PROCEEDINGS OF THE INTERMATIOMAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT, © 1COT, 1988

PROBLEM-SOLVING AND INFERENCE SOFTWARE

Ryuzo HASEGAWA and Researchers of the First Research Laboratory

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

ABSTRACT

Problem-sclving and inference software is basic soft-
ware which mediates between kernel software (parallel
05) for parallel inference machines and application goft-
ware. [t provides a wide variety of support funclions to
construct application software.

The final goal of research on problem-solving and in-
ference software is to realize cooperative problem-solving
systems. With the main theme in the intermediate stage
being the establishment of basic technigues for cooper
ative problem-solving systems, we proceeded with re-
search and development of parallel logic programming
languages, parallel programming techniques, an intelli-
gent programming support environment, and advanced
inference mechanisms and learning mechanisms,

Through this research, we developed programming
technigues such as meta-programming and constraint
programming which give an effective frameworl for coop-
erative problem-solving systems and a program transfor-
mation technique for the construction of efficient parallel

PrOgrams.

This paper outlines the research and development of
problem-solving and inference software, focusing on the
work being done at ICOT:

1 INTRODUCTION

The final goal of the Fifth Generation Computer Sys-
tems (FGCS) project is to realize knowledge information
processing on parallel inference machines,

In order to construct various kinds of application soft-
ware for lknowledge information processing using the
functions provided by kernel software (parallel OS] for
parallel inference machines, such as inference control and
knowledge base management, we need basic software
which mediates between the keenel sofiware and appli-
cation software.

Problem-solving and inference software, as well as
knowledge base management soflware and natural lan.
guage interface sofiware, form the basic software. This
software gives a wide variety of support functions neces-
sary for the construction of application software. It also
plays the role of a knowledge information processing pro-
totype.

One basic framework required for the problem-solving
and inference software is a framework for cooperative
problem-solving where several agents with knowledge of
different areas cooperate to solve a problem by perform-
ing their inference independently.

The framework for cooperative problem-solving is the
most important bage when we construct parallel appli-
cation soffware. To establish the foundations of this
framework, we need to study a model and mechanism
for cooperztive problem-solving and its theory, Their in-
vestigation is a research theme in problem-solving and
inference software,

In order to realize this kind of framework for cooper-
ative problem-solving, research and development of the

following is required:

* A parallel computation model and parallel logic
programming language which should form the ba-
sis of cooperative problem-solving;

¢ Programming technigues and a programming sup-
port environment for the construction of efficient
programs using a parallel inference machine and
the low-level function of its parallel O5;

» Advanced inference mechanisms and learning
mechanisms such as induction and analogy neces-
sary for the achievement of high-level knowledge

information processing.

Taking these into consideration, we established the fol-
lowing three themes as the principal areas of research
into problem-solving inference software in the intermedi-

ate stage:

{1) Kernel language and basic software for cooperative
problem-solving

{2) Intelligent programming software

(3} Basic software for advanced inference and learning

The goal of the research on the kernel language and
basic software for cooperative problem-solving is to de-
sign and develop a parallel logic programming language
coordinated with problem-solving, then to establish sev-
eral parallel programming technigues using it.

Through the research and development of the first
version of the kernel language (KL1) [Chikayama et al.
1988], which is based on a parallel logic programming
language, GHC [Ueda 1986a, Ueda 1986h), we obtained
some practical knowledge of parallel inference control
and implementation. At the same time, we found that
some desirable functionality conld not be provided in the
frameworlc of KL1, that is, the meta-function, constraint
function and knowledge representation function.

Our final goal of the research on the kernel language is
to develop a simple universal language with these func-
tionalities. To achieve thiz goal, however, we have to
delve into each function. Thus, we decided to conduct
research on each of them independently for the time be-
ing, and then put them together after we have made
enough progress in each one of them.

At present, we are researching how to implement the
meta-function based on a reflection concept and are also
researching a constraint logic programming language,
CAL.

Another important area of research iz to develop a
program transformation technigie and a partial evalua-
tion technique, in order to implement user-level language
functions and application software efficiently on the KL1
base. Tn the intermediate stage, we first planned to deter-
mine the foundation of these techniques based on Frolog,
since the theoretical foundation, for example its program
semantics, has already been established. We obtained
satisfying results in this plan. We are now researching
program transformation and partial evalnation systems
based on GHC, and the semantics of GHC.

The research goal of intelligent programming software
is to construct an intelligent programming support en-
vironment which supports the whole process all the way
through, from development to maintenance of the fifth
generation compuler soflware,

Here, we aim to research software engineering based
on logic programming languages. The main subject of
software engineering is not coding but how to design
software efficiently around coding, maintenance, and im-
provement.

55

From this point of view, we started research on a proof
support system which supports mathematical proof as
the research core, together with research on a prototyp-
ing support system, a Prolog programming (vesification,
transformation, analysis, and modification) support sys-
tem, and a design wisuzlization system giving a picture
of the structure and the behavior of & program.

The main purpose of the research on the proof sup-
port system is to investigate the applicability of theorem
proving techniques to programming support by research-
ing support techniques necessary for mathematical proof.
Subjects in this research are studies on a term rewrit-
ing system generator which supports inferencs, especially
concerning equalities, and a proof compiler which gener-
ates programs from given proofs.

The research goal of the basic software for advanced in-
ference and learning is to realize advanced inference fune-
tions used in the same way as human problem-solving
and fo apoly them to the development of application
software for knowledge information processing.

Logical deductive inference is not enough to previde
computers with commonsense judgment and to make
them acquire knowledge and learn in the same way as hu-
mans. We therefore need to realize inductive inference or
advanced inference such as analogy. There are also many
areas of human knowledge information processing which
logic cannot handle. We need another approach from
cognitive science which is different from logic. There-
fore, we approached this theme from the angles of both

logic and cognitive science.

In arder to handle advanced inference in the frame-
waork of logic, we need mathematically clear formaliza-
tion. From this point of wiew, in the approach from
logic, we first tried to formalize commonsense inference
using non-monotonic inference, and studied a framework
tio handle induction and analogy uniformly. Based on it,
we are now researching the acquisition and revision of
commonsense knowledge, We also researching how to
make an automated genevator which derives Prolag pro-
grama from examples by using a predicate generator and
how to make the grammar inference algorithm efficient.

In the approach from cognitive science, we think that
there are two parts of human knowledge information pro-
cessing; conscious and unconscious, We are studying a
copnitive model which makes inference and learning effi-
cient based on this characterization.

The following sections describe these three Lthemes of
problem-solving and inference software in more detail,
focusing on the research and development in ICOT in
the intermediate stage.

56

2 KERNEL LANGUAGE AND BASIC
SOFTWARE FOR COOPERATIVE
PROBLEM-SOLVING

Research and development of the kernel language and
basic software for cooperative problem-solving software
is being conducted based on a parallel logic programming
lenguage, GHC, There are three goals:

(1) To investigate the provision of language functional-
ity such as the meta-function and constraint fune-
tion necessary for the construction of a high-level
problem-solving system, and to clarify how fo re-
alize them, then applying these results to research
the expansion of the language function of KLL in
the final stage.

(2) To establish parallel programming paradigms and
perallel programming techniques, through the ex-
perimental description in GHC of typical algo-
rithms used m various application domains,

(3] To establish program transformation techniques for
constructing efficient programs and to give a formal

semmantics of GHC.

This section ocutlines research on reflection in GHC,
layered-stream programming, partial evaluation, pro-
gram fransformation, formal semantics of GHC, and on
a copstraint].uEir,' pmgra.rru'ning lallguag:: I:'DAL}I.

