PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

37

Knowledge Base System
in Logic Programming Paradigm

Hidenori ITOH, Hidetoshi MONOI (ICOT)
Shigeki SHIBAYAMA (Toshiba Corp.)
Nobuyoshi MIYAZAKI (Oki Electric Industry Co. Ltd.)
Haruo YOKOTA (Fujitsu Ltd.)

Alkihiko KONAGAYA (NEC Corp.)

ABSTRACT

This paper describes the current research and devel-
opment status of the lmowledge base subsystem being
investigated in Japan’s Fiflth Generation Compufer Sys-
tems (FGCS) project. Our aim is to realize the subsys-
tem in the logic programming paradigm to manage lazge
knowledge bases shared by Al application systems. In
the intermediate stage of the project, several approaches
are being taken to reslize the knowledge base subsys-
tem. Experimental systems are being developed in order
to study the technical aspects. These systems will be
integrated into the prototype of the FGCS in the final

stage.
1 INTRODUCTION

The Fifth Generation Computer Systems (FGCS)
project aims to develop a prototype system for a knowl-
edge information processing system. The prototype sys-
tem processes knowledge in the logic programming and
paraltel processing paradigms. To realize the proto-
type system, we have developed parallel inference subsys-
tems and knowledge base subsystems in the intermediate
stage. These subsystems are integrated into the profo-
type of the FGCS by the parallel logic programming lan-
guage Guarded Homn Clauses (GHC) in the final stage
[Ttoh 88].

The knowledge base subsystem provides convenient
environments in which to comstruct, retrieve, and ma-
nipulate large, shared knowledge bases for Al applica-
tions on the inference subsystems. The subsystem inher-
ite most of the traditional database functions, such as
access path selection and transaction control. However,
knowledge base systems must have richer functions and
interfaces for manipulating knowledge than traditional
databasge systems. In other words, because the AT appli-
cetion programs use knowledge-representing data that
has a more complex structure, the knowledge base sub-
systems must have high-level functions so that they can
handle a large amount of knowledge and high-level in-
terfaces betwsen the knowledge bases and application
programs. .

In the imitial (three-year) stage of the project, we
developed 2 relational database experimental system
Delta as the first step to research the knowledge base
subsystem [Murakami 83] [akuta 85]. By doing this,
we poonmmulated architectural experience about systems
that must process large amounts of knowledge efficiently
[Itoh 87]. We also developed an interface between the
logic programming language Prolog and the relational
database on it so that we could study the technical prab-
lems regarding their integration [Kunifuji 82] [Yokota 84]
[Yokota Bfal. _

We are in the intermediate four-year stage, and aiim to
develop a prototype of the knowledge base subsystem.
The subsystem can handle more complex knowledge-
representing data directly and provide friendly interfaces
for the kmowledge processing programs based on logic
programming paradigms. To develop the prototype, we
have defined and developed four models of the subsys-
temt using the sequential inference machines that were
developed in the initial stage. To research the knowledge
base subsystem efficiently, we employed the following ap-
proaches:

¢ The first approach is to extend a logic program-
ming language that supports knowledge base func-
tions. We have developed a practical knowledge
base system with a large amount of knowledge in
order to prove the effectiveness of the functions.

The entire system is developed on the CHI ma-
chine with a high- performance sequential inference
procesgor and a large-capacity memory. The mem-
ory capacity is sufficient for realizing a practical
memory-based knowledge base,

o The second approach is to perform distributed
Lnowledge base processing: the efficient retrieval
and management of knowledge bases in the dis-
tributed environment. The system is developed on
PSI machines connected by 2 local area networle.

In this approach, knowledge bases are realized in
the context of deductive databases. We have de-
veloped software and hardware systems to manage
distributed knowledge bases and to process queries.

38

The third approach is to realize parallel knowledge
base processing. We have developed an experimen-
tal knowledge base subsystemn with multiple pro-
chesing elements and a large-scale multiport mem-
ory. We have also developed the control software
for the parallel processing. The experimental sys-
tem is made accessible from PST through a logic-
based query language.

In this approach, we adopted a relational knowl-
edge model, an extension of the relational data
model. The architecture of the experimental sys-
tem follows the ideas behind database machines.

¢ The last approach is to research interfaces between
parallel logic programming languages and knowl-
edpe bases,

In this approach, we selected applications to
study the interfaces in the paralle]l processing envi-
ronment. We adopted the parallel logic program-
ming language GHC and embedded knowledge-
base handling functions in it.

Technologies obtained in these approaches have been
integrated into the parallel knowledge base processing
model.

This paper describes each system with related research
topics. “Section 2 describes the knowledge base system
on the CHf machine. Section 3 describes the distributed
knowledge base system using the PS8k, Section 4 de-
scribes the parallel knowledge base processing madel,
Section § describes the knowledge base interface system
for parallel logic programming languages. Lastly, Section
6 is 2 summary of this paper.

2 ENOWLEDGE BASE SUBSYSTEM ON A
SEQUENTIAL INFERENCE MACHINE

This section describes the high performance knowledge
base system developed on the CHI machine [Habata 87].
We developed this system in order to investigate mech-
aznisms for the efficient retrieval and management of
knowledge bases. The novelties of the system are ils
prechicability in terms of performance and memory ca-
pacity, and its extension of multiple name space in a
multi-process environment.

2.1 Owverview of the System

CHI is one of the inference machines developed in the
FGCE project, designed for high performance execution
of large practical logic programming programs. Figure 1
shows the CHI hardwere configuration. The hardware
consists of a high performance processor (500k LIPS for
benchmark programs) and & large main memory (320

Front CHI
end Processor
processor (500 ELIFS)
1
O '
Main memory
O_. (320 MB)

Figure 1. CHY hardware system configuration

Procass A Process B

a
4

Local stack

Local Global stack Local (lobal stack
knowledge knowladge
base Trail stack base ;

>~ 7

Application layer

fofowncs || gy

(ERA

Lanpuage
layer

Kemel layer I

Figure 2. CHT software system configuration

MB) connected fo a front-end processor for input-output
operations.

The knowledge base system is composed of three lay-
ers: a kernel layer, a language-processing layer and
an application layer (Figure 2). The kernel layer pro-
vides basic functions for multi-processing and remote
input/output operations [Konagaya 87]. The language-
processing layer provides a full interactive programming
environment for SUPLOG [Atarashi 88], a Prolog dialect
with multiple name space. The application layer pro-
vides special inference rules and facts for specific areas,
such as DNA sequence matching [Doolittle 86] and ma-
chine translation systems. All processes share the knowl-
edge base systems and execute logic programs with their
own execution environment: local, global and trail stacks
and a local knowledge base. From the user’s point of
view, CHI acts like a domain-oriented knowledge-base
machine rather than like a Prolog machine, if applica-
tion layer programs are loaded with aystom programs.

The high performance comes from special hardware for
unification, backtracking, clauvse indexing and sophisti-
cated compiler optimization [Habata 87]. To make use

of compiler optimization, we divided predicates into dy-
namic predicates (predicales that can change their defini-
tion dynamically) and static predicates (predicates that
cannot change their definition dynamically). This divi-
sion distinction is very effective because we can elimi-
nate the overhead of predicate calling for most predi-
cates (static omes). We also endeavored o implement
high-performance dynamic predicates, since the dynamic
predicates tend to form a bottleneck if they are executed
by an interpreter. We introduced a “dynamic compi-
lation™ or *incremental compiling” technique that com-
piles a clause when asserted [Konagaya 88]. As a result,
the CHI machine can execute dynamic predicates only
three times slower than il executes static predicates.

The large memory capacity (320 MB) makes it pos
gsible to realize a memory-based knowledge base system.
Knowledge base systems require a large knowledge data
as well as a number of inference rules. For example, a
DNA sequence matching system requives DNA data (20
million residues), and a machine translation system re-
quires a language translation dictionary (50,000 words),
From a practical point of view, large knowledge data
retrieval is the most time-consuming process in the im-
plementation of practical knowledge base systems. The
memory-based knowledge base system solves this prob-
lem, since it eliminates disk access time, which occupies
a large proportion of the data retrieval process im com-
ventional computer systems.

