm is applied,
assuming that alternatives of disassembly
sequences are hypotheses, and the evidence for
disassembly sequences being inappropriate as
shown by the cost evaluation and inter-
component interference check is a contradiction.

This research is based on research
cooperation with the Mechanieal

erformed in
ngineering

104

Change request

Ii Control eirenit design agent

Change reqhest

(—Datapatﬁ design agent

— Design mechanism

¥

Refinement

'

Evaluation

Design knowledge base
about component

CMOS standard cell
library

i
-

Design knowledge base
about finite-state
machine

Design knowledge base

Fig. 8.1.1 System Structure

Laboratory, Agency of Industrial Science and
Technolegy, Ministry of International Trade and
Industry [Sekiguchi 83}, [Sekiguchi 87).

8.3 Delivery planning

The delivery planning support system supports
the assignment of trucis and drivers, s.ndp the
selection of routes. The delivery task iz that
packages from a distribution center are delivered on
multiple trucks to multiple destinations (retailers).
This system generates satisfactory plans. This
problem has some constraints, for example, they are
numbers of trucks and drivers as resources, required
wisiting time intervals for the destinations, and
trucks’ capacity. The primary target of this system is
a feasibility study for distributed cooperative

blem solving systems. First, delivery requests
Fr:cka) are divided into groups called areas,

ugh heuristics. This means dividing the problem
into subproblems. A delivery plan for each area can
be generated antonomously by the distributed
problem solver called the area agent, but each
generated plan is not complete. Fig. 8.3.1 shows a

simple example of area agents and delivery requests.
Resources for delivery (trucks and drivers) can be
shared between areas, so resources for an area need
to be allocated in cooperation with other areas, The
flexibility of the generated plans is also enhaneced by
giving a package to multiple areas and through
cooperation between the areas. System input consists
of route information, truck and driver information,
and delivery orders, System output is the delivery
plan for a single day. Fig. 8.3.2 shows a simple
delivery plan, Multiple candidates are evaluated b
the total cost. This system accepts user input wi
the guide in the event of loops or dead ends, It hasa
funetion to explain the plan generation process,

8.4 Troubleshoo Expert System for
Electm:ljcﬁggitnhljjng Systems

This system infers the probable cause from the
symptoms of an electronic switching system fault.
The diagnostic process is as given below.

Fig. 8. 2.1 Example of a mchine tool headstock

(1} Symptom data is analyzed, and the components
that could be causing the problem (suspects)
determined.

{2) The suspects are represented as a group of
funetional blocks.

(3) Effective tests are selected for each suspect and
executed. The number of suspects is reduced from
the results. This process is repeated.

(4) Finally, the remaining tisreplaced, and a
check made to see if the fault disappears.

Inferences in narrowing down suspected
components by test results are frequentl
indeterminate. inferences of thiz type, the fina
indicated suspect is in error through errors in
judgment. If the suspected component is replaced

the fanlt is still present, it indicates an error
(contradiction) in a juqumant made up to that point,
50 thatjudg,msutis delefed and a different conclusion
is reasoned (a different suspect is selected). A truth
maintenanece technigque such as an ATMS is
incorporated in order to realize this kind of
indeterminate inference. An ATMS can handle
multiple contexts simultaneously. In this case,
restrictions on the number of environments handled
simultaneously were imposed to prevent a drop in
processing efficiency. As an example of an imprecise
judgement, it can be assumed that the power supply
is normal is the power supply alarm is not active, but
if the power supply alarm indieator lamp is broken,
there will be no alarm even if the power supply is
abnormal. In this situation, the assumption that the
power supply is normal is made.
The rule may be expressed as:

105

Table 1. Comnective relations
Comnective relations Code | Level
Pressure Tit Pr L .
Push fit Pu
Serew fit Se
Taper fit Ta
Fit Spline Tit ip
Position Tit Fo
Movable Tit Mo
Gear coupl ng Ge
Ring fit ki
(Hey fit) ke
Clamp contact Cl ¥
Taper contact Ta
Contact | Plane contact Pl
External comtast Ex
Gear meshing Ge
(Gap plane) Ga
lpdata
+— Candidate extraction

| knowledge

Disasszenbly candidate

+ Zelection knowledge for
disasseably conponent
y + Evaluation X¥nowledge

i Disasseably component

Update knowledge for
connective relations

¥

l Dizaszembly sequence

Plg. 8.2.2 Processing procedure

if power supply lamp not on,

asm__alarm__ok % power supply alarm is normal
then power_ supply_ is_ normal (cause is other
than power supply)