2.1 Parallel Logic Language and Reflection

Assume that we are describing an operating system
for parallel computers, that is, a paralle]l programming
system, in GHC. Such a programming system needs to
input user goals, execute them as GHC processes and
output the execution results. It also needs to handle
mete-level coneepts, such as suceess or failure of goal
execution.

However, the current GHC does not distinguish meta-
level phenomena clearly from object-level ones. This
maltes it diffienlt to describe an operating system con-
cisely. Therefore, it is important te consider how to
handle meta-level concepts which cannot fit into the cur-
rent language framework of GHC. If we implement these
concepts as system-defined predicates or realize them as
side effects, the language may become inconsistent and
the code size of the implementation may increase enor-
mously. Therefore, we have started to study reflection
as a way of handling the meta-level notion consistently.

Reflection can be considered as a function to sense
the system itself and modify it dynamically. If & system
or a programming language has this reflective ability, it

is possible to describe a pu*-;.rer[ul operating system or
problem-solving system which can flexibly perform tasks
correspanding to the remaining resources and the current
load.

An example of a reflective computation system is
shown in Figure 1. Normally, a computation system
consists of & program, data, and an execotor. A compu-
tation system comipuies something in & certain problem
domain, whereas a meta-computation system takes “an-
other computation system” as its problem domain. A re-
flective system can he considered as 2 meta-computation
system which takes itself as its problem domain and is
causally connected to its data.

The concept of reflection has been proposed in
POL [Weyhrauch 1980] and 3-Lisp [Smith 1984]. In 3-
Lisp, a reflective system has been realized by providing
a reflective mechanism io obfain the current continu-
ation and environment. Smith has also described the
meta-circular interpreter of 3-Lisp.

The study of reflection at ICOT examines various re-
flective operations in GHC and, at the same time, tries to
propose the new language specifications of GHC based on
those arguments [Tanaka 1988). Since we have obtained
hints from Smith's approach, the basic mechanism of im-
plementing reflection is principally the same.

Simee GHC has parallelism, and meta-level phenomena
are always invoked during goal execution, the implemen-
tation method becomes more complicated. Like 3-Lisp,
using reflective operations to describe the GHO meta-
interpreter induces the problem of a reflective fower.
However, we are concentrating more on the realization of
reflective operations rather than considering the problem
of a reflective tower. The current status of our research
is surmmarized below:

(1) Stepwise enhancement of the GHC meta-
interpreter
The simplest GHC meta-interpreter can be de-
scribed as a four-line program, similar to the four-
line interpreter of Prolog, Howewver, this four-
line program only simulates the top-level execution
of programs and cannot obtain much information
from the interpreter. Therefore, we have enhanced
this four-line program stepwise, and confirmed that
various enhanced meta-inferpreters, such as fail-
safe, interruptible, scheduling and controlled meta-
interpreters, are obtained from this interpreter.

» A failsafe meta-interpreter prevenls the system
from failing, even if a goal fails during execution;

* An interrupbible meta-interpreter can suspend,
resume or abort the execution of the given goal;

+ A scheduling meta-interpreter enqueues the re-
duced goals and processes these goal sequentially

| Executor

Program

37

Inference/Computation

| Data ;

| | Representation

L — —_ = =t == =]

Causally connected representation

= am Em s e e

Figure 1: Reflective system

using a scheduling queus;
+ A controlled metz-interpreter controls the total

reduction time of a given goal using a reduction
count,

(2] Deseription of a variable management meta-
interpreter
To increase the expressive power of meta-
interpreters further, we have developed a varizble
management interpreler which has the facility to
manage its own local variables, In (1), we have
assumed a continuation or reduction count as re-
sources which can be controlled. Variable bindings
have been added to this interpreter as resources
which can be controlled by the user. We confirmed
that this interpreter can run at a practical speed
by running several sample programs.

{3) Application of reflection in GHC

We have examined the distributed computation
system of GHC as an application of reflection. We

- assumed a system where several GHC machines are
connected lo each other via netwerk managers. We
are not interested in simulating the physical strue-
tures of distributed computers. Instead, our objec-
tive is to provide an abstract model of computa-
tion. We have examined the description methed of
a distributed computation system from the view-
points of nelwork. managers, GHC machines and
meta-interpreters. We showed that various reflec-
tive operations, such as dynamic reduction count
contrel and load balancing, are performed on this
distributed computation system.

However, the approach we have adopted so far is still
very primitive. We can freely access meta-level informa-

tion or resources which we would like to control. Since
this seems to be very dangerous, we are currently wark-
ing on the language design of Reflective GHC (RGHC)
which allows more sophisticated handling of reflections.

We still have many problems as to where to position
reflection in logic and how establish it in logic program-
ming. We are planning to work on those problems and
consider the semantics of reflective operations,

2.2 Constraint Logic Programming Language
CAL

Constraint programming is one of the most important
programming paradigms and gives a promising frame-
work for cooperative problem solving as well as for the
concept of reflection we discussed in the previous section.
The most cutstanding feature of constraint programm-
ing is that it allows the declarative description of prob-
lerns, That is, a problem is solved by indicating & goal
without reference to the method by which it should be
established,

ICOT has been researching and developing a con-
straint logic programming language, CAL, a5 an ele
ment of basic software research, This subsection cutlines
the research and development of consfraint programming
languages, focusing on CAL.

Constraint logic programming languages, proposed
by Colmerauver [Colmerauver 1987], and Jaffar and
Lasses [Jaffar and Lassez 1987], incorporate the prob-
lem solving paradigm of constraint programming into the

logic programming paradigm.

58

|: User | T Preprocessor
/ rOgram
Query/]
1 Comimand
Internal code

Solution

{ESP program)

Inference engine

Canonical form

Constraints

Constraint solver

Figure 2: Organization of the CAL system

CAL aims at increasing the descriptive power of logic
programming languages by replacing wnification with
a more powerful computation mechanism: constraints
solving. Problems are described in the form of con-
straints, that is, relations on objects, nol enly of the Her-
brand universe but also of other fields, and are solved by
a bunlt-in mechanism. For example, if a system of equa-
tions on real numbers occurs in a program, it is solved
automatically.

CAL iz a constraint logic programming language which
allows users to write several types of constraints. The
first protolype was implemented in 1987 on DEC2060,
and, now, three systems are available on PSI, the Per-
sonal Sequential Inference machine: *Algebraic CAL"
which handles linear and non-linear algebraic equations,
“Boolean CAL”™ which handles Boolean equations, and
“Typed CAL" that handles several types of constraints,
including algebraic and Boolean equations, at the same
time.

In Algebraic CAL, the Buchberger algorithm for com-
puting Grobner bases of polynomials, which has besn
used in recent years in eomputer algebra and geometry
theorem proving, is utilized as the eonstraint solving al-
gorithm, CAL iz the first language to adopt the Buch-
berger algorithm as its constraint solver. This enables
the system to handle non-linear equations and wield its
power over a lot of algebraic problems, such as the pro-
gramming for geometry thesrem provers or the compu-
tetion of conditional extrema by the Lagrange multiplier
method.

In Boolean CAL, we use the Gribner-base approach
again. Boolean Grdbner bases can be computed by
slightly modifying the Buchberger algorithm.

In Typed CAL, users can use constraints on several
types of objects simultaneously. Typing is introduced to
indicate the type of constraint. In the execution of a
program, a suitable solver is selected automatically ae
cording to the type of cach constraint.

