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ABSTRACT

This paper introduces the research and development of
the inference system in the FGCS project. Kesearch on
the parallel ipference system in the intermediate stage
included the parallel hardware system (PIM) and the
parallel software system. It started with the adoption of
a new language, GHC, as the base of the parallel kernel
language KL1. At the same time, it was determined to
develop the multi- P51 system in order to encourage par-
allel software research. A distributed language processor
for KLl was developed on the multi-PSI system.

The development of the KL1 language processor and
also the development of a parallel operating system for
the PIM (PIMOS) was considered to include many un-
known problems. However, the goal of the research and
development for the intermediate stage was set Lo in-
clude the experimental building of the PIMOS on the
multi-PS1 system and to run some small scale applica-
tion software systems on it.

The development of a parallel hardware system aimed
ai the experimental building of a PIM having about 100
processing elements (PEs), making the best use of expe-
riences gained in the development of the smaller version
of the PSI CPU.

Another aim was to develop a eross programming envi-
ronment of KL1 on the smaller version of the PSI, PSI-II,
50 ad to prepare for the wider and larger scale parallel
software development to be done in the final stage.

This paper contains not only the research and develop-
ment results but also the background in which important
technical decisions were made.

1 INTRODUCTION

The research of the parallel inference system m the in-
termediate stage included a parallel hardware system
and software system. [t started with planning aiming
at the experimental building of a parallel inference ma-
chine {PTM) having about 100 processing elements [PEs)

and also its parallel software system, the PIM operating
system (PIMOS). This planning made full use of the
development in the initial stage such as the parallel ar-
chitectures and models proposed in the research om the
dataflow machine and the reduction machine, and also
the P51 hardware system and its operating system, SIM-
POS.

A unique feature of the intermediate stage resesrch
and development i3 the coupling of the research on the
parallel hardware with one type of parallel software, the
parallel operating system, PIMOS, newly adopted as an
important research target.

The research and development of parallel seftware has
never been conducted in as a large project anywhere in
the world. This meant that very little pragmatic seft-
ware had been developed. The main reason was the lack
of suitable parallel hardware,

On the other hand, parallel hardware which was worth
building parallel operating systems for had never been
built, although special purpose parallel hardware ays-
tems such as image processors had been built. This was
because the design of general purpose parallel hardware
neaded the characteristics of the behavior of the parallel
software running on it. This implies that the parallel
software must exist before parallel hardware can exist.
Thus, the relation of parallel hardwere and software is
something like the chicken and-egg problem.

To solve this problem, a stepwise development strat-
egy was introduced which used two successive versions
of the mmlti-PSI systems, the multi-PSI-V]1 which con-
tained six PSI-I machines as its PEs and the multi-PSI-
V2 which contained up to 64 PSI-1I CPUs.

These multi-PSI systems enabled software researchers
to confirm their ideas on parallel programs by writing
and running them in a real paraflel hardware environ-
ment. Then, their ideas refiected in the design of the
next version of the hardware.

Using the multi-PSI-V1, the experimental distributed
language processor of the parallel logic programming



language, Guarded Horn Clause (GHC), was built to
study the communication mechanism between PEs. This
work thoroughly analyzed how to extend the GHO lan-
guage to design the parallel kernel language, KL1, and
the kind of functions required for the PIMOS. The ex-
perimental distributed language processor of GHC had
its debugging functions augmented and extended fo a
peeudo parallel programming environment of GHOC on
PSI-1 and PSEAL It was used for parallel algorithm re-
gearch running many small ecale benchmark programs,

This made it possible to start the development of the
mmulti-PSL-V2, followed by the development of the prac-
tical KL1 distributed language processor and PIMOS.
These research results were reflected in the design of the
PIM hardware,

The stepwise l:isvbtnpment strategy in which the soft-
ware and hardware development grew little by little
worked more effectively than had been expected.

Thus, most of the technical aims included in the in-
termediate stage goal were achieved by the development
of the nmlti-P5I-V2 with the practical KL1 distributed
language processor and the kernel part of the PIMOS
running on if.