A multiple-multiple name space has been introduced
to avoid interprocess name conflict and to represent a
hierarchical knowledge database. To solve the inter-
process name conflict, the multiple-muliiple name space
facility copies name spaces when a process is created.
The name space copying scheme enables processes to ac-
cess name spaces independently while sharing clauses.

The hierarchical knowledge database can be obtained
by the encapsulation, inheritance and shadowing mech-
anisms of the multiple-multiple name space. The encap-
sulation mechanizm enables the use of the same name in
a different way in the knowledge base. The inheritance
mechanism provides an efficient way of defining shared
clauses. The shadowing mechanism is used for solving
name conflicts that cceur in inheritance. The mecha-
nism is also useful for representing non-menotonic logic.

The following sectiona give further. details about the
multiple-multiple name spaces that play an essential role
in knowledge base systems.

2.2 Mulﬁple-Multiple Name Spaces

Multiple-multiple name spaces provide an elegant way
of implementing a shared knowledge database in a multi-
process environment. The shared knowledge base is very
important, especially in the field of co-operative prob-
lem solving, The problems that have to be sclved are

39

Procoas & Process B

. Laocal Irnowledge base _—— Local knowledge base
o —[oawn]| | o | omie]
Clause I |Clau9e k”m‘
| System
!Sysbam ,

Clause

/ base
F{:E;;l I Glaua& |

|Rulus|

| System | IFaets-I

Figure 3. Multiple-multiple name spaces

name consistency and name conflict between processes.
The inter-process name conflict results from the inher-
ited nature of a knowledge base that permits it to update
its component (clause) dynamically. A lock mechanism
may save this problem, bul would still leave a schedul-
ing problem; the results of the program might change
depending on the process scheduling. Chur observations
about knowledge bases lead us to conclude that most
knowledge bases are static data. We sclved the problem
by dividing a knowledge base into two parts: a shared
knowledge base and a Jocal knowledge base. The shared
knowledge base containg all system programs and the
static knowledge. The local knowledge base confains the
process’ own programs and dynamic knowledge. To re-
alize inferprocess communication, we chose & mail box,
a message based communication, rather than the shared
knowledge base, since updating the shared knowledge
base causes nondeterminacy of knowledge base access,

The inter-process name conflict may occur when pro-
cesses share 2 name space. To solve the problem, we
adopted the following name space copying scheme. In
the scheme, each process copies the name tables of the
shared clanse database, if ome has been ereated. The
point is that the copied mame tables are in the local
clause database, so each process can change any name
space without affecting other processes. Figure 3 shows
an example of this scheme. In this example, each pro-
cess has three shared-name spaces:- “system”, “rules”
and *facts”, and two local name spaces: “new._rules” and
“new facts”.

Process scheduling does not affect program execution,
no matter how the program changes a clause database
dypamically. Local clause database can be removed
when a process is terminated or killed,

40

2.8 Hierarchical Knowledge Base

Multiple-multiple name spaces also give us an elegant
way of representing a hierarchical knowledge base that
supports encapsulation, inheritance and shadowing of
predicates. These facilities make it possible to repre-
sent frame-like hierarchical knowledge naturally in logic

programming paradigmas,

Encapsulation The encapsulation [acility reduces
name-conflict and inereases reliability by hiding inter-
nally used predicates from outer-worlds. For example,
the knowledge about Mr. Konagaya's account may be
written in the following way.

:= in_package(konagaya).
:= axport withdraw/2, deposit/f2.
:= dynamic current_account/1.

withdraw{Amount ,New_balance) :-
retract(account{Balanca)),
Wew_balance is Balanca = Amount,
(New_balance »>= 0
- assert{account{New_balance)};
print("Net encugh balance!™},
assert{account (Balance)})}).

deposit{Amount ,New_balance) :-
retract{account(Balancal),
¥ew_balance is Balance + Amount,
assert (account(New_balance}),

In the above case, the predicate account/1 is used only
for keeping Konagaya's current balance. So it should be
hidden so that no one can access the balance directly.

Inheritance The inheritance facility enhances hierar-
chical knowledge representation such as frame theory
[Minsky 74] and scripts. One of the great advantages of
the fame-based inheritance in a clause database is that
we can comstruct both rule hierarchy and data hierarchy
in the same way. That is, we can provide more flexible
and powerful ways of mixing rule sets and data sets than
conventional Al-tocls can.

For example, a class of bird may have a general prop-
erty of birds, such as that a bird has twe wings, or a bird
can fly. These rules can be described as follows.

1= in_package(bird).
i= external wings/1, canfly/fi.

wings{(2).
canfly.

A class of sparrow can be defined inheriting a class of
bird.

can__fly|Ino_ of wings(2)

Figure 4. Inheritance in knowledge bases

1= in_package(=sparrow, (fuse(bird)]).
= external coler/1.

color (brown) .

Shadowing The shadowing facility makes it possible
to hide some predicates so that they are not inherited
from the super class. A kind of non-monotonic knowl-
edge can be represented by using the facility. For exam-
ple, a class of penguin can be defined inheriting a class
of bird, but the predicate canfiy/0 can be shadowed.

= in_package(penguin, [$u=e(bird)]).
= external colorS1.
i= shadowing canfly/0.

colaorih & w).
canfly := fail.

2.4 BSummary and Future Works

A clause database can be extended to & knowledge
base by means of a multiple-multiple name space. The
multiple-multiple name space also gives an elegant way
of sharing & knowledge base among processes.

The knowledge base system can be extended to an
object-oriented base by introducing a history-dependent
data structure, that is, objects. In the system, & clause
may be used to define constraints betwesn objects,

2 DISTRIBUTED KNOWLEDGE BASE
SUBSYSTEM

Coordination of varions knowledge bases and process-
ing knowledge bases in a distzibuled environment is im-

° AP :Application

program
GEBM :Global knowledge

base manager
GEBM } LEBM :Local knowledge
base manager
EE -

Figure 5. Logical configuration of the PHI system

portant for future knowledge information processing sys-
tems. One of the most fundamental issues in the study
of the knowledge base is the knowledge base model as a
framewaork. We have zelected a deductive database as 2
fundamental platform to study knowledge bases in dis-
tributed environment. We call this system a distributed
deductive database (DDDB) system.

3.1 Overview of the System

A deductive database consists of an intensional
database (IDB), a set of rules, and an extensional
database (EDEB), a set of facts. The EDB is assumed
to be much larger than the IDB. There is a well known
one-to-one correspondence between & ground unit clavse
af the EDE and a tuple of a relational database. We have
adopted a two-layered configuration: the lower layer,
a relational database management system, handles the
EDE and the upper layer handles the TDB.

In crder to support a distributed envircnment, we gave
the deductive database system global knowledge man-
agers and local knowledge base managers. An exper-
imental system, the Predicate logic based Hlerarchical
knowledge manegement (PHI) system, 18 being devel-
oped to study technical issues. In this system, one global
manager and one or more local managers are dynamically
assigned to each user or application program as shown
in Figure 5.

The principal technical issues being investigated in the
research of the DDDB system are as follows.

» Distributed query processing.
¢ Distributed database updating and management.

» Interface between logic programming languages
and the DDDE syatem.

o Architecture of a dedicated processor for efficient
handling of the deductive database.