Each of the PSl's CAL described above consists of a
“preprocessor”, an “inference engine,” and a “constraint
solver™ as shown in Figure 2. The preprocessor trans-
forms CAL programs and CAL goals (queries) to ESP
programs and ESP goals. The inference engine executes
ESP programs obtained by the transformation. When
a constramt iz detected during execution, the constrainf
solver is invoked to sclve it. More precisely, the con-
stramnt solver collects constraints passed by the inference
engine and computes the canonical form of the set of
constrainta.

For the final stage of the FGOS project, the geometry
theorem prover has been selected as a typical application
of constraint logic programming. A' constraint solver
that handles equations and inequations over real num-
bers will be investigated through this application. The
hierarchical use of constraint solvers will also be investi-
gated concurrently. A preliminary study has begun on
research on parallel constraint logic programming. We
intend to design a parallel constraint logic programming
language with a powerful constraint solver, which will be
called PCAL, based on the result of these studies.

2.3 Parallel
Streams

Programming with Layered

We have been studying how to write search programs
n committed-choice languages (CCLs). Prolog, & se-
quential logic programming language, embodies unifica-
tion and. backtracking as its basic mechanisms, and is
suitable for search problems.

Sinee CCLs do not have a backtracking mechanism, it
15 not easy to wrnte search programs in CCLs. Solutions
may be obtained by replacing some part of other sclu-
tions through backtracking. In a CCL, a process should
be forked for every candidate instead of backtracking,
However, structure copying is necessary for each paral-
lel environment, which is not efficient. We have therefore
proposed a data structure, called a layered stream, and &
programming style based on them, called layered stream
programming, [or parallel processing of search problems
in CCLs [Okumura and Matsumoto 1987).

The basic idea behind layered streams is to improve
communication between processes by sharing some of the
data structures and to achieve high parallelism. It is a
generalization of the idea which is employed in the PAX
parsing system [Matsumoto 1987]. In other words, FPAX
is a derivative variant of the method,

We have studied & way of programming search prob-
lems directly in a CCL. However, there is another way
of obtaining search programs by a transformation from
some specification of problems. An appropriate descrip-
tion language for search problems would help us to obtain
such programs. We have analyzed the property of search
problems and aim to devise a compiler which generates
efficient codes as directly programmed.

2.4 Partial Evaluation System

The purpeose of a partial evaluation system is to derive
a more efficient special purpose program from a given
general purpose program and its partial input, by par-
tially performing eomputation on as many parts as pos-

sible using the partial input.

One of the most important applications of partial eval-
uation is its use in compilation, which is well known
as the theory of Futamura's projection [Futamura 1971].
There has been a great deal of research on partial evalu-
ation for this application within conventional imperative
and functional langusges. In particular, within Lisp, re-
sults have been obtained in compiling, compiler genera-
tion, and compiler-compiler generation by partial evalu-
ation [Jones et al. 1985].

In logic languages such as Prolog, however, par-
tial evaluation has recently atiracted many researchers

59

by its use in optimizing meta-programming [Levi 1986,
Salra and Shapire 1986, Takeuchi and Furnkawa IQEE]
BResulte have been reported concerning only compil-
ing meta-programs. Howewver, compiler generation and
compiler-compiler generation remained as open prob-
lems.

The main problems to be solved for partial evaluation
system are:
+ Automation of the partial evaluation process;

+ Making partial
self-applicable.

evaluation Programs

By automating the partizl evaluation system, we aim
at making the partial evaluation process performable
with less human assistance. By making the partial evalu-
ation algerithm seli-zpplicable, we aim at realizing com-
piler gemeration and compiler-compiler generation.

Although the implemented system has nol yel suc-
ceeded in solving the mutomation problem, it has suc-
ceeded in making it self-applicable. Using the sys-
tem, we have achieved results in compilation, com-
piler generation, and compiler-compiler generation. We
have also succeeded in using it for incremental compila-
tion [Fujite and Furukawa 1988].

The keys to this success are:

» Basy and suflicient use of the given partial input;
« Compactness of the partial evaluation program.

In Prolog, unification makes it very easy to utilize
partial information. Mere concretely, due te the bi-
directional nature of unification, information retained
in variable bindings can be propagated both top-dewn
and bottom-up. Secondly, it 13 easy to write meta-
interpreters for Prolog concisely (only three lines in its
simplest form). Since a partial evaluation program itself
is a kind of meta-interpreter, this compactness is a great
advantage in realizing self-applicability.

We shall conduet further ressarch for the following
purposes:
* Automating the above systemy;
o Enhancing the partial evaluation ability;
» Constructing a partial evaluation system for par-
allel lagie languages.

In crder to automate partial evaluation process, the
most important prablem to be selved is how to detect ter-

mination conditions for recursive user predicates. Since

60

the problem is undecidable in general, we more or less
need an indication from programmers.

However, for a limited class of programs, it may be
possible to derive determinalion condifions by perform-
g Rnph?ﬁticated PIOgram a.na.lyaes_ MurawErT using
mode and fype information obtained by the program
analyses, partial evaluation process may be made more
effective, For these analyses, the abstract interpretation
technique will provide a useful method.

As for improvement of the partial evaluation ability,
Fotamura has recently introduced the notion of gen-
eralized partial computation within a funciional lan-
guage [Futamura 1988]. Generalized partial computa-
tion extends the task of partial computation from mere
propagation of constants and evaluation of constant ex-
pressions bo propagation and stepwise reduction of con-
straints. This ider can be reformulated in logic pro-
gramming languages. We have already obtained some
results by implementing this idea.

Finally, in research on partial evaluation in parallel
logic languages, we are confronted with the rather seri-
ous theoretical problem that there is no established se-
mantics for parallel logic languages or program transfor-
mation rules that are proven to be correct.

However, we have defined a set of transformiation rules
called the UR-set which is rather restricted but sound
in the sense that the rules never introduce a dead-
lock condition [Furukawsa et al. 1983]. We have imple-
mented a partial evaluation system based on the UR-
set [Fujita et al. 1988]). PFurther research on semantics
and transformation rules is in progress [Ueda 1988]. We
expect that this research will conteibute to 2 more prac-
tical partial evaluation system.

2.5 Transformation and Formal Semantics of
GHC Programs

We have developed a program transformation scheme
to improve the efficiency of GHC programs, and also
investigated the semantics of GHC programs from the
model theoretical point of view, giving an extension
of the approach taken by [Apt and van Emden 1882,
Lloyd 1984]. The following briefly describes this re-
search.

2.5.1 Transformation of GHC Programs

Unfolding is a basic operation for partial evaluation
and program transformatien. The unfolding of Prolog
programs is stralghtforward, and has no problem. How-
ever, it is not the case when synchronization among goals

is considered. Thoughtless unfolding can cause a dead-
fock.

We have proposed a set of unfolding rules which does
oot iniroduce such a deadlock. The basic idea is to pro-
hibit the unfolding of a clause with unification geals in
its body if the unfolding changes the guard condition.
There are four rules including auxiliary rules. The aet of
rules is called the UR-set.

The fiest rule of the UR-zset is “Unification Execu-
tion/Elimination”. The effect of a unification goal in the
body or the guard of a clause is applied to some vari-
ables in the body. Thus, the variables may be further
instantiated.

The second is “Unfolding at an Immediately Exe-
cutable Goal®. A clavae is unfolded at a body goal if
the sef of candidate clauses to which the goal can com-
mit is fixed statically.

The third is an auxiliary “Predicate Introduction and
Falding". A new predicate is defined by introducing 2
clause whose body consists of the non-unification goals of
the clanse which we want to unfold. The origidal clause
is folded by the new clanse. This rule is for enabling
application of the last rule,

The last rule iz “Unfolding across Guard®. A clause is
replaced by 2 set of clavses if it has no unification goal.
Each clause is made by unfolding the original clausa at
some body goal using some program clavse.