The contribution of the research of the multi-PSL-V2
and PIMOS to the design of the PIM hardware enabled
us to set the rescarch goal of the experimental imple-
mentation of the PIM hardware a higher level in terms
of its processing speed and the size of its PEs. Thus, the
research and development of the PIM in the latter half
of the intermediate stage considered not only the inter-
mediate stage goals but also the goal of the final stage
which aims at a parallel hardware system having about
1000 PEs.

The flow of the important research activities is shown
in Figure 1

This paper describes how we set up the goals and how
we made many important téchnical decisions in the re-
gearch and development of the PIM and PIMOS in the
intermediate stage. Technical details of KL1 language
processors, multi-PS] systems, PIMOS and PIM will be
described in other papers also presented af the FGU5'88
conference 5] [3].

2 INTERMEDIATE STAGE PLAN

2.1 Ewaluation of The Inference Machine Re-
search in The Initial Stage

Research on the PIM and KL1:
The research and development of the inference machine
in the initial stage included research on PIM architec-
tures and the development of the sequential inference
machines.

Research on the PIM architectures was conducted to
find hardware mechanisms that could efficiently exe-
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cute logic programming languages in parallel using such
computational models as dataflow, reduction and Kabu-
wake.

The languages used for this research were Pure Prolog
and Concurrent Prolog, {CP) [14]. Several software
and hardware simulators for these languages were built

-to analyze the algorithms and implementation methods

of their interpreters [6).

This research showed us such problems as the insuf-
ficiency of OR-parallel Prolog in describing communi-
cating processes and the difficulty of implementing the
hardware for the dataflow model. This research made
us realized that the scarce accumulation of parallel soft-
ware would cause & problem in benchmarking the archi-
tectures.

Research on the parallel logic programming languages

- investigated and evaluated such parallel logic program-

ming languages as CF and PARLOG [4] and also, an
abstract machine language for Prolog, WAM [21]. Con-
sideration of implementing these languages in hardware
motivated us to design a simpler langnage and GHC was
born at the end of the initial stage [20].

Development of sequential inference machines:
In the development of PSI-I [18Jand CHII [11], the
architectures to execute sequential logic programming
languages efficiently and their hardware implemnentation
techniques were developed with the KLO firmware inter-
preter and the operating system, SIMPOS. This made
us decide on the development of the multi-PSI aystem
and start the design of a smaller version of the PSI, PSI-
Im[e.

The development of PSI-IT and also CHI-II [7] estab-
lished such important techniques as the architecture de-
sign based on the WAM instruction set and the code op-
timization technique in compilers. The development of
a new logic programming language, ESP [1] which com-
bined logic programming and object oriented program-
ming features to describe SIMPOS impressed us by its
advantages in terms of software productivity, program

- readability and maintainability. This led us to describe

the PIMOS with a single high-level language, KL1, and
to make the PIMOS a single language system.

Summary of the research in initial stage:
Considering the goal of the intermediate stage, PIM hav-
ing about 100 PEs, the research achievements of the ini-
tial stage are summarized as follows:

1. Logic programming is appropriate for parallel pro-
cessing and also for description of operating systems.

2, Current VLSI techoology, including CAD toals is
not sufficient to confine all the functions required
by logic programming in one chip. Thus, the func-
tions implemented in the PE must be restricted. The
code optimization technique in compilers is impor-
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tant to reduce the complexity of the PE hardware
and attain the high performance and reliability of
the PTM.

3. The lack of practical parallel programs makes the
architecture design difficult. It is an urgent mat-
ter to encourage parallel software research providing
software researchers with practical parallel hardware
environments.

2.2 The Intermediate Stage Plan and Its Im-
plementation

Before the details of the intermediate stage goal wers
fixed, the following policies were confirmed:

1. The research of the parallel software systems, specifi-
cally, the KL1 language processor and PIMOS, must
be closely linked to research on parallel hardware
systems, that is, the multi-PSI] systems and PIM.
They must proceed concurrently and stimulate each
other,

2. The parallel hardware systems must be designed to
support software research and development. This
means that hardware research must not be isolated
from software research.

3. Information on the behavior of parallel software sys-
tems is esgential for practical hardware design al-
though little work had been done it. Then, the tocls
and the environments to encourage parallel software
research musk have the highest priority in the invest-
ment of human and financial resmirees.