41

PSI PSI
Hoat - = = Host
! | 1coT LAN

DCM g DCM DCM o DCM g,

EML, KML,,
KMLg {[pamt || || KMLc |[DML
GKBM LKBM GEBEM LKBM

Psi Ps1

DCM ¢ Distributed control modala
KML : Knoowledge management layer
DBML: Database managementlayer

Figure 6. Physical configuration of the PHI system

=

Knnwludga Base Engine

ICOT LAN

Figurr_ 7. Kunwlndgc base v.,-.ngim:

The PH,fphyﬂii;aﬂjr consists of a number afpm‘anna] 50—
quential inference machines { P51's) as shown in Figure 6.
Each site has a global manager and a local manager. A
dedicated processor is designed as an attached proces-
sor of a PSL The processor adopts a superimposed code
scheme, and has an accelerator for processing indexes
based on the scheme illustrated in Figure 7. An experi-
mental application program for software development is
also being developed to investigate the functionality and
performance of the system.

3.2 Distributed Deductive Database

Principal Features A DDDB consists of a deductive
database distributed over a number of sites. A set of
ground uwnit clauses (facts) having the same predicate
symbol corresponds fo a relation. IDB is regarded as
an extension of views in relational database. A query is
denoted by a goal atom or a set of clauses. The answer

42

is a set of ground instances of the query that are “logi-

cal consequences” of the set of clauses in the deductive

database and of the sels of clauses in the query.
Principal features of the PHT are as follows.

» The database is a set of funclion-free clauses which
may have negative literals in their bodies.

¢ Data manipulations are performed by means of a
logic data language that includes extended definite
clanses.

The query processing strategy is a bottom-up strat-
-egy with query transformation and dynamic opti-

migation.

» Concurrency control is performed by a two-phase
lock methed.

Recovery is performed by a two-phase commitment
method.

+ Security management is provided using password
and data catalogs.

Algorithms used for the last three features above are
similar to those developed for traditional distribuied re-
lational databases..

The interface of the PHT is designed to be embedded
in sequential logic programming languages such as Pro-
log and ESP (Self-contained Extended Prolog). The PHI
computes the answer bo a query as a set, and returns the
answer piece by piece to the user program by instantiat-
ing values to variables in order to adjust to the sequential
execution of the host languages. If a backtrack oceurs in
the user program, the system returns an alternative an-
BWER.

Diztributed Query Processing Strategy In DDDB
system, it is important to reduce the communication cost
to transfer intermediate results by determining appropri-
ate transfer directions. For instance, when the system
joins two intermediate results, transferring the smaller
ane 15 better, There are two ways to determine trans-
fer direction. Omne is a static optimization strategy that
determines the directions by predicting the sizes of inter-
mediate results before the actual processing. The other is
& dynamic optimization strategy that determines the di-
rections by comparing sizes of actual intermediate results
during the processing. The PHT uses the dynamic opti-
mization strategy because it is difficult to predict sizes of
intermediate results for recursive queries. This decision
reduces the management overhead of statistical informa-
flon necessary to predict the size of intermediate results,
but increases communication overhead to compare sizes
of intermediate results [Takasugi 87]. The latter prob-
lem is not serious in the PHI because of the broadcast
communication capability of JOOT-LAN [Taguchi 84].

Recursive Query Processing Strategy Recursive
query processing strategies are classified into top-down
strategies and bottom-up strategies. A top-down strat-
egy compubes the answer to'a query by generating sub-
queries in a similar way to that of Prolog. A bottom-up
stratery computes the answer by generaling intermedi-
ate results from relations in the EDB. We have adopted
a bottom-up strategy in the PHI because a top-down
strategy results in large communication overhead with
frequent interactions between sites. Bottom-up strate-
gies have two problems:)

1. They compute unnecessary results because they
compute all elements of the least fixpoint (least
Herbrand model) of the database.

2. The iterative procedure which computes the least
fixpoint involves a lot of redundant computations.

Ta solve the first problem, query transformation proce-
dures are used. They transform queries to other forms
that have smaller least fixpoints while preserving the
equivalence of answers. To solve the second problem,
a differential computation technique [Balbin 87] is used.

Query Transformations Query transformation pro-
cedures called Horn clause transformations (HOTs) are
used to tramsform & set of clauses to an equivalent set
of clauses [Miyazaki 88a] [Miyazaki 88b] [Sakama 87].
Three kinds of HCTs have besn proposed for the sys-
tem. They are all based en a fundamental procedore
called “clause replacement”. Because unnecessary in-
formation is removed from the database, the resultant
database has a smaller least Herbrand model than the
original database, Adding logical consequences preserves
the equivalence of the transformed resull for & given goal.
HCTs are briefly described below.

HCT/P (HCT by Partial evaluation) :

This is a procedure that uses resolution to obtain
logical consequences. It is regarded as a generaliza-
tion of a procedure that substitutes the relational
algebra expression of a (derived) relation for the
relation symbol. It is called HOT/P because it is
based on the partial evaluation technique devel-
oped for program transformation,

HCT/R (HCT by Restrictor) :
This is a procedure that uses new predicates called
restrictors in order to comstruct clauses that are
logical consequences of original clauses based on
the subsumption. HCT/R results in a similar
transformed database to the magic set transforma-
tion [Bancilhon 86).

HCOT/S (HCT by ground Substitution) :
This is a procedure that substitutes ground terms
for veriables of a clause to obtain logical conse-
quences. This procedure is a generalization of pro-
cedures that move the constant in transitive closure
operation.

3.2 Handling Negations

The PHI allows negative literals in bodies of clauses.
This extension introduces some difficulties to thr_* gystem:

¢ The semantics of such a database is difficult to de-
fine without some syntactical restrictions.

« Efficient query processing for such database is more
difficult than for definite databases.

The PHI restricts the database to a “steatified”
database [Apt 88]. A stratified detabase iz a set of
extended clanses that has no recursive paths involving
negations. The stratified database can be partitioned
into layers, and the semantics of the database are de-
fined layer by layer from the lowest layer. The semantics
of stralified databases has been extensively studied by
many researchers [Apt 88] [Van Gelder 86] [Gelfond).

For instance, let us consider the following extended
clanse,

r{(X,1) - p(X.¥),~a(X,2)

This clause has & variable, Z, which appears only in &
negative literal. This Z is attached by an implicit uni-
versal quantifier according to the standard logical inter-
pretation of clauses. It is inefficient to process this kind
of clause by a bottorm-up procedure, becanse it is neces-
sary to check all instances of g{X,Z} or actually obtain
ground instances of —q[X,2). So the PHI handles these
kinds of vanables as if they are attached by existential
gquantifiers instead of universal gquantifiers. With this
convention, the above clause is equivalent to the follow-
mg clanses.

o(5Y) = p(X,¥),-qi{X).
qi(X) := q(X,Z).

This convention enables us to compile negative literals
te difference operations in relailonal algebra. Tt is also
used in many Prolog processors.

Query evalnation methods for stratified databases
have been also investigated by several researchers. As
in the case of definife databases, these methods are
classified into either top-down computation or bottom-
up computation. As for top-down computation, sev-
eral guery evaluation methods for stratified databases
have been recently proposed [Seki 88] [Kemp-Topor 88].

43

Since the usnal SLDNF-resolution is obviously insuffi-
cient, these methods have incorporated some bottom-
up computation features ints a tep-dewn algarithm. In
{Seki 88], for example, & query evaluation method called
OLDTNF-resolution has been proposed, which is based
on OLDT resolution [Ordered Linear Resolution with
Tabulation) [Tamaki 86], augmented with negation as
failure rule. OLDTNF-resolubion was shown to be sound
and complete with respect to the standard model serman-
tics for a class of siratified programs under reasonable
assumptions for database applications.

The bottom-up query processing of stratified database
in the PHT iz basically same as the query processing
of definite database. The PHI first transforms 2 query
to an equivalent form using HOTs, and then computes
the results layer by layer. However, uncenditional us-
age of HCT's may result in unstratification. HOT/P and
HCT/5 can be used in stratified database without lim-
itation, because they preserve lavered structure of the
database. HCT/H may transform a stratified database
to an unstratified database, and it is difficult fo handle
unstratified database in general.