The UR-set seems to be powerful enough for various
applications. Reeently, it was restated more formally and
the folding rule was generalized [Ueda 1988]. To evalu-
ate its effectiveness, we need to perform further experi-
ments such as process fusion [Furnkawa and Ueda 1985),
the leveling of the meta-interpreter and its object pro-
gram, and program synthesis from a naive definition.

To build an automatic partial evaluation system, we
must find a valid control strategy to apply the UR-
set. We are interested in implementing such a system
in GHC. We believe it will take the form of cooperation
of several uniclding processes.

2.5.2 Formal Semantics of GHC Programs

In languages such as GHC, the nofion of processes
which execute infinite computations controlled by guard-
commit mechanisms communicating with other processes
using input /output streams can be represented naturally.

In pure Horn logic programming languages, the re-
sult for declarative semantics based on the least fin-
point has been reported in [Apt and van Emden 1982,

Lloyd 1984].

In this approach, the denotation of a program is given
az the minimum model of the set of Horn clauses, in
other words, the set of unit clauses which is equivalent
to the program. The set of unit clauses is characterized
as the least fixpoint of the function obtained from the set
of definite clauses. In this approach, we can characterize
the set of solutions as the legical consequences of the
program independently from the execution mechanism.
This approach is one of the best ways of appreciating the
clarity of logic programs,

We have investigated an extension of this approach
to GHO programs, and presented a declarative seman-
ties of a parallel programming language based on Horn
logic such as Flat GHC [Murakami 1988]. The domain of
input /output {1/0) histories has been introduced. Intu-
itively, an IO history denotes an example of a computa-
tien path of a program which is generated when the pro-
gram is execnted without any failure or deadlock. The
denotation of a program is defined as a set of I/O his-
tories. The notion of truth is redefined for goal clavses
and sets of guarded clauses. The semantics of 2 program
ie defined as the maximum model of the program.

We have also shown that the semantics is characterized
as the greatest fixpoint of the function obtained from the
program. Using the semantics, the solutions of programs
which contain perpetual processes controlled by guard
commit mechanisms can be characterized as the logical
consequence of the programs.

The properties of programs which comtain perpetual
computation controlled by guard-commit mechanisms
can be discussed using the semantics.

3 INTELLIGENT PROGRAMMING
SOFTWARE

Research on intelligent programming software aims at
high-level facilities from the software engineering peint
of wiew, which enables us to automate basic functions
needed in each process of software development and
maintenance, and to support all the processes in a uni-
form framewark,

In the intermediate stage of the FGOS project, we have
been researching basic technology, focusing on mathe-
matical techniques such as the application of automated
theorem proving, constructive mathematics, and ferm
rewriting. An outline of this research is given below,

61

3.1 Computer-Aided Proof System CAP

. Research and development of the computer-aided
proof system (CAP) aime at technelogical elements sach
as program transformation, verification, and synthesis
based on methods of automated mathematical reason-
ing and, thus, construction of a programming support
syslem.

CAP will finally evolve to a cooperative problem solv-
ing system equipped with general mathematical reason-
ing facilities, for example, wide and desp mathematical
knowledge, various utilities such as a proof editor, two-
dimensional input/output, and symbolic computation.

Figure 3 shows the configuration of the CAP. It con-
sists of a proof editor, proof checker, and proof compiler.
For these components, we have been investigaling the
following facilities in the intermediate stage:

» A general-purpose structure editor based on user-
defined grammar with various intelligeat proof
_editing functions;

» An intelligent proof checker enabling users to write
proofs easily;

A proof compiler to construct programs. from
proofs with optimization functions, and an inter-
preter which executes constructed programs.

This subsection describes the status of each compo-
nent,

3.1.1 Proof Editor

The proof editor is an intelligent editor to support de-

seription of proofs based on mathematical knowledge.

It needs a user-friendly interface. We have developed a
strueture editor (SEMACS) with general-purpose func-
tions which ean be used by not only the CAP but also
other intelligent modules such as the knowledge base sys-
tem {Kappa), computer algebra system, and programm-
ing system,

SEMACS has the following features:

Smooth interface with the text editor;

General-purpose editor independent of grammar in
the sense that it allows users to define grammar;

Easy extension and customization;

e Guidance functions for users unfamiliar with for-
mal grammar;

62

Proof

checker

Fguation

Equality

checker

Checked proal

FProof text
Proof
Proof tree
Uzer - .
— .
Checking editor
resnlt
TIEGESiS Execution |Extracted
program
User
engine
Execution ne
result

Proof

compiler

Figure 3: Configuration of the CAP system

¢ Natural definition and editing of list structure;
» Facility of holophrasting;

Pretiy print function which can be defined by the
uger;

Editing a text containing non-terminal symbols.

Using this general-purpose structure editor, we have
developed a frent end for the CAP. It shows where the
proof checker is currently checling in a proof text. In ad-
dition to the facility, we are now developing proof editing
functions supporting interactive proof writing and check-
ing.

3.1.2 Proof Checker

The proof checker is & kernel component of the CAP.
We planned to develop a checker which can check a proof
in a natural form enabling the user to write a proof eas-
ilv. A prototype system, CAP-LA [Sakai 1988], has been
designed and implemented according to this pelicy.

The current system is tuned to linear algebra for first-
yvear university students. It checks prools written faicly
freely by users who do not know the mechanism of the
proof checker, although such proofs sometimes need fo
be rewritten to some extent. These two features of QAP-
LA — the limited target field and functions required for
checking freely written proofs — accord with research

and development policies. The policies are intended to
develop & practical system rather than promote pure re-
search. Other research and development policies on the
system are to confirm the latest technologies such as term
rewriting, automated theorem proving, logic programm-
ing, and infelligent editing, incorporating them the sys-
tem.

CAP-LA checks proofs constructing the proof tres,
which iz based on the inference rules of natural deduc-
tion (NK), from the proofs written by the user. Gen-
erelly spealking, proofs which are easily understood by
the user have a lot of logical gaps. Therefore, a facility
to complement them is necessary. We call this facility
a proof finding facility. For first order logie, we use the
Prolog theorem proving technigues, For the equations,
we use the term rewriting technigues. CAP-LA has the
following features:

» Separation of mathematical knowledge from the
checking mechanism, providing a facility to add a
checking mechanism and strategy easily;

* Environment for medifying grammar and for
adding and modifying knowledge for checking;

» Ability to complete proofs theough interaction with
the user;

Inference mechanism for equations using term
rewriting techniques (described later);

o Automatic Lype checking to free the user from con-
cern over bypes.

3.1.3 Proof Compiler

The proof compiler is the system which translates
proofs werified by the proof checker system info pro-
grams [Takayama 1987). Thiz is based on the idea
that a special kind of proof, called a construetive
proof [Beeson 1985, Bishop 1967), can be seen as the de-
scription of algerithms and their verification information.