In line with the above policies, the following goals were
defined at the beginning of the intermediate stage, in
April 1085, However, the level of these goals had fo be
set higher in the middle of the intermediate stage.

1. Experimental building of a PIM having about 100
PEs which efficiently supports KL1.

2. Target processing speed of 2M o 5M LIPS.

3. Experimental building of the PIMOS which is de-
scribed in KL1.

Ag the PIMOS was considered to be the most difficuli
of these items, the development of the multi-PSI sys-
tem which played a role of the PIMOS research tool was
begun quickly to stimulate the development of the KL1
language processor. It was decided to develop the multi-
P5I system in two consecutive steps: the development
of the multi-PSI-V1 using PSLI and the development
of the multi-PSI-V2, making smaller version of the PSI
CPUs be its PE.

1%

In the spring of 1986, the detailed design of the PE of
the multi-PS1-W2, that is the CPU of PSI-II, was com-
pleted and the execution speed of GHC by the multi-P3I-
V2 was estimated by small semple programs. The esti-
mated performance of the firmware interpreter of GHC
om the PE was very impressive. This alse indicated that
the pesformance goal defined at the beginning of the in-
termediate stage would be attained by the multi-PSI-V2
having 64 PEs although the overhead caused by the PI-
MOS was uncertain.

Then, the level of the intermediate stage goals were set
higher and defined in more detail, taking the final stage
goals aiming at a PIM of 1000 PEs info account.

1. The performance goal is 10M to 20M LIPS for a PIM
of 100 PEs and 200K to 500K LIPS for one PE.

2. To reduce the communication overhead between
PEs, a cluster should be introduced to connect about
eight PEs with a shared memory. Then, a PIM with
100 PEe can use several clusters connectad by a hi-
erarchical network.

3. The PIMOS should be developed on the muiti-PSI-
V2, A KLI distributed language processor should be
implemented in firmware, After the PIM hardware
is completed, the PIMOS is moved from the multi-
PSL-V2 to the PIM.

4. A KL1 cross programming environment should be
developed on PSI-IT using & KL1 pseude parallel lan-

guage Processcr,

With these goals, the development of the PIM and
PIMOS could proceed independently. This enabled us
to avoid the problem where one step of development has
to wait for the completion of another.

From late 1987, the study of larger scale network mech-
anisms was started to determine the important technical
problems in connecting around 1000 PEs or around 100
clugters, The technical problems were divided among the
PIM research groups of the cooperating manufacturers
g0 that they could be further studied through software
simulation and by building experimental hardware,

This division of the jobs related to the design and im-
plementation of the PIM among cooperating manufac--
turers was considered to be esseniial in the final stage
to build & larger scale experimental system. Thus, the
preparation for the job division was begun from the lat-
ter half of the intermediate stage.

The research a.nd-deveinpmmt iterns deseribed above
are summariged in Figure 2.
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KL1-U: User language

EL1-C: Kernel of KL1 KLL-P

KL1-B: Base language

Figure 3: The KL1 Language System

2 KL LANGUAGE PROCESSORS

3.1 KLl Language System

In the design of the language for the PIM, there were
two choices: an OR-parallel logic programming language
or & stream-based AND-parallel logic programming lan-
guage. Considerations of the description of the PIMO3
which required the description of message passing among
many processes and also the sisnplicity of their hardware
support resulted in the adoption of the latter, GHOC was
decided on.

We believe that this cheice was appropriate because
‘we had to make a great effort to develop its distributed
language processor elthough we designed KL1 not fully
based on GHC but on a subset of GHC, called Flat GHC
{(FGHC).

GHC i not & practical language but defines the com-
putational model. A system description language and
a machine language has Lo be designed based on this
model. The language system of KL1 was defined at the
beginning of the intermediate stage. Tt had the language
layers shown in Figure 3.

KL1-C is a system description language which is the
kernel of this language system. It has such functions as
modularization and macro-expansion, and many prac-
tical built-in predicates in addition to the FGHC fune-
tions. KL1-C is used to describe the PIMOS and appli-
cation systems. KL1-C is compiled to KL1-B.