In this rule asm__al ok is an assumption. If
the truth of this assumption becomes doubtful, a test
is executed, I no contradiction is generated, then the
test may be cmitted, which is an advantage in gystem
performance,

8.5 Computer Layout

This system aims at a feasibility study of parallel
flrﬂpessing in problem-solving, using the problem of
aying out geometrical shapes within a limited space
(that is, computer layout). ESP is used, and the pilot
system is implemented on the PSI. The basic
configuration of ESP objects is %i\r&n in Fig, 8.5.1,
and the following hierarchical problem-selving
approach is tried, takinfl Iiaralle.l processing into
consideration. The parallel problem-solving object

106

inwgled by user request reguires an upper-level
processing objeet. The upper-level processing object
divides piven equipment into groups, and the room
into zones so that the problem ean be reduced to
subproblems by allocating each group to an
appropriate zone. Through pseudo-parallel
Prﬂmsaing realized by the above problem division, a
ayout satisfying semantical constraint conditions
(that iz, equipment maintenance areas and pillars
may not overlap) is obtained. Pseudo-parallel
Emn&ssing and the reduction of possible answer sets
y semantical constraint conditions makes the
search for an answer more efficient. Constraint
conditions imposed between fiﬂrallﬂ] processes
consist of constraints to align the front of units of
equipment, and limitations on distances between
specified equipment pairs. These are relatively weak
constrainis, so parallel processing is extremely
efficient. However, if there are strong constraints
such as the requirement for the front of one gone to be
aligned with that of another zone, interference
between parallel processes often reduces parallel
processing efficiency. Future research is required on
the allocation of information acquisition rights to
minimize inter-process interference.

8.6 Intelligent secretary

The most common method of building a
knowledge base for expert systems is for a knowledge
engineer (KE) to interview a domain expert and
extract histher knowledge. In this method, however,
a new expert (the KE) is required, and there are not
enough KEs to spread expert systems. Much of the
knowledge of experts is available in printed
form, in various forms as dissertations and books, As
human beings acquire knowledge, they acquire vast
gquantities ofcﬁuowledge already arranged
systematically through books, and experts and KEs
can also form know, bases for expert systems
from such basic knowledge and experience. If it were
possible to convert the natural language found in
such documentation into a knowledge base suitable
for an expert system, it would be extremely easy to
develop expert systems. The goal of this research is to
establish methods for converting knowledge
expressed in natural language into knowledge bases
for expert systems, The fleld is limited to secretarial
worle, primarily scheduling, and we present a
knowledge acquisition method by using the text
Inowledge primitive (SEIP) to be problem solution
elicited from documentation. A knowledge
acguisition methoed nsing SKIP requires a funetion to
draw concrete actions from general concepts, and a
fonection to systematize text using multiple jargon
and expressions in a single form suitable for a
system, These are called the expression
systematization function and the struectural
Eysttmatizatiun function. We are studying and

eveloping a knnwladﬁa cormpiler which links these
functions. The overall structure of the knowledge
acguisition support tool prototype, includin g
intelligent scheduling system, isrgguwn in Fig, 8.6.1.
Current knowledge acquisition support tools process
documentation in SEIP format (which restricts
scheduling) inte a knowledge base for scheduling

systems, and then its knowledge base is used [or
intelligentscheduling.

8.7 Plant Control

This study aims to demonstrate the potential of a
logic pro ng language for application to the
plant control domain. A prototype plant contrel
system was constructed and applied to a steam power
p{:nt as an example of & control obhject. Knowledge
representation techmiquées were investigated for
describing the struectural and dynamic
characteristics of the plant in the control demain.
Basic functions needed for controlling the power
plant are:

(1) Monitoring the states of the plant;

(2) Selectin
amount

and/or determining the timing and
control action;

(3) Planning the sequence of control actions
responding to malfunctions detected or aiming to
improve the control performance;

(4) predicting the transition of the states of the plant
by simuiation.

Here, (3) and (4} were selected as the main subjects
of the prototype system. -

In the prototype system, the plant model is
described in the form of deep knowledge such as
ysical laws and the structure of the plant. Usin
ecp knowledge, the control system enables contro
actions to be generated even if an unexpected
situation oceurs where heuristic control knowledge
(shallow knowledge) does not exist. The behavior of
the plant responding to the specified control action is
predicted. This result is used for evaluating the
validity of the sequence of control actions generated.