3.4 Superimposed Code Scheme for Deductive
Databases

In & deductive database system that adopts & bottom-
up strategy, operations such as selections, joins, set op-
erations and set comparisons are frequently performed.
The frequent usage of set operations and set comparisons
is a major difference between 2 deductive datzbase and &
relational database. The concept of superimposed codes,
which eniginally was proposed for text processing, possi-
bly provides a unified approach that will realize efficient
processing of both EDB and IDE [Wada 88] [Morita 88].
Superimposed code schemes have been studied for the
knowledge base engine.

Superimposed Code Scheme for the EDB In re
lational database, indexes to atiributes are used for effi-
cient access to tuples in an EDB. H only a few attributes
are frequently used in conditions of queries, the design
of the indexes is easy. This is wsually the case in busi-
ness applications. We consider that more uniform treat-
ment of attributes is necessary in deductive database.
An index scheme based on superimposed codes is a good
candidate for such a purpose. The index is oblained as
follows (Figure 8).

1. The value of each key attribute is hashed to a code
called a binary coded word (BCW)

2. Al BOWSs fer a tuple are ORed together to obtain
a superimposed code word (SCW)

The SCWs are much smaller than the original tuples,

44

Belation BCW index

Index

Hash
V1—100_01

V2 —»010_00
Va—w110_00 (OR
11001 L. 11001
Query mask
Hash

V2= 010__00

V8 —»110_00 [OR
Query mask: 110__00

Figure 8. Example of SCW

|
5
s
ry

Query VZ2and V3

Retrieval using this index is performed as follows.

1. The value of each key attribute in the query is
hashed to obtain BOW.

2. BOWs are ORed fogether to obtain a gquery mask
Q.

3. Check the SCW index if each SCW satisfies (Q
‘and’ SCW =). If a tuple corresponding to the
index satisfies the query condition, the SCW satis-
fies this condifion.

Set operations and set comparisons necessary to pro-
cess recursive queries can also be performed with SCW
indexing. The SCW indexes are used to make pairs of
indexes whose corresponding pairs of tuples may be the
same. Because the SCWs are much smaller than the
original tuples, we can improve performance by prepro-
cessing with the SOW index.

The advantages of the superimposed code scheme are
es follows.

+ The total size of the indexes is smaller than in ather
index schemnes if there are many key attributes. In
deductive databases, all attributes might be keys.

s Performance i3 better if more than one key at-
tribute is specified in & query.

Index processing can be easily performed in paral-
lel, because the structure of the index is simple.

The disadvantages of the superimposed code scheme
are as follows.

s A whole index scan is usually necessary. Although
the index may be small, the index scan is still time
consuming,

¢ Retrieval cannot be efficiently handled with renge
conditions.

Query mask for fIX, hfa,c))
Figure 9. Example of S35CW

Index for figle,b), X}

Dedicated hardware, a parallel processing architecture,
or a combination of both can solve the first problem.
Dedicated hardware is used in the experimental system
for index processing.

The superimposed code scheme can be extended for
structures (functions) and reles. Structures and rules
can be handled by a superimposed code scheme for
terms. The extended scheme uses structured superim-
posed code words (SSCW) an example of which is illus-
irated in Figure 9 [Morita 88].

4 PARALLEL KNOWLEDGE BASE
SUBSYSTEM

This section describes the knowledge base system
based on the parallel knowledge base model. The dis-
tributed model mentioned in the previous section as-
sumes an environment where inference machines (PSJk)
are connected by a local area network. In that sense it
investigates a knowledge base processing scheme among
the distributed processing powers. The parallel model,
however, is & processing scheme to enhance the process.
ing power of a network site, '

4.1 Owverview of the System

This system aims at implementing an experimental
parallel knowledge base system (Mu-X) as the backend
of the PSI machines. In this approach, dedicated hard-
ware with multiple processors and a Jarge-scale multiport
shared memory is implemented.

The Mu-X adopted the term-relational model pro-
posed in [Yokota 86b]. The term-relational model was
used as & candidate for bridging the gap between logic
programming languages and databases. The model could
be considersed to be a basic mechanism to implement
deductive database systerns. However, in this research,
more attention was paid to providing primitives of term-
relational model manipulation. The term relations can
naturally store basic logic programming constituents
(terms) and provide retrieval capabiiities, based on uni-
fication, for terms. As a concrete example, a unification-
based query language has been implemented [Monoi 88b]

on the model. It is based on relational calculus and in-
terfaces PSI programming environment and the experi-
mental machine. A set of classes were written in ESP
[Chikayama 84] and added in the PSI programming en-
vironment. These classes provide methods (predicates)
which interface with the user in the P5['s programming
environment and the Mu-X. The classes are activated
by &the method call from user programs. It forwards the
message specified by the method call (typically, a “re-
trieve” predicate) to the Mu-X nsing network facilities
for execution.

Put sirmply, the Mu-X’s role in this context is fo be a
backend machine for execution of the queries denoted
|:+3' the rqlricve P‘rcdica.l.mi of ESP. Parallel pmoessing
was adopted to accelerate the retrieval. This will be
described in later chapters. This experimental machine
shares many research issues with parallel database ma-
chines [Shibayama 87).

4.2 Hardware Considerations

Mu-X has a shared memory multiprecessor architec-
ture {Figure 10). There are two types of shared memo-
ries. One is conventional word-granularity shared mem-
ory for control information storage and can be regarded
as an interconnection structure for multiple processing
elements. The other is page-granularity conflict-free mul-
tiport page-memory for working knowledge base storage
[Tanaka 84b). The multiport page-memory consists of
& set of ordipary memory banks, a switching network
for interchanging the multiple ports and memory banks,
port controllers attachéd to each pert and a main con-
troller. By cyclically interchanging the network and ap-
propriately reading/writing the proper part of memory
banks, simultaneous access from each port to arbitrary
memory pages is realized. The multiport page-memory
was incorporated so that several idle processing elements
(PEs) could participate in the processing of a query with-
out any memory access interference. From another point
of view, the multipert page-memory can enhance the
memory bandwidth to the multiple of memory banks
{usually, number of ports).

The I/0 bandwidth enhancement is achieved by pro-
viding a disk system to each of the PE. Term relations
are herizontally partitioned and stored across the disk
syshems.

This architecturs follows that of the knawledge
base machine architecture given in [Yokota 86b] and
[Morita 86]. However, simulation study of the architec-
ture [Sakai 88] [Monot 88a] revealed that even multiple
brute-force hardware engines did not provide a perfor-
mance improvernen!, proportional to the number of PEs.
This is because of the input-length dependency of the
processing times, If a join processes the ares of a rech-
angle that has sides whose lengths are the cardinalities

45

Intercnnnectmn .
LI;E_J [7E] [7E]- -- [7E] Er}zl
MPPM

Figure 10. Hardware configuration of the parallel knowl-
edge base system

Table 1. Hardware specifications

Nuomber of PE & .

PE core MOG3020 at 12.5MHz
PE memory IZMB

Multiport page-memory | 8 ports

G4ME with 512-byte pages
SMB fsec/port transfer speed

of the relations, division of the area increases the fotal
input data that must be read to be processed.

So even using a lot of engines that can process join with
only the data input time will not reduce the processing
time. It was also recognized that a hardware-oriented
engine could only perform a limited class of operations.
At the time the hardware design of this experimental
machine began, it was not clear what operations should
be supported by the processing element core.

For these reasons it was decided that the Mu-X would
not incorporate hardware engines. Instead, it incorpo-
rated general-purpose microprocessors in place of the
hardware engines. The effert to implement a more fexi-
ble unification engine is carried out separately. The mul-
tiport page-memory was implemented with eight ports
and has a capacity of 64MB. The specification of the
hardware is shown in Table 1.

4.3 Software Considerations

The software's 2im in this system is to pursue paral-
lel processing technology in the field of knowledge base
processing. ‘This aim shares much with database sys-
tems research. There are numerous researches belong-
ing to this category, for example, GAMMA [DeWitt 86],
Grace [Kitsure 82}, MPDC [Tanaka 84a], and MDES
[Demurjian 86). The characteristics of this research are
as follows:

Moderate size of experimental machine.