KL1-B is an abstract machioe instruction set used in
the same way as WAM is for Prolog. It is used as the
commen machine language for both the multi-P5I-V2
and PIM.

KL1-P is a notation used with KL1-C to specify how
to divide jobs inte sub-jobs that can be processed in
.pa.ral.l:ul or how to distribute jobs.

KL1-U is a uwser defined language which will be de-
signed to fulfill the requirements in a variety of appli-
cation systems. Some examples are an object-oriented
parallel language A'UA{ [22] and constraint logic pro-
gramming languages, '

3.2 Distributed Language Processors of KL1

The design of PIM primarily needs information on the
specifications of KL1-C and EL1-B and the contrel

21

mechanism and behavior of thé PIMOS. This means that
the characteristics of the total system with layers span-
ning from application software to hardware must be es-
timated.

As the estimation of the characteristics of applica-
tion software was almost impossible, the study was be-
gun from the possible configurations of the PIM hard-
ware system, considering a PIM of 1000 PEs. To con-
nect many PEs, the connection mechanism had to use
2 loosely coupléed mechanism such as a packet switching
nebwork,

On the other hand, it was expected that the size of par-
allel processes, that is, the grapularity, would be small
in most application software written in KLL. For small
granularity, a tightly coupled mechanism such as a com-
mon bus with a paralle] cache system and a shared mem-
ory was adequate to reduce the communication delay.

Both of these are important mechanisms for large scale
parallel systems. The PIM of the final stage was ex-
pected to use a hierarchical network combining both
mechanisms. However, a locsely coupled network could
have different structures such as two-dimensional mesh,
hypercube, or cross bar, depending on the character-
istics of application software in terms of structures of
programs and algorithms. '

Then, the KL1 language processor had to be designed
independently from the details of the hardware strue-
tures. Before the design started, we decided to build
three experimental KL1 language processors,

1. An intra-PE language processor.

2.A tighﬂ}r distributed language processor for the PIM
cluster.

3. A loosely distributed language processor for the
multi-PSI-V2.

The development of the language processors (LPs) be-
gan with the design of an intra-PE language processor
(LP) of which the key issues were the design of the KL1-
B instruction set, opfimization technigues in the com-
piler, the implementation method of the process man-
agement, and the garbage collection (GC) technique.

The tightly distriboted LP uses a shared memory,
and thus, a single address space. The key issues were
the communication method between PEs, including the
lock mechanism used for PEs to share the common data
structure and the eache protocol, and the implementa-
tion of GC.

The locsely distributed LP needs communications
among multiple address spaces. It contained many diffi-
cult research problems not confined to the LP but related
to the PIMOS functions. For example, & communication
between two different address spaces nsually takes much
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more time than the tightly distributed LP. It requires op-
timization in its implementation such as the eaching of
the transferred data. The resource management of both
local and global address spaces needs complex mecha-
nistns including global GC. The observation of the be-
havior of the LP needs also special mechaniams as well
as the mechanism for the tesource management.

- The experimental intra-PE LPs for FGHC had been
written in Prolog and the language C in ihe initia] stage.
Based on these, the loosely distributed LP was imple-
mented for FGHC on the multi-PSI-VI to determine the
problems in the design of KL1-C and KL1-B.

In the latter half of the infermediate stage, ithe locsely
distributed LP for KL1-B was designed and implemented
in firmware on the multi-PSL-V2. KL1-C was desipned
concurrently followed by the design of the PIMOS. The
design of the tightly distributed LP for PIM was started
in the middle of 1987 [13].

4 MULTI-PSI SYSTEM

4.1 Outline of A Research and Development

The purpose of the multi-PS1 system was to provide soft-
ware res¢archers with the parallel hardware environment
very quickly; however, its development contained many
research problems. The reasons for this development are
summarized as follows.

1. The development of KL1 language processors and
PIMOS needs many new ideas. Effectiveness of the
ideas must be quickly evaluated by making experi-
ments. The research and development of PSI has de-
veloped many skillful resecarchers and engineers and
has improved software and firmware tools. It is the
moat suitable environment in which to make many
experiments in a short period.