The system uses the notion of realizability interpre-
tation [Kleene 1945, Beeson 1985, McCarty 1984], and
generates executable codes from the constructive proofs
of theorems. [t is necessary to implement a variety of
constructive logic on the proof assistant system to real-
ize the facility. The QPC [Tekayeme 1988a), which is
a sugared subset of QJ [Sato 1985, Sato 1986), is used
as the constructive logic. QPC is the logic in which
the specification, algorithms, and justification of alge-
rithms on natural numbers and natural number lists can
be described uniformly, and it is simple encugh to make
the research on the proof finding facilities and the ex-
traction of efficient codes easier than other varietics of
constructive logic. Tiny Quty is used as the target lan-
gnage of the proof compiler. The language is a subset
of Quty [Sato 1987] which is also the target language of
QI

The theoretical issues of proof compilation have been
investigated, and the core part of the system has been im-
plemented, A feasibility study has been also performed
through the extraction of simple programs by the proto-
type system such as a ged program for natural numbers.
The following are the main research issues:

+ Proof compilation algorithm based on the nofion
of realizability;

» Optimization of the extracted code;

¢ Operational semantics of Tiny Quty, that is, devel-
opment of the interpreter of the language.

The first is almost completed. In the second issue,
the first preblem is the elimination of redundant codes.
The verification information of algorithms, which 15 the
redundant code, is extracted by the str&ight{urward ap-
plication of realizability. It causes a heavy runtime over-
head, particularly on the code extracted from proofs
in inductien, which is generally in the form of multi-
valued recursive call programs. The extended projection
method (EPM), is a technigque developed to eliminate
the redundant code [Takayama 1988b]. The idea of the
EFPM is to analyze and eliminate the redundancy at cach

63

step of the proof which makes the procedure easier and
more effective than the traditional svntactic optimiza-
tion technique. For higher level optimization of algo-
rithms, proof normalization, which is a well-known no-
tion in the field of proof theory [Prawite 1965), proved to
be effective to some extent. In the last issue, the inter-
preter was implemented experimentally [Takayama 1887,
Talayama 1988a, Talayama 1988b)].

The next stage of research will deal with a more
general-purpose proof assistant environment. The fol-
lowing themes have been set for this goal:

¢ Development of an interaciive proof assistant envi-
roament, and the improvement of the proof editor;

o Introducing higher order features to the proof de-
scription language to describe a larger area of
mathematics than linear algebra, and enhancing
the proof checking facilities;

s Development of the mathematice knowledge base
for the improvement of proof assistant facilities.

The main research themes in the final stage of the
FGOS project will be as follows: -the first is the improve-
ment of the proof assistant system to make it practi-
cal. This research which will be along the same lines as
current research. Another research theme is to develop
an advanced parallel programming environment by using
techniques developed for the proof assistant system.

3.2 Term Rewriting System Metis

Metis |[Ohsuga and Sakai 1986] supports specific math-
ematical reasoning, that is, inference associated with the
equal sign (=). Such inference is, in general, intricate
and complicated, thus involing an urgent necd for ma-
chine support. Metis provides én experimental environ-
ment for studying practical technigues of equational rea-
soning. The policy of developing Metis enables imple-
mentation, testing, and evaluation of the latest tech-
niques for inference as rapidly and freely as possible
Therefore, we decided to develop a system separate from
CAFP and intended to incorporate only practical tech-
niques established on Metiz in CAP whenever necessary.

We adopted the term rewrting system (TRS) as a
basic technique to handle equations. The TRS iz & set
of oriented equations, called rewrite roles, and rewrites a
term replacing the lefi-hand side by the right-hand side
of a rewrite rule. There are main two reasons for our
selection of TRS: (1) it is easy to handle by machine and
can be efficient, and (2} there are quite a few studies
of TRSe from the theoretical point of view, especially
studies of terrmination and confluence property, which is
important for the computation mechanism.

(i

~ The kernel function of Metia is the Knuth-Bendiz
(KB) completion procedure [Knuth and Bendix 1970].
Roughly speaking, the KB procedure consists of two pro-
cesses: (1) the orientation process of equations to assure
the termination of rewriting using the semantic ordering
or syntactical ordering method, and (2) the superposi-
tiom process to male TRS confluent generating critical
pairs (CPs) as new equations which represent ambiguity
between rewrite rules. By iterating these two processes,
a complete (terminating and confluent) TRS can be ob-
tained.

However, two major problems are encountered dur-
ing the KB process. One is the emergence of unori-
entable CPs in the superposition process. The ofher iz
the generation of infinitely many CPs. In neither case
can we obtain a complete TRS. We solved the first prob-
lem by converting unorientable equations to orientation-
fres rewrite rules which can be applied either left to
right or right to left. This extended procedure, that is,
the KB procedure with orientation-free rewrite rules, is
called wnfailling KB. To solve the second problem, we
adopted an extension of the KB procedure, called the 5-
strategy [Hsiang and Rusinowitch 1987). The S-strategy
determines whether a given equation i= a theorem of the
equational theory insiead of obiaining a complete TRS
and is complete in the sense of refutational theorem prov-

ing.

Research and development of Metis on how equational
inference can become more efficient without loss of com-
pleteness is a long-range project. We are considering
this from several points of view: implementation tech-
niques [Ohsuga and Sakai 1988, theoretical view point,
and user interface. We are planning to associate Metis
with a knowledge base such as Kappa io handle the enor-
mous number of rewrite rules which may be required in
the future.

4 BASIC SOFTWARE FOR ADVANCED
INFERENCE AND LEARNING

The aims of the study on the basic software for ad-
vanced inference and learning are to provide an advanced
inference mechanism such as commonsense reasoning,
which cannot be achieved by ordinary deductive infer-
ence, and knowledge acquisition and learning mecha.
nisms which are essential for building large knowledge
information systems. In the intermediate stage, we have
been conducting basic research to achieve the above goal
and have taken two approaches: logical and cogaitive.

In the logical approach, we have been investigating
three themes: (1) general formalization of commonsense
reasoning, (2) 2 method for the revision and acquisition
of commonsense knowledge, and (3) inductive inference
based on the model theory.,

In (1), we have developed a unified framework for ad-
vanced inference methods such as induction and analogy.
In (2}, we have been doing research focused on defaunlt
reasoning, which is a subeclass of commonsense reason-
ing, on formalized revision, and on acquisition of com-
monsenge knowledge. In (3), we have investigated the
problem of how to generate new predicates,

In the cognitive approach, we have eonstructed a cog-
nitive medel of conscious/unconscious processing, and
simulated the model in 2 parallel logic programming lan-
guage. The model consists of two closely interactive
parts: symbol processing and pattern processing. One
of the parallel symbol processes is executed consciously
(constious processing), and all the other processes are
executed automatically [unconscious processing). The
following subsections briefly describe these studies.

4.1 General Formalization of Commonsense
Reasoning

We believe that human commonsense reasoning is sup-
ported by advanced inference mechaniems such as in-
duction, analogy, and default reasoning. We have been
studying formalization of commensense reasoning for.
mathematical discussion and have developed a unified
framework for various advanced inferences.

The unified framework is possible by regarding ad-
vanced inference as nonmonotonic reasoning. One of the
formalizations of the advanced inference is circumscrip-
tion by J. MeCarthy [McCarthy 1980, McCarthy 1986].
Circumseription formalizes the notion of closed world as-
sumption, that is, “A property is satisfied by only those
entities which are explicitly stated so ". However, cir-
cumscription does not successfully formalize those infer-
ences which generalize knowledge, such as induetion and
analogy.

Therefore, we have formalized the following notion:
"When all the demonstrated instances of predicate P are
posilive instances of +, we can assume that all instances
of Peatisfy 4 (When all the instances that proved to have
a property & have a property ¥, all instances having a
property F have a property 4 [Arima 1988b).)" This
formalization is called aseriplion and is a formalization
of induction and analogy.

Advanced inference can be formalized as inferring on
the most preferred models by introducing a preference or-
der over models, Unlike circumseription, ascription has
& discrete preference order, and performs radical belief
revision. Therefore, ascriplion is also suitable for repre-
senting management mechanisms for hypotheses which
are produced by the intelligent system itself.