Grace and MPDC, for example, are systems that
require enormous effort to implement because of

the variety of hardware components and the com-
plexity of the software. The Mu-X falls into a sim-
pler category of parallel processing. There are two
kinds of hardware components that must be pro-
grammed. One is the processing element (PE), the
core of the processing, and the other is the front
end processor (FEP). Since the FEP's funclions
are very simple, the PE is the emly component that

needs intensive programming.

» Incorporation of terms as the basic data represen-
tation scheme

This system manipulates terms in much the
same way that inference machines do. We not only
provided an additional data type {term) but also
adopted it as the basic data representation scheme
in the sysiem. For example, in the interface be-
tween FST and the FEP, term representation is
used to denote the query language.

¢ Flexibility of the software

The system iz experimental, so later modifica-
tion or addition of operations is quite probable,
The system software has been designed to cope
with those changes.

Parallel Processing

(a) Consideration of hybrid memory systems

The parallel processing in this system is strongly in-
fluenced by the iwo types of memory system: a conven-
tional shared memory and the multiport page-memory.
The software is designed to make the best use of the
characteristics of the memory systems.

The conventional shared memnry has the following
characteristics.

¢ The unit of access is typically a word.

» There is potential access conflict among multiple
PEs.

s Access (when there is no memory access conflict)
is quick, typically within a few microseconds,

The maultiport page-memory is a page-based memory
system activated by means of a control blodk {page trans-
fer contral block, PTCB for short). It has the following

characteristics.
® The unit of access is a page.
s There is no access confliet among PEs (PE ports).

» Access is associated with overheads,

The overheads are of three types. The first is the over-
head similar to the latency of disk aceess. This is the
time that it takes for the asynchronous memory page ac-
cess request (through the PTCB) to be recognized by
the port controller that polls for the request. In this im-
plementation, the polling interval iz equal to the page
transfer time, 50 on average there is half the page trans-
fer time lateney. The second type is the overhead of
one-page transfer, This is the time that it takes for the
requested page to be transferred o a buffer space. The
last one is software overhead required to prepare a PTCR
for the multiport page-memory. It consists of search-
ing the multiport page-memory directory for the proper
page number, assigning a destination buffer, making up
& PTCB and so on. In the current implementation, four
physical pages of 512 byles constitute a logical page of 2
KB. As physical page transfer time is 100 microseconds
and is the interval of request polling, one logical page
transfer requires 4 x 100+ 100/2 or 450 microseconds on
average. The software typically requires about 500 mi-
croseconds. To sum up, the transfer time for one logical
page is about one millisecond. Both the hardware speed
and software speed. could be improved using faster tech-
nology for the former and a faster processor w1th cache
memary for the latter,

Considering these characheristics, using the multiport
page-memory as a buffer memory for the database pages
was a natural choice. We also decided to place the system
directory in the multiport page-memory. Initially it is
stored in the disk and at starfup time is loaded into
the multiport page-memory so that the PEs can access
the shared information quickly. The directory related to
a PE js further copied in the local memory of the PE.
Other control information, such as command queues, is
placed in the conventional shared memory. Locking is
done using the conventional shared memeory by means of
atomic read-modify-write instructions.

(b) - Scalability consideration

The multiport page-memory is a hardware component
that has a scalable property, We tried to keep the hard-
ware's acalability within the tolerance of the conventional
shared memory’s bandwidth. For example, the control
software is not placed on a special {centralized) control
processor. Instead, any processing element can become
the control processor in a unit of a transaction. When &
transaction is received from a PSI machine, an 1dle PE
is assigned to be the master of that transaction. The
transaction master takes care of the compilation, paral-
lel command generation, and response generation of that
transaction. Parallel command execution is a task for
multiple PEs (possibly including the transaction master
PE)}. In that sense, parallel processing is applied toward
(1) inter-transaction and (2) parallel command execu-

!Paralltl commeand
processlng

[Jrdte

Figure 11. A parallel processing timing diagram

@Wﬂn master

|Tuple Fized- |Relntive[Fixed. |Relative |Variabls [Variabls

beader|length |pointer [lingth |pointer length |-length
| attribubs mitribute |attributs |attribute

||n=ﬂ? body body |body

)
—

Figure 12. Representation of variable-length records

tion levels. Figure 11 shows a timing diagram of query
processing where parallelism in the command execution
level is realied. In this figure, PEQ is the transaction
master and takes care of the master’s tasks. This is a
set of serialized operations performed intermittently be-
tween parallel command executions. The parallel com-
mand execution is done by idle processors as shown in

Figure 11.

Term Data Type Support From soltware's point of
view, relational knowledge base support is (1) the ad-
dition of a data type (term) and (2) the addition of a
set of operations to relational database enhanced with
the term data type. To do these, the basic data stric-
ture supports tagged data and variable length records,
which is required because the term relational model al-
lows variance of atomic and structured data as in Prolog.
The structure of a record that supports variable-length
record is shown in Figure 12.

Efficiency Consideration In database machine re-
search, the importance of elimination of software ower-
heads is often stressed. The software system has been de-
signed and coded with this elearly in mind. The system
owes the file system and the software development envi-
ronment to the residing operating system. However, the
rest of the software was made from scratch. To develop
so much new software was expensive, but helped to make
a specialized, compact and efficient system. For example,
the control software of the PE is a single-process program
and there is little overhead in switching between transac-

47

Processing time (s)

L= Communication
Parallel command processing |
s (maz—average] G
Parallel command processi
g tmm;tal
06—
04—
bapr— | 1 m
1]
1 E 4 6 & PE eount

Figure 13. Performance of the selection operation

tion master tasks and parallel command execution tasks,
Considering the nature of the system and preliminary
evaluation results, we are convinced that this has been a
good choice. We note that there are numerous decisions
we took that have to undergo further evaluation.

4.4 Ewvaluation

So far, we have made a preliminary performance eval-
uation, This evaluation was to obtain the basic speed of
the hardware and the efficiency of the parallel processing
method, not to diseover the final performance values.

The queries we tock were selection and join operations.
The selection query selects 111 -tuples from 1600-tuple
relation, the size of which iz 500 KB. The join is per-
formed between a 15 KB, 111-tuple refation, the result
of the previeus selection, and a 20K-byte, 215-tuple re-
lation. A nested-loop algorithm is used. The result is
37 tuples. Note that the tuples are variable-length and,
according to the parallel processing scheme, the query is
processed as shown in Figure 11,

Figure 13 shows the result of the selection. The total
processing time is almost identical to the time for parallel
command execution. The overhead of parallel execution
(in this case, communication time) is not recognized un-
til the number of participating processors reaches six.
Still the overhead is quite low. The effect of pazallel pro-
cessing is thus satisfactory, at least within the machine’s
degres of parallelism.

Figure 14 shows the result of the join. In contrast
to the selection case, the total processing time of the
join saturates at the processor count of six. In this case
also, the effect of parallel command execution is good.
However, the overhead increases zs the number of pro-
cessors increases. The aource of overhead is the variance
in the processing times of PEs. The communication time
is hidden becanse the absolute processing time is about
ten times greater than in the case of selection.

This phenomenon is clearly llusizated by comparing

43

Processing time (5)
Communication

12—
10— — Pamﬂalmmu?andpmum;g i
. mar—a A
Furallel command
o mee— | [l
ﬁ —
4 —
il Hinls
0
. 1 2 4 1] 8 PEcount
Figure 14, Performance of the join operation
FProcessing times of PRz
.10 w" 1%
0.3 10
B
0.6 Selection Jeln
[
04
4
0.2 m | — 2 @ 4
e s 8 ' 1z
PE ¢ount

Figure 15, Comparison of processing tinres

the processing times of PEs in selection and join cases
{Figure 15). The reason why there is variance in the
join is because the size of the source relation is not large
enough to be evenly shaved by the PEs. The 20 KB
relation (ten 2K pages) is divided by eight PEs, so two
PEs have to process two pages while the remaining six
only have to process one page each.