We employ qualitative reasoning mechanizm to
realize deep reasoning. In qualitative reasoning, the
object plant is modeled gualitatively with the
variables and constraints contained in it expressed
gualitatively. The behavior of the plant is acquired
in the form of the frangition of gqualitative states.
Both of the gualitative reasoning systems based on
the methodologies of [Huipers 88) and [deKleer 84}
have been explored and compared. Due to the
ambiguity caused by qualitative values, a great
number of states are generatad which actually never
occur, Therefore, neither method can be applied
directly to plant control. To avoeid combinatorial
explusionsegruning the unsuitable candidates of the
states based on heuristics proved to be more effective
than intmduﬁimgbthe full order among the landmearks
of different variables.

In future study, the mechanism of generating
control actions using deep reasoning must be
examined in more detail. Parallel processing and
knowledge compilation of the reasoning resulis are
considered to be effective to improve the efficiency of
deep reasoning processing,

8.8 Portfolio planning support system

This system is designed to support portfolio
lanning, where a specific amount of capital is
ivided among multiple investrment options. The

user inputs the portfolio problem by speeifving profit

and safety targets, and the portfolio plan is
generated and refined by analysis from multiple
viewpoints to output the final portfolio plan, The
objective is the establishment of cooperation
technology which can reach a solution to the overall

roblem by exchanging planning information

Eetween individual aients in a multi-agent problem
resolution process. A knowledge base module of this
system stores the knowledge essential for problem
resolution h}{ a standard portfolio generation module
and a portfolio improvement module., For the
standard portfolio, agents are structured primarily
on investment options, and far portfolio
improvements primarily on evaluation viewpoints
for generated investment plans or aggressive
investment strategies. The knowledge module is
implemented on a parallel logic langua
the POOL (Parallel Object %n’ent&d Ee
cooperative problem solving) parallel object-oriented
langnage. e POOL program is a set of class
descriptions defining objects. Class definitions
consist of inheritance, slots and defanlt walues,
methods and local predicates. One-to-one and
hmadcastinﬁ communication functions are supported
ag message handling functions. Fig. 8.8.1 shows class
hmra:‘schmal structuring for the investement option
agents.

9 CONCLUSIONS

This paper reviewed the current state of research
and development on experimental knowledge
processing systems. The next steps forwards the final
staﬁe will consist of enhancements of functions and
technologies, through use and verification of
experimental expert systems for individual
component technologies. Parallel processing will be
introduced, and integration as a next-generation tool
will be promoted.

REFERENCES

[Araya 87] Ar%a, AA, and Mitisl, S., "Compilin
Design FPlans from DesmEtim3 of Artifacts an
Problem SBolving Heuristies", Proc. of IJCAT 1287,
pp.5562-568

[Buchberger 83] Buchberger, B., "Groebner Bases:
An Algorithmic Method in Polynomial Ideal
Theory", TR CAMP-LINTS (1383)

[Chandraselkaran 86] Chandrasekaran, B., "Generic
Tasks in Enowledge-Based REasoning: High Level
Building Blocks for Expert System Design", ITEEE
Expert, Vol. 1(1988), pp. 23-30

[Davis 80]Davis, H., "Report on the Workshop on
Distributed AI", SIGART Newsletter, No. 73,
October, 1980

[Decker 871Decker, Keith 3., "Distributed Problem-
Solving Teehnigues: A Survey”, IEEE Trans. on
System, Man, and Cybernetics, Vol.SMC-17, No. 5
Sep./Oct. 1287

anguage for °F seent

lavestmant

sption ageat

_
.

capfta
Bheak Eall Bond

sxchange agant agant ngant

=" 27N

CE apant Governmant Losal
[

Canpasf ta
capbtal

£ mgent

&

Fertfolla
agant

redun

Foralgn

Farslan

bond mgemt gavarnRant Favarnnant

bond agant bomd agent

EFGHC} iII. dtandard Converfibla Warrant Yen-dasssinated PForslger=cwrrascy
]

d-:n-nulutn-d
bond mpent

OB sgent Bard gpeveremant

ngant bond ageat

- Euperolass-Subelass

Fig. 881 Class Hierarchy for Investment

Option Agent

[deKleer 84] de Kleer and Brown, "A Qualitative
Phi;sits Based on Confluence”, Artificial Intelligence
Vol, 24 (1984), pp.7-83 .