4.2 Acquisition and HRevision of Commensense
Knowledge

In realizing ascription which is 2 unified frameworlk for
commonsense reasoning, how to provide a concrete pref-
erence order is a problem. We have studied the human
preference order in default reasoning. Default reasoning
infers the most plausible result from the commonsense
knowledge which is regarded as usually correct knowl-
edge even though there are a few exceptions. The follow-
ing subsection looks at acquisition and revision methods
for default reasoning.

4.2.1 . Acquisition of Commonsense Knowledge

Since commonsense varies with historical, geographi-
cal, social and individual background, intelligent systems
need the ability to acquire commonsense corresponding
to different contexts. For example, if they can acquire
mdividual commonsense that users hawe, they provide
user-friendly environments which interpret the users’ in-
tention appropriately. From this point of view, we have
taken the first step forward away from current research,
which assumes that commensense is provided in advance,
towards the future research on acquiring commonsense
knowledge.

The idea of the research [Arima 1988a] is intuitively
explained as follows: “If entities in a class which are
shown to have a property are much more numerous than
enlities which are shown not to have that property, we
can acquire commonsense that the property is usually
satisfied in the class.”

We have two theoretical problems to perfoxm such
commonsense acqguisition. They are:

(1) Representation of commonsense knowledge varying
with classes;

(2} Representation of an overwhelming majority.

Far (1), we have proposed partially directional circum-
acription, & specialized version of formule circumscrip-
tion [McCarthy 1986) which is 2 general form of cireum-
scription. For (2), we have introduced the surpassing
relotion, a binary relation over predicates.

We now plan to clarify problems for this approach and
investigate application and cooperation with ascription.

4.2.2 Revision of Commonsense Knowledge

The idea of the revision method of commonsense
knowledpe is related to the siudy on the famous exam-

63

ple of default reasoning called the Yale Shooting Prob-
lem [Hanks and McDermott 1986].

Hanks and McDermott evaluated the current formal-
ization of the defanit reasoning on the temporal projec-
tion and showed that no current formalization captures
human commonsense.

We have taken an approach based on minimal change
for the Yale Shooting Problem. The formalization of
minimal change states that humans infer by common-
sense that a set of facts in a new situation is changed
minimally from the set of facts in the previous one to pre-
serve consistency. We have given approximate solutions
for the Yale Shooting Problem and a similar problem in
the inheritance system {Satoh 1987).

We have applied this formalization to the revision
method of commonsense knowledge. We have developed
a formalization of revision strategy which performs min-
imal revision, that is, to treat contradictory knowledge
as exceptions when it is added to current commonsense
]inuwlr:ad.gc [S&.tﬂh 1‘353],)

4.3 Inductive Inference Based on the Model
Theory

Shapira’s model inference [Shapiro 1982) gives a very
important strategy for inductive inference based on the
model theory for logic programs. In the model inference,
however, there are very strong assumptions, as follows.
Finitely many predicates, which are sufficient for describ-
ing a larget program, are given in advance, Furthermore,
it is assumed that an oracle which gives input/output
examples of the program knows the intended interpreta-
tion of all the predicates. This means that the El-bi].it-}’
of the inference system very much depends on the user’s
programming knowledge.

Itecently, several approaches to the problem have been
made, in which an infevence system generates new pred-
icates by itself [Muggleton and Buntine 1938]. In such
approaches, it is important to handle the following prob-
lems:

{1) When will be a predicate generated?

(2) What is the meaning of the new predicate?

To deal with these problems, we consider a
class of logic programs, which are suffictently and
syntactically restricted, as a target of inference
Ishizaka [Ishizaka 1988] gives an efficient algorithm for
inferring one such class, DRLP, which is equivalent to
the class of finite state acceptor. We will try to extend
this class to deal with more general logic programs.

66

4.4 Cognitive Model of Conscious and Uncon-
scious Processing

We understand that the basic problems in realiz-
ing artificial intelligence are knowledge acquisition [or
learning) and efficient extraction of acquired knowledge.
Realizging their importance, we proposed a cognitive
model of conscious/unconscious processing {(C/U model)
[Oka 1987, Oka 1988].

The model consists of two closely interactive parts:
symbol processing and pattern processing. In symbel
processing, at most one of the parallel processes ia exe-
cuted consciously (conscious processing) and the ofhers
are execuled automatically (unconscious symbol process-
ing). Although symbel processing proceeds determin-
istically, pseudo-backtracking is available in conscious
processing using recent memory, Pattern processing is
spreading activation in & network, which s executed un-
consciously (uneonscious pattern processing).

We simulated the model in a parallel logic prograsmm.-
ing language GHC utilizing the characteristics of the lan-
guage, ‘That is, we noticed the correspondence between
the basic characleristics of the model and that of the
language: AND-parallelism, choice nondeterminism, and
the suspension rule. Utilizing these characteristics of the
language as it is, we added the following functions:

(1) Narrowing down OR candidates with pattern pro-
CEESINE;

(2} Enabling pseude-backtracking with recent mem-
ory.

Pattern processing is simulated using the language as a
process description language,

We started simulation from the part of interaction be-
tween conscious processing and unconscious pattern pro-
cessing. As an example for simulation, we took up the
process of doing & task of selecting 2 disparate one of a
few items, for example, {run, write, pick, eat}.

The process of doing this kind of task consists of con-
scious processing and unconscious pattern processing.
That is, firstly, a property for a classification ocours un-
consciously, according to the problem, context, and the
solver's explicit and implicit knowledge which reflects
his experience. Secondly, the property of each item is
checked consciously. i exactly one item is disparate on
the property, it is the answer. If not, another property
occurs and it is checked. Conscious processing is efficient
because it deals only with properties that have ocourred;
that is, knowledge which can be accessed from conscious
processing is narrowed down by unconscious processing.

In the model, tasks can be shared between symbol
processing and patlern processing, making the best use
of each part; moreover, inference and learning in each
part are expected to hecome more efficient through the
interaction of each part.

5 CONCLUSION

Car final goal of the research and development of
problem-solving and iaference software is to develop a
cooperative problem-solving system which supports the
construction of many kinds of application software. One
of the main themes in the intermediate stage iz paral-
lelization which is essential to the development of such a
system. We obtained fundamental results in this area.

. Meta-programming by reflection and constraint logic
programming will be important paradigms to make
schemes of knowledge representing languages which
should be developed using the kernel language KL1. We
believe that the meta-function and constraint-function
realized by these paradigms gives a common base for the
cooperative problem-solving system.

Program transformation techniques and partial evalu-
ation techniques based on a parallel logic programming
language GHO are almost completely developed. Tn the
research on the proof support system, CAF, we deve
loped a good amount of theoretical background and im-
plemented many tools.

Advanced inference and learning is one of the most im-
portant themes of the FGCS project. To achieve progress
in these areas, however, it is necessary to male it clear
what human knowledge information processing is, which
is a very difficult problem. There iz no world-wide ap-
proved standard method to study it yet. At present, we
are investigating this theme based on its mathematical
madel,

Although this paper did nol discuss other related
research comducted by the First Research Laboratory
because of limited space, much has been done. Re
lated research includes ARGUS [Kanamori et al. 1986,
Kanamori and Horiuchi 1984, Kanamori and Horiuchi
1986), a program verification, transformation, synthesis
and analysia system; ANDOR |[Takeuchi et al. 1987a,
Takeuchi et al. 1987b], a parallel problem-solving lan-
guage for concurrent systems; EUODHILOS [Sawamura
and Minami 1988, Sawamura el al. 1988], a computer
aided reasoning system; and MENDEL [Honiden et al.’
1985, Honiden et al. 1986, Uchihira et al. 1987], a pro-
totyping support system.