This evaluation is done using the first version of soft-
ware where there are neither indexing schemes nor clus-
tering schemes. The hashing based indexing scheme
and, for join operation, bucket-wizge hash-join method
[Kitsure 83a] is being implemented. We leave more de-
tailed evaluations for the future.

5 INTERFACE BETWEEN GHC AND
FARALLEL KNOWLEDGE BASE
SUBSYSTEM

The knowledge base subsystem should retrieve infor-
mation quickly from a large amount of knowledge and
treat a variefy of knowledge objects uniformly. Then,
it should manipulate the retrieved knowledge elements
efficiently. The goal of the FGCS project ia to build
& knowledge informalion processing system wsing logic

programming paradigms. Combining a parallel logic pro-
gramming language and a dedicated system for operat-
ing & knowledge base seems to be one possible way to
implement applications of FGCS project.

This section describes interfaces that combine a par-
allel logic programming language and a knowledge base
system. '

5.1 Owverview of the System

Retrieval-by-unification (RBU) operations have been
proposed [Yekota 86h] as the dedicated system for oper-
ating a knowledge base. RBU operations are an exten-
sion of relational database operations for manipulating
the varisty of knowledge objects. A knowlédge element
iz represented by a term, a well-defined structure capa-
ble of handling variables. A knowledge base consists of
sgts of terms called term relations. The RBT system
searches the term relations for desired terms, those unifi-
able with a search condition. We have implemented two
extended relational algebra operations: unification re-
striction stream (urs) and unifieation join stream (ujs).
Other conventional retrieval operations, such as union,
projection, join, and selection, and updating operations,
such as insert and delele, have also been implemented.

Guarded Horn Clauses (GHC) [Ueda 85, a parallel
Ingic programming language with commitied choice se-
maatics, is the kernel language of the FGCS. It handles
parallel processes and streams for communication among
processes efficiently, but is inadeguate in searching for al-
fernative knowledge elements, since a variable of GHC
can be assigned only once. GHO also has trouble han-
dling global information such as that in knowledge bases.
GHC bas no appropriate means of guaranteeing the con-
sistency of knowledge bases during parallel updating.

RBY enables GHO to process knowledge bases. RBU
commands for retrieving and updating term relations are
issued from parallel problem-solving systems written in
GHC. A term relation is used to control consistency in
parallel operation. The combination of GHC and RBU
is useful in many types of knowledge information pro-
cessing systern for the FGOS project.

5.2 Parallel Retrieval

Now, consider production (rule-based) systems check-
ing for feasibility of the combination of GHC and RBU.
The basic concept of a production system involves ap-
plying state transition production rules from an initial
state to reach a goal state that satisfies termination con-
ditioms. Several states can be generated from a single
state by applying the production rules, and the state
transitions make & search tree. The goal of a production
gystem is to derive a path from the initial state to & goal
state by Lraversing the search tree '

Figure 16. Process configuration and a search tree

Paralle] processing is viewed as a way of reducing the
large amounts of time consumed by production systems
[Gupta 87). One implementation is the parallel traversal
af a search tree in which new states are generated from
different states in parallel. Limits on memory and the
number of processors require the use of special search
strategies. The best first search [Barr 81] is one such
strategy. It selects a state from a search tree using state
evaluation of the current state to generate new states,
The state selected has the best evaluation value in the
Eree af a given time. The centralized control of this strat-
egy makes finding the best value a bottleneck, however.
Control must be localized for efficient parallel process-
ing. We propose a new search strategy called the Better
First Search. The strategy looks only in a subtree of
the search tres for the state that has the best evaluation
value. Although this valee is good, it may not be the
best in the entire tree; we call it a "better” value.

We use a tree structure as the process configuration to
implement the Better First Search in parallel. The tree
configuration is not directly related to the search tree
traversed by the production system. The three types of
nodes (processes) in the process tree are the root node,
leaf nodes, and other branch nodes. Productions are
pecformed at the leaf nodes. Production pricrities are
controlled at the branch nodes based on their evaluation
values. System. control such as that of the user inter-
face is performed at the root node. Figure 16 shows the
process configuration and a search tree.

Modes in the process tree are implemented using per-
petual processes generated from recursively called GHC
clauses. Process behavior is controlled by streams bound
to variables i arguments in the clauses, The streams are
treated as messages for the process. This configuration

49

[————
[—————

2

| B e pp—p—————
o e

Figure 17. [mplementation on the parallel model

is suitable for the parallel model of knowledge base ma-
chine mentioned in Section 4. A number of processors
and shared storage compose & cluster in this machine,
meking it important to localize processor communica-
tions. We plan to locate each leal process in a processor
(Figure 17).

5.2 GHC Interface

A production is performed by retrieving knowledge el-
ements from a knowledge base and updating the knowl-
edge base based on production rules.. The knowledge

base ig a global state for parallel production processes.

GHC cannot handle global states among perpetual pro-
cesses, nor effectively retrieve and update the knowledge
base, even if a common stream is prepared as an argu-
rent of every clause to implement a global state in GHC.
The unification implemented in GHC cannot be used to
search for multiple knowledge elements, because a GHC
variable can only be assigned a value once. Once bound
to a knowledge element, the GHC variable's binding can-
not be changed.

Connecting GHC to a dedicated system that processes
knowledge bases enables a parallel production system to
be built. RBU knowledge elements are terms defined in
the same firsi-order logic as GHC, thus eliminating syn-
tactical transformation. RBU stores a set of terms as a
term relation which is used to guarantee the consistency
in knowledge beses during parallel updating.

The special predicate rbu(C) is provided in GHC to
enable the use of RBU. Commands for retrieving and
updating knowledge bases are bound Lo the stream ar-
pumeant G.

For example:

C = [urs(tri, (1], p(=, $(1)), [1], X),

50

“jﬂ{t‘ri:[EL tr2, {1]![3]:?}1 o]

The first command sentence, urs{ tri, [1],
pla,$(1)), [1], x), dictates a search of the first at-
tribute of the term relation trl for terms unifiable with
the condition p(a,$(i)), yielding the derivation of the
first atiribute as a result. Results are returned as a
siteam bound to the varieble X in the command sen-
tence:

= [P{H.,E{E{ED}, P(B'! gl:b}.h o ']'
The second command sentencs, ujs(tri, [2], tr2, [1],
[3], ¥}, is used to derive the third attribute of a result
relation generated by 2 unification join operation whicl
searches the second attribute of tri and the first at-
tribute of tr2 for unifiable terms. Besults are returned
bound to the variable Y.

V= [ﬂ(ﬁfiulﬂ}-' !]

The special function symbol $ is used to indicate a
variable in command sentences and in results. GHC vari-
ables cannot be used for knowledge retrieval, so other
symbols are needed to indicate variables for retrieval,
These variables are bound to knowledge elements in
REU, but unbound in GHC. This corresponds to un-
bound variables appearing in a template predicate of the
setod predicate in Prolog systems,

5.4 Implementation of RBU

Different approaches have been proposed to improve
retrieval speed, One approach was to use dedicated hard-
ware: for example, a unification engine was proposed by
[Morita 86] [Yokota 86b). [Ohmori 87] proposed a hash
vector for indexing clauses. Superimposed code words for
terms and a dedicaled engine for manipulating the words
were proposed by [Wada 88]. We use indexing that re-
trieves 2 set of terms by unification and backiracking,
Retrieved terms resemble each other somewhat because
they are unifiable with the search condition. For eflicient
backtracking, these terms must be located near an index.
The trie is a type of tree structure that shares identieal
elements [Knuth 73] and meets this requirement. Fig-
ure 18 gives an example of a irie for a set of terms.