[de Kleer 86a] de Kleer, J., "An Assumption-based
TMS", Artificial Intelligence 28 (1986), pp.127-162.
{de Kieer B6b] de Kleer, J., "Extending the ATMES",
Artificial Intelligence 28 (1986), i:p.lﬁﬂ:lﬁﬂ

[de Eleer 86¢c] de Eleer, J., "Problem Solving with the
ATMS", Artificial Intelligence 28 (1986), pp.197-224
[Doyle T9] Dayle, ., "A Truth Maintenance System”,
Artificial Intelligence 12 (1979), pp.231-272
[Durfee&Lesser 87)Durfee, Edmond H. and Lesser,
Victor B., "Using Partial Global Plans to Coordinate
Distributed Solvers", Proe. of LICAI 87, pp.B75-888
[Fehlinlg 83]Fehling, M., "Report on the Third
Annual Workshop on Distributed Artificial
Eut;l]ig&nc&", SIG&.%.T Newsletter, No, 84, April,

983
[Feldman 88] Feldman, R., "Design of a Depandency-
Directed Compiler for Constraint Propagation”, Proc.
of 1st International Conference on Industrial &
Engineering Application of Artificial Intellignece
and Expert Elstems, IEASATE "88, (1988)
[Forbus 84]Forbus, Kenneth D., "Qualitative
Prua:gﬂlsﬁs'rheur;r", Artificial Intelligence 24(1984),
Paciid-
Fl"ujiwa.ra & Inoue B8] Fujiwara, T. and Inoue, K., "A
Hypothetical Reasoning System in ESP -
-"{An ATMS implemented in ESP (Ver. 2)),
ICOT Technical Memorandum No. TM-587, ICOT,
1988(inJapanese) :
[Gasser 87]Gasser, Les, "The 1985 Workshop on
Distributed Artificial Intelligence”, Al Magazine,
Summer, 1987

108

[Liima & Inoue 88] Hjima, K. and Inoue, K., "An
A&‘MS implemented in ESP (Ver. 1) ICOT
Technical Memoarandum No. TM-467ICOT, 1988 (in
Japanese), .)
[Inoue 88a] Inoue, K., "Pruning Search Trees in
Assumption-based Reasoning”, Proc. Avignon '85:
The 8th International Workshop on Expert Systems
& their Applications (1988), P% 133-151

[Inoue 88b] Inoue, K., "On the Semantics of
Hypothetieal Reasoning and Truth Maintenance",
I(?EFI' Technical Report No. TR-357, ICOT, 1988.
[Inoue 88¢] Inoue, K., "Problem Snf\umg with
Hypothetical Reasoning”, FGCS '88: International
Conference on Fifth Generation Computer Systems
{1988), in theze Proceedings)

[Inoue, ed. 88] Inoue, K., {ed.), "Ex]llzfctatmns and
Images for H tical Reasoning”, KS5-WG HYR-
SWG Report for 1987, ICOT Technical Memorandurm
Mo, TM-487,ICOT, 1988 (in Jaﬁa.nese]l_

[Incue et al. 88] Inous, K., Nagai, Y., jii, Y.,
Imamura, 8, and Kojima, T., haﬁi;aia of the Design
Process of Machine Tools — Example of a ne
Unit for Lathes =", ICOT Technical Memorandum
Mo. TM-494, ICOT, 1988 (in Japanese)

[Kobayashi 88] Kobayashi, s., "Knowledge
Engineering”, Shalkado, 1988

[Konolige 85] Konolige, Kurt, "Research on
distributed artificial intelligence", Stanford
Besearch Institute, Al Center, 1985

[Kuipers 86] Euipers, B., "Qualitative Simulation”,
Arl:i.igci al Intelligence Vol. 29(1986), pp.289-338
[Kuipers 85] Kuipers, B., "Qualitative Simulation of
Mechanisms", MIT LOS TM-274, 1985

[Euipers 87] Kuipers, B., "Abstraction by Time-scale
in Qualitative Slm‘lli&ﬁﬂ]]", Proceedings of AAAT-
87(1987), pp.621-625

[Magai 8Ba)] Magai, Y., "Towards Desgin Plan
Generation for Routine Design using Knowledge
Compilation -Forcusing on Constarint
Representation and its Application Mechanism for
Mecahnical Design-", ICOT Techineal Memorandom,
TM-504, (1938)

[Nagai 88b] Nagai, ¥, "Towards an Expert System
Architecture for Reutine Design -Focusing on

Constraint Representation and an CJ:L"IP lication
Mechanism for Mechnical Design-", IC eehnical
Memoranduam, 1988

{Mii 8&] Nii, H.Penny , "Blackboard

Systems” Technical Report No. STAN-CE-86-1123,
June 1986 o .