2. It is not easy to make an experimental parallel hard-
ware system reliable and maintainable encugh for
use as a software development tool. Using the PSI
as its PE greatly reduces this problem.

Before the infermediate stage, discussions were held
on the specifications of the multi-P5] system, especially
on it network mechanism and the architecture of the
smaller version of the PSL

Their design and implementation started just afier the
intermediate stage began. The mulii-PSI-VI was com-
pleted in the middle of 1986. The CPU of the smaller
version of the PSI was completed in early 1987 and built
up as the front end machine of the multi-PS1V2. This
front end machine was also used as a stand-alone work-
station, PSI-TL '

PSI-IT employed the instruction set based on WAM
and made full use of the code optimization technique

Table 1: Main Features of P5SI-1 and PSJ-I1

P5I-I PSI-II
Device TTL (Fast) |CMOS-G.A., TTL
Cydle time 200 s 200 ns
‘Word width 40 bits 40 bits
wes 6db x 16KW |53b x 16KW
Cache memory AW x 2 4KWx1
Main memory 16MW (Max) [ 64MW (Max)
Memary chip 256 Kbit |1 Mbit
Max. No. of Process | 64 8,/W defined
Machine code Table type WAM type
Structure data Sharing Copying
Exe. speed{Average) | 30 KLIPS 150 KLIPS
Exe. speed{Append) | 35 KLIPS 333 KLIPS

with its compiler. For compactness, its hardware used
nine newly developed 8k-gate CMOS gate-array LEIs.
PSI-II attained a thresfold to fivefold improvement in
ESP execution speed.

The network' of the multi-PSI system has a two-
dimensional mesh structure, Each node of the network
has a function to relay the packets from one node to an-
other. The routing control mechanism in the node was
extended and implemented in two 20k-gate LSz for the
mulii-P31-V2. Development was completed in the spring
of 1988, but the inspection of the hardware consisting of
f4 PEs took a long time because of the connection of the
front end machine, and preparation of test programs and
observation programs. The preparation of the inspection
was much more complicated than had been anticipated.
The total hardware system began operation in the sum-
mer of 1988,

The design of the loosely distributed language proces-
sor of KL1-B was started in 1986. Its specification was so
complex that ite verification had to be made by writing
it in the langnage C. The firmware implementation of
the language processor was begun in late 1987 and par-
tially completed in the summer of 1988, It was hurriedly
provided to develop the PIMOS on PSI-IL

On PSI-II, the KL1-B firmware resides with the KLO
firmware which rens the SIMPOS. Programs written in
KL1 are run as processes under the SIMPOS as well as

* the programs written in KLO {or ESF). The SIMPOS



switches the firmware depending on whether the process
is written in KL0 or KL1-B.

In 1988, the hardware of the multi-PST-V2 is being
reproduced to distribute it to many software research
groups so that they can start parallel software research
from the beginning of the final stage.

The development of the multi-PSI system made full
use of experience and item that had already been devel-
oped, such as microprogramming tools, evaluation teols
and the SIMPOS.

Without these, we could not cope with the scale and
complexity of each part of the system, for example, the

large and complex hardware, complex firmware for K1.1- J

B, and observation and diagnosis functions of the front
end machine.

4.2 Muolt-PEL-V1

4.2.1 Functions and Organization of The Sys-
tem

The multi-PSI-V1 consists of six PSI-Is as it PEs
which are connected by a two-dimensional mesh net-
work. The reason why & two-dimensional mesh network
waz adopted was that it was considered lo be appropri-
ate as the first step in studying the load balancing of
application software systems.

T salve the load balancing or load distribution prob-
lem, we first adopled Lthe policy that programmers must
explicitly specify how to divide their jobs into sub-jobs
that can be processed in parallel at the system program-

This was different from most past proposals on this
problem made after past parallel architecture research
which tried to provide automatic mechanisms to exploit
parallelism in users' programs. We concluded that this
method was ideal but too difficult fo attain, capecially
for the PIM and PIMOS.

Our proposal is that one job written in KL1-C be di-
vided into many sub-jobs specified by the programmers
using KL1-P. Furthermore, the programmer should be
able to specify explicitly the amount of computational
resources and the priorify given to each sub-job, This
specification, however, may not be accurate, something
like afirst order approximation. The actual loads of sub-
jobs on PEs will accordingly be unbalanced among PEs.
Thus, the PIMOS tries to compensate dynamically for
this imbalance as much as possible.