The costs of unification are proportional to the count
of comparisons between components of the object terms.
A trie reduces the number of comparisons when unifica-
tion is performed. For example, consider what happens
when the set of terms in Figure 18 is searched for terms
that can be unified with the condition p{£(a,b) ,h(c)).
Using the trie structure, the component p is compared
only once, whereas four cornparisons are necessary if the
trie structure is not uwsed. Using the tne structure, 10
comparicons are nesded to search for all terms unifiable
with the condition; 18 comparisons are needed if the trie
structure is not used.

- blvo bt
| -2 |+ h-1 B a-0

Hash
table

pIEILEIHZN plE1)glebll p(foSO000RISIEN pITab)ho$(100)
Figure 18. Tuple index with hashing and trie structure
]
EBU without indexing o—e
. 0.4 B RBU with indexing w» —-u
Quintus Prolog w=-—a

0.3
0.2
0.1
I e et i sk taf ol
o 250 500 750 1,000
tuples

Figure 19. Comparison of search speeds

A hash table is used before the trie structure when
storing many types of terms in a term relation (Fig-
ure 18). The first components of terms are used as hash
entries. The trie stiucture is combined with hash colli-
sion resalution.

We compared the search and updaling speeds of the
RBU prototype with those of the Quintus-Prolog inter-
preter. Prolog compilers do not support assert and re-
trace predicates, (they cannot update knowledge bases),
so the compiler has not been examined. Figure 19 com-
pares the search speeds of the Prolog interpreter and urs
with and without indexing. The urs without indexing is
about four times slower than the Prolog clause search.
This search time increases with tuple count in both Pro-
log and wrs without indexing. However, the search time
of urs with indexing scarcely increases regardless of the
number of tuples. For 1000 tuples, it is about one-fourth
of the time that a Prolog clause search would take. This -
is a result of the indexing.

Figure A compares the tuple ingertion speeds of the
two systems. Tuple insertion using RBU takes only
about one-sixth the time of a Prolog consulf operation.
The overhead for maling an index for a term relation is
about one tenth of the insertion time.

6 CONCLUSION

In this paper, we have described the current status of
research and development concerning the knowledge base

sl RBUload o—o .
of+ REUload + mkindex m—-m +‘,-""
Cuintus Prolog ae=t -
0 v
.
15F . -
l"‘“

10 .-""'.’

E-

0 rni S T OO R N N N |

0 250 600 750 1,000

tuples

Figure 20. Insert speed comparison

subsystem in FGCS project. In the inbermediate stage,
we have investigated and experimented on the following
four kmowledge base mechanisms required for construct-
ing the prototype of the FGCS,

{1} The knowledge base system developed on the CHI
machine:

The knowledge base system on the CHI ma-
chine provides a very high performance knowledge-
retrieval mechanism, a practical memory-based
knowledge database, and a hierarchical clause
database for a multi-process environment. In the
system, multiple-multiple name spaces play an es-
sential role in avoiding interprocess name conflicts
and in hierarchical knowledge representation. The
system will be a good vehicle for the next knowl-
edge base research project,

(2) The distributed knowledge base system based on
deductive databases.

A distributed deductive database system has
been developed. It uses PSI machines connected
by ICOT-LAN. The query processing stralegy of
the system is based on a bottom-up approach com-
bined with query transformation procedures. A
dynamic optimization method is used to process
distributed queries. Dedicated hardware for pro-
cessing indices has also been designed based on a
superimposed code scheme for efficient knowledge
base processing.

{(8) The paralle] knowledge base system.

The total system with the experimental hard-
ware and knowledge base management software has
been developed, The system can manipulate sets of

" terms efficiently in parallel. The hardware config-
uration proved useful for knowledge base purposes,
The system connects to PST machines, and a pow-
erful unification-based query language has been de-
veloped as an interface.

31

{4) The knowledge base interface system for parallel
logic programming languages.

We proposed to introduce a parallel logic pro-
gramming language interface info a dedicated
knowledge base system. We considered a parallel
production system to check the feasibility of the
combination of RBU and GHC. Parallel processes
for the production system are implemented by per-
petual processes written in GHC. Each process is-
sues RBU eommands for retrieving knowledge. We
also outlined the concept for interfacing RBU with
GHC using streams, and evaluated the search and
updating speed of our REU protolype.

The various kinds of technology developed in this stage
will be incorporated into the FGCS prototype.

ACKNOWLEDGMENT

We would like to express our gratitude to the other
members of the third laboratory of the ICOT Research
Center. Bach systermn described in this paper has been
developed with the close co-operation of manufacturers.
Thanks goes also to the manufacturers’ people who were
engaged in the implementations. We are indebted to the
members of the KBM Working Group for their fruitful

discussions.

References

[Apt 88] Apt, K.R., Blair, HA. and Walker, A., “To-
ward A Theory of Declarative Knowledge”, Minker
(ed.), in Foundations of Deductive Databases and
Logic Programming, Morgan Kaufmann Publishers,
19886

[Atarashi 58] Atarashi, A., Yanagida, 5. and Kona-
gava, A., “SUPLOG Reference Manual”, 1988 {In
Japanese)

[Balbin 87] Balbia, I and Remamohanarao, K., " A Gen-
eralization of the Differential Approach to Recur-
sive Query Evaluation”, J. Logic Programming, Vol.4
No.3, 1987

[Bancilhon 86] Bancilhon, F., Maier, D., Sagiv, Y. and
Ullman, J.I., "Magic Sets and Other Strange Ways
to Implement Logic Programs® 5th ACM PODS,
1986

[Barr 81] Barr, A. and Feigenbaum, E. A., in The Hand-
book of Artificial Intelligenee, 1, William Kaufmann,
Inc. 1981

[Chikayama 84] Chikayama, T., “Unique Features of
ESP", in Prec. Int. Conf. Fifth Generation Com-
pufer Systems, pp.202-208, 1934

52

{Demurjian 86] Demurjian, 5.A. and Hsiao DK, “A
Multibackend Database System for Performance
(Gains, Capacity Growth and Hardware Upgrade”, in
Préc. Int. Conf. on Date Engineering, pp.542-554,
1986

[DeWitt 86] DeWitt, D.J., Gerber, R.H., Graefe, G.,
Heytens, M.L., Kumar, [{.8. and Muralikrighna, M.,
"GAMMA - A High Performance Dataflow Database
Machine”, in Froe. 12th Int. Conf Very Large
Databases, pp.228-237, 1986

[Doolittle 86] Doolittle, R. F., “Of Urfs and Orfs, A
Primer on How to Analyze Derived Amino Acid Se-
quences”, University Seience Books, Mill Valley, CA,
1986

[Gelfond] Gelfond, M. and Przymusinska, H. and Przy-
musinski, T, "On the Relationship between Circom-
scription and MNegation as Failure”, to appear in Jour-
nal of Artificial Intelligence

[Goto 87) Goto, A., “Parallel Inference Machine Re-
search in FGCS Project”, in Proc. of the US-Japan
AT Symposium 87, pp. 21-36, 1987

[Gupta 87) Gupta, A., in Parallelism in Production Sys-
tems, Morgan Kanfmann Publishers, Tne. 1087

[Habata 87] Habata, S., Nakazaki, Il., Konagaya, A.,
Atarashi, A. and Umemura, M., “Co-operative High
Performance Sequential Inference Machine: CHI”, in
Proe. ICCD'8T, New York, 1987

{Itoh 87] ltoh, H., Sakama, C. and Mitome, Y., “Par-
allel Contral Techniques for Dedicated Relational
Database Engines”, in Proc. Srd Int. Conf Data
Enginesring, pp.208-215, 1987

[ltoh 88] Itoh, H., Takewaki, T. and Yokota, H.,
"Kunowledge Base Machine Based in Parallel Ker-
nel Language”, in eds. Kitsuregawz and Tanala, in
Database Machines end Knowledge Base Machines,
Kluwer Academic Publishera, 1988

[Kakuta 85] Kakuta, T., Miyazaki, N., Shibayama, §.,
Yokota, H. and Murakami, K., *The Design and
Implementation of Relational Database Machine
Delta”, in Proc. Int. Workshop on Dafabase ma-
chines ‘85, 1085