[Ohldi 88] Ohlki, M., "Towards Qualitative Physics",
ICOT-TR-221, 1988, (to a%ﬁear]l .
[Ohsuga 85] Ohsuga, 8, "Conceptual Design of CAT
Systems Invelving Knowledge Bases", Knﬁwled%e
Engineering in Computer-Aided Design(Gero, J.3.
(ed.)), North-Holland, pp.29-50, 1985 :
[Dosaki et al. 88] Oosaki, H., Teubali, K. and Taldi,
H., "Enowledge Acquisition Support System
EPSILON/One (2)", Proceading of 8th SICE
Enowledge Engineering Symposium, 1988 (in

Japanese)
[Poole 88] Poole, D, YA Logical Framework for
Artificial Intelligence 36

Defanlt Heasoning”,
Beiter, R., "A Logic for Defaunlt

(1888), pp.27-47
[Reiter 80]
?g;.soning“, Artifieial Intelligence 13 (1880), pp.81-

[Sakane 88] Sakane, K., "Methods for Partition of
Target Systems in Qualitative Reasoning",
Proceedings of FGCS '88 (1988)
[Sakisguchl 83] Sekiguchi, H., Kojima, T. and Inoue,
K., "Study on Automatic Determination of Assembly
Se usfg?? ' Annalsof the CIRP, Vol. 32, No, 1 (1983),
pp.aTl-374
[Selkiguchi 87] Sekiguchi, K., Imamura, 3., Kojima,
T. and Inoue, K., "Method of Devel if&g art
Specifications from Assembly Drawing l::nl_i2 achine
Unit (2nd Report) -Automatic Determination of
Assembly/Disassembly Sequence-" Journal of the
JSPE, Aug. 1987, pp.1183-1188 (in Japanese)
[Shastri 85] Shastri, L., "Evidential Reasoning in
Semantic Network: A Formal Theory and its Parallel
Implimentation”, TR166, The University of
Rm%mater,ﬁe t. 1985
[Shostak T7] Shestak, R. E., "On the SUP-INF
Iethod for Proving Presburger Formulas"”, Journal
of ACM, 24 (1877), pp.529-5
[Smith 85]8mith, R.G., "Report on the 1984
Distributed Artificial Intelligence”, AT Magazine,
Fall, 1885, ‘
[Taki et al, 87] Taki, H., Tsubaki, K. and Iwashita,
Y., "EXPERT MODEL for Enowledge Acquisition",
UEEE Expert Systems in Government Conference,
1987
[Taki 88] Taki, H,., "Knowledge Acguisition by
Observation”, Proceedings of FGCS '88, 1988
[Tanaka 88] Tanaka, H., "Temporal-hierarchical
Qualitative Reasoning and its Application to
Medicine", Proceedings of Logic Programming
Conference 'EB;[pp.ll- 17(1988)
[Terasalki B8] Terasaki, 5. Nagai, ¥. Yokoyama, T.
Inoue, K. Horiuchi, E. and Taki, H., "Mechanieal
Design Exzpert System Constructing Tool,
MecanICOT", SIG-EBS, J3AI, Oct. 1988 (in
Japanese)
[Tomivama 86] Tomivama,T. and Yoshikawa,H.
"Requirements and Principles for Intelligent CAD
Systems" Knowledge Engineering in Computer-
Aided Desipni{Gero,J.8. {ed)), N -Holland, 1985
1-23
F nhaki et al, 88] Tsubaki, K., Oosaki, H.
Taki,H., "Knowledge Acquisition Support System
EPSILON/One (1)", Proceeding of 8th SICE
ﬁinowlad}ge Engineering Symposium, 1988 (in
apanese
[Yamazaki et al. 87] Yamazaki, T., Taki, H.,
Teubaki, K., "Classification Task Acquisition System
Based on Generic Tasks CTAS", Proceeding of 1lst
JEAT Enowledge Base Hesearch Meeting, 1987 {in

J‘T’panesal

[Yokoyama 88] Yokoyama, T., "FEEEDOM: A
Knnwladg:e Representation System for Design Ohbject
ModelingI (in J%pauesa) WGAL IPSJ, Preprints, 88-
680 1988, ICOT Techniecal Memorandum No. THM-467,
ICOT, 1988 (in Japanese)

and