We examined & model in which computational re-
sources were uniformly distributed on a two-dimensional
plane. When a programmer tried to specify the how jobs
are divided and the amount of resources of each sub-job,
the position and the amount of space were used as the
parameters. An overhead caused by a communication
between PEs was propertional to the distance between
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two points on the plane. Thus, the locality of communi-
_cations is represented.. This model was named the Pro-
cessor Power Plane model [2].

A dynamic job reallocation method based on this
model was created. As this method was considered to
canse too much overhead if implemented only by the
PIMOS, its hardware support mechanism was designed
and implemented in the network node of the multi-PSI-
W2 [16].

The network of the multi-PSI system was designed
based on the above, The appearance of the multi-PSI-
V1 is shown in Figure 4. The structure of the network
is shown in Figure 5.

Each node of the network has five channels. One of
them is connected to the PE of its node and the other
four are connected to four neighbors. Fach channel has
independent input and cutpul circuits, each of which
contains 10bit data and signal lines and 4k-byte FIFO
buffers, so that multiple communication paths can be
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opened. Bach node also has a simple routing mecha-
nisrn confrolled by a table in which control instructions
are kept. The data transfer rate of each channel is 500
Kbytes/sec.

Packet transfer is controlled by the PSI micropro-
gram and the SIMP QS deviee handler, The FGHC dis-
tributed language processor implements inter-PE com-
munications using this handler.

4.2.2 Hesearch on The KL1 Language Proces-
sor

The purpese of the multi-PSI-V1 was to develop a
loosely distributed LP for FGHC to study the imple-
mentation of distributed unification between PEs, the
control method of the load distribution, the observation
mechanism to watch the behavior of the PEs, and the
debupging support mechanism,

The development of this LP started with the devel-
opment of a pseudo parallel LP for FGHC on a single
PSE-I. This pseudo parallel LP sirmulated the parallel ex-
ecution of FGHC programs under the control of the SIM-
POS. It had a simple tracer and debugger and also some
measurement functions for computation time, number of
reductions, -and communication delay.

After the multi-PSI-V1 hardware was completed, this
pseudo parallel LP was moved on fo it and extended
to execute the programs in parallel among six PEs. As
this LP was built to evaluate the implementation meth-
ods of the mechanisms described above, the execution
speed was about 1K LIPS, However, it ran several small
seale programs such as the eight queen problem and the
best path problem and contributed to the study of job
distribution and the parallel algorithms [17].

Among the achievements of this experiment, the most
valuable was the method to implement the observation
and maintenance mechanisms to conirol and measure

the distributed execution of programs. This experience

was reflected in the design of the multi-PSE-V2.
43  Multi-PSL.V2 '

4.3.1 Functions and Organization of The Sys-

tem

The multi-PSI-¥2 contains up to 64 PEs, Its appearance
is shown in Figure 6. The organization of the system is
as follows.

i. BEach PE consists of three CPU boards, one net-
work board and four memory boards containing S80M
bytes.

2. Tts network has the same structure as the multi-PSI-
V1. The functions of each node are augmented using
two 20k-gate L5Is to attain the data transfer rate of
5 Mbytes/sec and fo contain the circuit to support
the load balancing mechanism described in 4.2.1,

4. The main part of the sysfem consists of eight cab-
inets, each of which contains eight PEs. The mini-
mmm configuration of the system is one cabinet.

4, The froat end machine, PSI-IE, has such funciions as

* input and cutput, obsetvation and maintenance for
the main part. Up to four front end machines can
be connected to the 64 PE system.

5. The front end machine has two logically indepen-
dent functions which are called the front end pro-
CESS0T {FEP] and the console procassor I:C’SPL The
FEP performs input and output cperations for the
PIMOS, the CSP performs the functions for obser-

vation and maintenance.

6. The front end machine i3 connected to each PE of
the main part with a 10-bit-wide common bus, Using
this bus, the front end machine loads firmware and
software and monitors and diagnoses all the PEs.