In the final stage, we will concentrate on paralleliza-
tion, As part of the research on intelligent programm-
ing software, we are planning to develop (1) a parallel

knowledge programming language submodule, (2) a par-
allel intelligent programming support submodule, (3] a
proof support submodule and (4) advanced inference and
learking mechanisms.

For the parallel knowledge programming language
submodule, we will conduct further research on meta-
programming, constraint logie programming and sernan-
tics based on a parallel logic programming language.
Considering these results, we plan to extend and improve
KLI1.

For the perallel intelligent programming support sub-
module, we will continue basic research on program
transformation and verification of parallel logic pro-
grams, then develop a practical partial evaluation system

and an interactive transformation, synthesis and verifi-

cation system considering flexibility and extensibility.

For the proof support submodule, we will enrich the
practicality of the proof support system (CAFP) deve-
loped in the intermediate stage, then expand it 1o a par-
allel algorithm design support system to develop an in-
telligent support environment for parallel programming,

For the advanced inference and learning mechanisms,
we plan to proceed with research on the formalization
of commonsense reasoning, a predicate generator based
on inductive inference, and a model of cognition. Then,
cooperating with research on natural langnage process-
ing and expert systems in the other laboratories, we will
develop them as integrated research on learning from the
viewpoints of both theory and application.

ACKNOWLEDGMENTS

The research on the problem-solving and inference
software was carried out by the first rescarch labora-
tary at ICOT in tight cooperation with six manufac-
tures. Thanls are firstly due to who have given support
and helpful comments, including Dr. Fuchi, the direc-
tor of the research laboratories at ICOT, Mr. Yokoi, the
former chief of the second research laboratory at ICOT
and the current director of EDR, and Dr. Furukawa, the
deputy director of the research laboratories at 1COT.
Many fruitful discussions were done at the meetings of
Working Groups: PPS, SYC, and FAL Special thanks
g0 to many people at the cooperating manufacturers in
charge of the joint research programs.

REFERENCES

[Apt and van Emden 1982] Apt, K. and van Emden, M.
H., Contributions to the theory of logic programm-
ing, J ACM, 29, 1982

67

[Arima 1988a] Arima, J., Generating Rules with Excep-
tions, in this volume, 1988

[Arima 1988b] Arima, J., Formalization of Advanced In-
ferenice Processing as Nonmonotonic Reasoning (in
preparation)

[Beeson 1985] Beeson, M. J., Foundations of construc-
tive mathematics, Springer-Verlag, 1985

[Bishop 1967] Bishop, E., Foundstion of constructive
analysiz, MeGraw-Hill, New York, 1967

[Chikayama et al. 1988] Chikayama, T. et al., Overview
of the Parallel Inference Machine Operating System
(PIMOS), in this volume, 1988

[Colmerauer 1987) Colmerauer, A., Intreduction to
Prolog-T11, in ESFPRIT8Y, Achievements and Im-
pact, Proc. fth Annual ESPRIT Conference, pp.28-
29, Brussels, North-Holland, 1987

[Fujita and Furukawa 1988] Fujita, H. and Furukawa,

K., A Self- Applicable Partial Evaluator and Its Use
in Incremental Compilation, Mew Generation Com-
pufing, 6{2,3), June 1958

[Fujita et al. 1988} Fujita, H. Okumura, A. and Fu-
rukawa, K., Partial Evaluation of GHC Programs
Based on the UR-set with Constraints, in Pree. Fifth
International Conference and Symposium on Logic
Programming, Seattle, 1988

[Furukawa and Ueda 1985] Furukawa, . and Ueda, K.,
GGHC Frocess Fusion by Program Transformation, in
fnd Conf. Proc. Japen Soc. Softw, Se. Teeh., Tokyo,
1985

[Furnkawa et al. 1988] Furukawa, K., Okumura, A., and
Murakami, M., Unfolding Rules for GHC Programs,
New Generation Computing, 6(2,3), June 1988

[Futamura 1971] Fetamura, Y., Partial Evaluation of
Computation Process - An Approach to a Compiler-
Compiler, Systems, Computers, Controls, 2(5):45-
50, 1971

[Futamura 1985]) Futamura, ¥., Generalized Parlial
Computation, in D: Bjgrner, A. P. Ershov, and N. D.
Jones, editors, Partinl Evalvation and Mized Com-
“putafion, Morth-Holland, 1988

[Hanks and McDermott 1986] Hanks, 5. and McDer-
mett, 1., Default reasoning, nonmonotonic logics,
and the frame problem, in Proc. AAAISS, pp.328-
333, 1986

[Honiden et al. 1985] Honiden, 5., Uchihira, N., and Ka-
suya, T., Software Prototyping with MENDEL, in
Prac. FLogic Programming 85, LNO5-221, pp.108-
116, Springer- Verlag, 1985

68

[Honiden et al. 1986) Honiden, S., Uchihira, N., and Ka-
suya, T'., MENDEL: Prolog based concurrent object
oriented language, in Proc. COMPCON 86, pp.230-
234, 1986

[Hsiang and Rusinowitch 1987] Hsiang, J. and Rusinow-
iteh, M., On Word Problems in Equational Theories,
in FCALF, 1{th International Colloguium Automata,
Languages and Progremming, pp.5d-71, 1987

[Ishizaka 1988] Ishizaka, H., Inductive inference of
regular languages based on model inference, in
FProec, Logic Programming Conference ‘87, LNCS-
315, pp.178-184, Springer-Verlag, 1983

[Jaffar and Lassez 1987] Jaffar, J. and Lasses, JL.,
Constraint Logic Programming, in Proc. {th IEEE
Symposium on Logic Programming, 1987

[Jones et al. 1985] Jones, N. D., Sestoft, P., and
Spndergaard, H., An Experiment in Partial Evalua-
tion: The Generation of a Compiler Generator, in J.-
F. Jouannaud, editor, Rewriting Techniques and Ap-
phications, LNC5-202, pp.124-140, Springer-Verlag,
1985

[Kanamori and Horiuchi 1984) Kanamori, T. and Hori-
uchi, K., Type Inference in Prolog and Tts Applica-
tions, Tech. Report TR-095, ICOT, 1984, also in
Proc. Oth Mnternational Joint Conference on Artifi-
cial Intelligence, pp, T04-T07, 1985

[Kanamori and Horiuchi 1986] Kanamori, T. and Hori-
uchi, K., Construction of Logic Programs Based
on Generalized Unfold/Fold Rules, Tech. Report
TR-177, ICOT, 1986, also in Prec. {ih Inferna-
tional Conference on Logic Programming, pp.7d4-
TGS, 1987 :

[Kanamori et al. 1986] Kanamori, T., Fujita, H., Seki,
H., Horiuchi, K., ahd Masgji, M., Argus/V: A System
for Verification of Prolog Programs, in Prec. FJCC
Dallas, Texas, IEEE Computer Society Press, 1986

[Kleene 1945] Kleene, 5. C., On the interpretation of
intuitionistic number theory, J. of Symbolic Logic,
10:109-124, 1945

[Knuth and Bendix 1970] Knuth, D. E. and Bendix, P.
B., Simple word problems in universal algebras, in
J. Leech, editor, Computational problems in abstract
alpebra, pp.263-297, Pergamon Press, Oxford, 1970,
also in Siekmann and Wrightson, editors, Automa-
tion of Reasoning 2, pp.342-376, Springer-Verlag,
1983