[Kemp-Topor 88] Kemp, B.D. and Topor, W.R., “Com-
pleteness of & Top-down Query Evaluation Procedure
for Stratified Databases”, Dept. of Computer Sci-
ence, Univ. of Melbourne, Technical Report, 1088,
also in Proc. §th Inl. Conf and Symp. on Logic
Programming

[Kitsure 82] Kitsuregawa, M., Tanaka, M. and Moto-
oka, T., "Relational Algebra Machine GRACE”, Lec-
ture Notes in Computer Science, Springer-Werlag,
pp.191-214, 1952

[Kitsure 83a] Kitsuregawa, M., Tanaka, M. and Moto-
oka, T., “Application of Hash to a Data Base Ma-
chine and Its Architecture”, in New Generation Com-
puting, OHMSHA, 1, 1983

[Kauth 73] Knuth, D. E., *The Art of Computer Pro-
gramming®, 3, Sorting and Searching, Addison-
Wesley, 1973

[Konagaya 87] Konagaya, A., WNakazaki, R. and
Umemure, M., *A Ce-operative Programming En-
vironment for a Back-end Type Sequential Inference
Machine CHI", in Proc. Ini. Workshep on Paralle!
Algorithms and Architeciures, East Germany, pp.25-
a0, 1987

[Konagaya 88] Kenagaya, A., “Implementation and
Evaluation of a Fast Prolog Interpreter”, in IPS
Japan SIG-SYM 46-4, 1988 (in Japanese)

[Kunifuji 2] Kunifuji, S. and Yokota, H., “Prolog and
Relational Database for Fifth Generation Computer
Systerns”, in Proc. Workshop on Logicol Bases for
Data Bases, Gallaire, et al.(eds.), ONERA-CERT,
1982

[Minsky 74] Minsky, M., “A Framework for Represent.-
ing Knowledge”, MIT AT Memo No.306, 1574

[Miyazaki 88a] Miyazaki, M., Haniuda, H. and Itoh,
H., "*Horn Clause Transformalion: An Application
of Partial Evaluation to Deductive Databases”, in
Trans. [PSJ, Vol.29, Ne.1, 1988 (in Japanese)

[Miyazaki 88b] Miyazaki, N., Haniuda, H., Yokota, K.
and Itoh, H., “Query Transformations in Deductive
Databases”, IOOT-TR 377, 1983

[Monoi 88a] Monoi, H., Morita, Y., Itoh, H., Sakai, H.
and Shibayama, 5., “Parallel Control Technique and
Performance of an MPPM Knowledge Base Machine
Architecture”, in Proc. Jth Int. Conf Data Engi-
neering, pp.210-217, 1988

[Monoi 88b] Monei, H., Morita, Y., Ttoh, H., Takewald,
T., Sakai, H. and Shibayama, 5., “Unification-Based
Query Language for Relational Knowledge Bases and
its Parallel Execution”, in Proc. Int. Conf Fifth
Generation Computer Systems, 1988

[Morita 86] Morita, Y., Yokota, H., Nishida, K. and
Iich, H., “Retrieval-By-Unification Operation on a
Relational Knowledge Base”, in Proc. of 18th Int.
Conf. on Very Large Databases, pp. 52-59, 1986

[Morita 88] Morita, Y., Itoh, H. and Nakase, A., “An
Indexing Scheme for Terms using Structural Super-
imposed Code Words", ICOT TR-383, 1988

[Murakami 33] Muml:a.mi, K., Ka]cu[:a, "_|".':| Mi:,raza]ri] 'N.,
Shibayama, 5. and Yokota, H., “Relational Database
Machine: First Step to a Knowledge Base Machine",
in Proe. 10th ind. symp. Computer Architecture,
pp.423-426, 1983

[Ohmori 87] Ohmori, T. and Tanaka, H. “An Alge
braic Deductive Database Managing a Mass of Rule
Clauses”, in Proc. of 5th Fni. Workshop on Database
Machines, pp. 201-304, 1987

[Saleai 88] Sakai, H., Shibayama, 5., Mone, H., Morita,
Y. and ltoh, H., *A Simumlation Study of a Knowl-
edge Base Machine Architecture®, in Database Ma-
chines and Knowledge Bage Machines, Kluwer Aca-
demic Publishers, pp.585-598, 1988

|Sakama 87] Sakama, C. and Itoh, H., “Partial Evalua-
tion of Queries in Deduetive Databases”, Warkshop
on Partial Evaluation and Mixed Computation, 1987

[Seki B8] Seki, H. and Iteh, H., *A Query Evaluation
Method for Stratified Programs under the Extended
CWA™, ICOT Technical Report TR-337, 1988, also in
Proc. Sth Int. Conf. and Symp. Legic Programming

[Shibayama 87] Shibayama, S., Sakai, H., Monoi, H.,
Morita, ¥. and ITteh, H., “Muw-X: An Experimen-
tal Knowledge Base Machine with Unification- Based
Retrieval Capability”, in Proc. France-Japan Arti-
ficial Intelligence and Computer Science Symposium
87, pp.343-357, 1987

[Taguchi 84] Taguchi, A., Miyazaki, N., Yamamoto, A.,
Kitakami, H., Kaneko, K. and Murakami, K., "INL
Internal Network in the [COT Programming Labo-
ratory and its Puture®, in Proc. of 7th JOOC, 1984

[Takasugi 87] Takasugi, T., Haniuda, H., Miyazaki, N.
and Itoh, H., "Distributed Query Processing in
EBMS PHI", in IP§ Japan STG-MDP, 34-9, 1987

(in Japanese)

[Tamaki 86] Tamaki, H. and Sate, T., “OLD Resolution
with Tabulation”, in Proc. of 8rd JCLP, 1986

|Tanaka 84a] Tanaka, Y., “MPDC: Massive Parallel Ar-
chitecture for Very Large Databases”, in Proc. Int.
Conf. Fifth Generation Computer Systems, pp.113-
137, 1984

[Tanaka 84b] Tanaka, Y., “A Multiport Page-Memory
Architecture and A Multiport Disk-Cache System”,
in New Generation Computing, OHMSHA, 2, pp.241-
260, 1984

33

[Ueda 83] Ueda, K., *Guarded Hovn Clauses”, in Logic
Programming ‘85, E. Wada (ed)., Lecture Notes in
Computer Science 221, Springer-Verlag, 1988

[Van Gelder 86) Van Gelder, A., "Negation as Fail-
ure Using Tight Derivations for General Logic Pro-
grams®, in Proe. 1988 Symp. on Logic Programming,
IEEE Computer Society, pp. 127-138, 1986, also to
appear in Jouwrnal of Logic Progromming

[Wada 88] Wada, M., Morita, Y., Yamazaki, H., Ya-
mashita, 5., Miyazaki, N. and Itoh, IL., "A Superim-
posed Code Scheme for Deduetive Databases” | in eds.
Kitsuregaws 2nd Tanaka, in Dafabese Machines and
Knowledge Base Machines, Kluwer Academic Pub-
lishers, 1988

[Yokota 84] Yokota, H., Kunifuji, §., Kakuta, T.,
Miyazaki, N., Shibayama, 5. and Murakami, K., "An
Enhanced Inference Mechanism for Generating Rela-
tional Algebra Queries”, in Proe. 3rd ACM STGACT-
SIGMOD Symp. Principles of Database Systems,
pp.220-238, 1084

[Yokola 86a] Yokota, H., Sakei, K. and Itoh, H., “De-
ductive Database System Based on Unit Resolution™,
in Proc. 2nd Int. Conf. Data Engineering, pp.228-
235, 1986

[Yokota 86b] Yokota, H. and Itoh, H., *A Model and
an Architecture for = Relational Knowledge Base”,
in Proc. 15th Int. Symp. Compuler Architecture,
pp.2-9, 1936