The scale of the hardware of the mam part iz very
large. The hardware contains 512 printed circuit boards
and a 50 byte memory. Its testing and debugging re-
quired many firmware and software tools. Many of them
were prepared as CSP functions. Most of the test pro-
grams were written in ESP. In its hardware debugging,
the KLOD firmware and the kernel part of the SIMPOS
were loaded m each PE to run the test programs writ-
ten in ESP. This made the debugging very efficient and
helped us to keep io the development schedule.

4.3.2 Loosely Distributed KL1 Language Pro-

CEess0r

The development of the loosely distributed KL1 LP be-
gan with the design of the KL1-B specification. - The
design of the KL1-C specification was also started by

extending the specification of FGHC.

At the beginning of the design, the level of KL1-B was
roughly set to the level of WAM and then extended to
cover distributed implementation. The architecture of
the PE based on this level can be seen in Figure 7. [3]

The execution of KL1-B is performed using several
quenes such as a ready-queuse, suspension records and
a goal quene, The PE takes one goal (process) from the
ready-quene and prepares the environment in registers
to execute the goal. The execution produces new ready
goals. They are put in the ready quene again. If some
variable is not instantiated, the new goal is added to the
suspension record. This is & very rough shetch of basic
KLI-B execution.

In addition to the basic execution functions based on
FGHOC, many important functions o make KL1-B prac-
tical were added, as described below.

Incremental garbage collection (GC):
One of the major problems in executing KL1-B in a PE
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is GC. In executing KL1-B, data areas are made for vazi-
ables, lists and so on. These areas are made in the heap
area in the memory. Some parts of these areas are re-
ferred to by several parallel processes.

Languages like KL1 need a method to reclaim the data
arcas afler they become unmnecessary. In Prolog, two
different methods are used to reclaim vanecessary used
areas. One iz a stack mechanism which reclatms them
on the way of program execution. Another is GC, which
usually stops the execution during the GC process,

KL1-B also nesds a method to reclaim weed memory
areas. However, it cannot employ an efficient method
like a stack mechanism because the areas can be re-
ferred to by several processes. If no such mechanism is
employed, reclamation of the used areas relies solely on
GO, If usual non-incremental GO is used, the execution
will stop very often. Furthermore, non-incremental GO
accesses memory almost randermly. Thus, it causes cache
mnis-hit often and degrades the execution performance.

Incremental GC can be used to solve this problem.
However, its naive implementation is very heavy and
greatly degrades the performance. We found a method
to reduce the heavy overhead of incremental GO, This
method was named muliiple reference bit (MRE)-GC.
MREB-GC uses one additional bit in the tag field of each
memary word to indicate whether there are one or more
than one references to the word. This made it possible to
use the tag handling hardware so as fo attain reasonable
execution speed.

In the execution of KL1 programs, one memory word
is referred to by only one process in many cases. Thus,
MEB-GC works very effectively and reduces cache mis-

hit ratio and the occurrence of non-incremental GC.

Inter-process communication for distributed uni-
fication:

Contrel of communicetion among parallel processes is
hidden under the KL1-B level. This is useful to make

the KL1 language processors commeon to the multi-PSI-

V2 and the PIM,

Unifications among the PEs on the multi-P5[-¥2 and
the clusters of the PIM are implemented using global
packet communication. [mplementation of this global
communication needs some memory aress in the PE or
the cluster. These memory areas should also be re-
claimed. A naive solution for this is global GC which
et stop all the PEs or the clusters al one time.

To perform G0 separately in each PE or cluster, dif-
ferent address spaces have to be provided for each PE
or cluster to make a distributed environment. A packet
transferred among the different address spaces needs its
identifier. A memory address cannet be used for this
purpose because the daia address is changed by GC.
Then, a table is used to convert local addresses to global
addressea or vice versa. This table is called an im-

port/export table. This method is often used for high-
!GWI ].E-'I'IEI.'IH.E(: PEIH]_H PIUE{EEHI'&.

A5 the number of entries of this table is limited, used
entries have to be reclaimed by GC. The naive solution of
this iz again global GC. Incremental GC can be applied;
however, its ordinary implementation in a distributed
environment canses a problem called racing. Racing is
caused by delay in packet transfer. If racing occurs, an
entry is reclaimed eventhough a packet which refers to

“that entry still exists.