[Levi 1986] Levi, ., Object Level Heflection of In-
ference Rules by Partial Evaluation (extended ab-
stract), - in P. Maes and 0. Nardi, editors, Work-
shop on Meta-Level Architettures and Reflection,
Sardinia, North-Holland, 1986

- [Oka 1988] Oka, N.,

[Lloyd 1984] Lloyd, J. W., Foundations of logic pro-
gramming, Springer-Verlag, 1984

[Matsumote 1987] Matsumeto, Y., A Parallel Parsing
System for Natural Language Analysis, New Gener-
ation Computing, 5(1):63-78, 1987

[McCarthy 1980) McCarthy, J., Circumscription — a
form of non-monotonic reasoning, Artif. Intell,
13:27-39, 1980

[MeCarthy 1986) MeCarthy, J., Application of Circum-
scription to Formalizing Common-sense Knowledge,
Artif. Intell, 28:89-116, 1986

[McCarty 1984] McCarty, D. C., Realizability and Re-
cursive Mathematics, Ph.D) thesiz, Oxford, 19584

[Muggleton and Buntine 1988] Muggleton, S. and Bun-
tine, W., Towards Constructive Induckion in First-
order Predicate Calculus, TIRM 88-031, The Turing
Institute, 1983

[Murakami 1988] Murakami, M., A New Declarative Se-
mantics of Parallel Logic Programs with Perpetual
Processes, in this volume, 1988 '

{Ohsuga and Sakai 1986) Ohsuga, A. and Sakai, K.,
Metis: A Term Rewriting Systemn Cenerator, in
Sympestum on Software Science and Engineering
(S5E), RIMS, 1986, alse Tech. Memorandum TM-
0226, ICOT

[Ohsuga and Sakai 1988] Ohsuga, A. and Sakai, K., An
efficient implementation method of reduction and
narrowing in Metis, in Iniernational Workshop of
Unification (UNIF) '88, 1988 also Tech. Report (to
appear), [COT

[Oka 1987 Oka, N., A Cognitive Model of Con-
sciousUnconscious Processing. in 4th Conf Proc.
Japan Sec. for Softw. Se. Tech., pages 459462, 1087
(in Japanese)

Cognitive Model of Con-
scious/Unconscious Processing and Its Simulation in
a Parallel Logic Programming Language, Tech. Re-
port TR-415, ICOT, 1988

[Okumura and Matsumoto 1987) Okumura, A. and
Matsumoto, Y., Parallel Programming with Lay-
ered Streams, in Proc. Fourth Symposium on Logic
Programming, San Francisco, 1987

[Prawitz 1965] Prawits, D., Natural Deduction,
Almquist and Wiksell, Stockholm, 1965

[Safra and Shapiro 1986] Safra, S. and Shapiro, E.,
Meta Interpreters for Real, in H.-J. Kugler, editor,
Information Processing 86, pages 271-278, Dublin,
Ireland, North-Holland, 1986

[Sakai 1988] Sakai, K., Toward Mechanization of Math-
ematics, in K. Fuchi and M. Nivat, editors, Pro-
gramming of Future Generalion Computers, pp.335-
390, North-Holland, 1988

[Sato 1985] Sato, M., Typed Logical Calculus, Tech.
Report 85-13, Depariment of Information Science,
Faculty of Science, University of Tokyo, 1985

[Sato 1986] Sato, M., QJ: A Constructive Logical Sys-
tem with Types, in France-Japan Artificial Intelli-
gence and Cemputer Science Symposium 86, Toloyo,
1936

[Sato 1987] Sato, M., Quty: A Concurrent Language
Based on Logic and Function, in Proc. Fourth
International Conference on Logic Programming,
pp-1034-1056, MIT Press, 1987

[Satoh 1987] Satoh, K., Minimal change — A eriterion
for choosing between eompeting models —, Tech,
Report TR-316, ICOT, 1987

|Satoh 1988] Satoh, K., Nonmonotonic reasoning by
minimal belief revision, in this velume, 1088

[Sawamura and Minami 1988] Sawamura, H. and Mi-
nami, T., General-Purpose Reasoning Assistant Sys-
tern EUODHILOS and Its Applications, Tech, Mem-
orandum TM-0576, ICOT, 1988

[Sawamura et al. 1988] Sawamura, H., Minami, T
Sato, K., and Tsuchiya, K., Potentials of General-
Purpose Reasoning Assistant System EUQDHILOS,
in Symposium on Software Science and Engineering
{SSE), RIMS, 1958

[Shapire 1982] Shapire, E., Algorithmic program debug-
ging, Ph.d thesis, Yale University Computer Science
Dept., 1982, Published by MIT Press, 1983

[Smith 1984] Smith, B. C., Reflection and Semantics in
Lisp, in Proc. 11th Annual ACM Symp. on the Prin-
ciples of Programming Languages, pp.23-35, ACM,
1984 :

[Takayama 1987] Takayama, Y., Writing Programs as
QJ-Proofs and Compiling into PROLOG Programs,
in Proc. {th Symposium on Logic Programming, San
Francisco, 1987 '

[Takayama 1988a] Takayama, Y., QPC: QJ-besed Proof
Compiler —Simple Examples and Analysis, in
European Symposium on Programming 88, Naney,
France, 1988

[Takayama 1988b] Takayams, Y., Proof Theoretic Ap-
proach to the Extraction of Redundancy-free Heal-
izer Codes, (to appear), 1988

a9

[Talu_-u-:hi and Furulawa lEI'EIS] Takeuchi, A. and PFu-
rukawa, K., Partial Evaluation of Prolog Programs
and Its Application to Meta Programming, in H.-
J. .I’{ugl:r, c-:]ii.m',_ fnfl:ri‘mnii:-n Prma&ing Eﬁ: pages
415-420, Dublin, Ireland, North-Halland, 1986

[Talenchi et al. 1957a] Takeuchi, A., Takahashi, K.
and Shimizu, H., A Description Language with
AND/OR. Parallelism for Conecurrent Systems and
Its Stream-Based Realization, Tech. Report TR-229,
ICOT, 1957

[Talkeuchi et al. 1987h] Takeuchi, A., Takahashi, K.
and Shimizu, H., A Parallel Problem Solving
Language for Concurrent Systems, in Proc. IFIP
WG10.1, 1987, (to appear)

[Tanaka 1988] Tanaka,]., Meta-Interpreters and Reflee-
tive Operations in GIHC, in this volume, 1938

[Uchihira et al. 1987] Uchihira, N., Kasuya, T., Mat-
sumobo, K., and Heniden, 5., Concept Program Syn-
thesis with Reusable Components Using Temporal
Logie, Tech, Report TR-271, ICOT, 1957

[Ueda 1986a] Ueda, K., Introduction to Guarded Horn
Clauses, Tech, Report TR-209, ICOT, 1986

[Ueda 1886b] Ueda, K., Guarded Horn Claunses: A Par-
allel Logic Programming Language with the Con-
cept of a Guard, Tech. Report TR-208, ICOT, 1986
(revised 1987), also in K. Fuchi and M. Nivat, edi-
tors, Programming of Fulure Generalion Computers,
pp-441-456, North-Holland, 1938

[Veda 1988] Ueda, K. and Furukawa, K., Transforma-
tion Rules for GHC Programs, in this volume, 1988

[Weyhrauch 1%80] Weyhrauch, R. W., Prolegomena to
& Theory of Mechanized Formal Reasoning, Artifl
Intell., 13(1-2):133-170, 1980