To solve this problem, we designed a new method
called weighted export count (WEC), in which a weight
is given to each entry of the table and referenced data [8].

PIMOS support functions:

Ma.ny functions were added for auppnri.ing the PIMOS.
Some examples are functions for program execution
management, computational resource managerent, de-

~ bugging and maintenance.

Including the functions desciibed above, a KLI1-B in-
terpreter which is the kernel of a locsely distributed KL1-
B LP was implemented in firmware. To avoid low pro-
ductivity of firmware development, the interpreter was
primarily written in the language C to verify its spec-
ification and algorithm of implementation, This inter-
preter waa next naed a2 a specification of the firmware
int.r_'!prétcr.

The size of the irmware interpreter is shown below.

Basic instructions 38K
Basic built-in predicates 16K
Memory management, netwark confrol, ete, 4.4 K
Hardware control 12K .
Total microprogram steps 14 K

Observing this table, the size of the memory manage-
ment and network confrol part is larger than that of
the basic instruction part which controls the execution
of KLI-B in one PE. The basic instructions have been
studied in detail in the past. However, the memory man-
agement and network control has not. Ifs instruction
design, especially ifs assignment of required functions to
each of the instructions is not optimum. This makes the
structure of its firmware implementation complex. Thas
part is most closely related to the control of distributed
unification, thus , requiring further study in the future.

A PSI-II which is used as the front end machine of
the multi-PSI-V2 or a KL1 cross programming environ-
ment must have both KLD and KL1-B firmware systems.
As the total capacify of both firmware systems excesds
the capacity of PSI-II microprogram memory, a firmware
overlay function was added. The execution speed of the
KL1-B interpreter was 50K to 100K LIPS.



In the development of this interpreter, firmware de-
bugging teols which had been developed for the KLO
firmware were used very effectively. The kernel part of
the PIMOS which was being built concurrently was used
as a test program for this interpreter.

- Expérience in the design and implementation of this
interpreter is now used as the solid base for the develop-

ment of the tightly distributed KI:1 LP used in a PIM.

cluster and also the loosely disiributed KL1 LP used for

communication among the cluaters.

5 PARALLEL INFERENCE MACHINE: PIM

5.1 Outline of Research and Development
5.1.1 Design of The Basic PIM Structure

The PIM intermediate stage research began substan-
tially from 1986 after its intermediate stage goals were
defined based on the evaluation of the research results
attained in the initial stage.

Discussicns on the basic design policy of the PIM cov-
ered many aspects such as terget performance, basic
architecture, available device technology, CAID design
tools, development period and development cost.

One important discussion was held on cirenit density
of the device and development period. It proposed two
alternative policies on PIM hardware building,

1. To reduce risks, the design of PIM hardware should
limit its scale up to 100 PEs. Low density devices
which have well prepared CAD tocls should be used
so as to make the development period short and cer-
tain.

2. Although the risk s high, high density devices

should be used to coafine one PE to one printed

. board. The PE should have continuity to & PIM in

the final stage, which should have about 1000 PEs.

The PE should be superiority in performance to the
technical standard in the final stage.

Being influenced by the estimated performance of the
mubti-PSE-V2, the natural conclusion of the discussion
was to choose 2. The research goals based on this policy
were considered fo be very difficult to attain. However,
this choice was thought to be more suited fo the philos-
ophy of this project.

The basic architecture of the intermediate stage PIM
was determined in order to employ a tag architecture
which could maintain continuity from the multi-PSI-V2,
The performance goal was defined to be 2001 to 500K

LIPS for one PE, including the everhead cauvsed by in- .

cremental GC. This performance goal implies that if this
PE is used for Prolog, it will attain more than 1M LIPS,
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To implement one PE on a single board and atiain
200K to S00K LIPS, the PE needed not only high den-
sity chips and a highly optimised architecture to make
its cycle time short but alse 2 sophisticated code opti-
mization technigue with its compiler.

The connection mechanism of the PE needed to realize
a short response delay for communication between PEs.
This delay was considered to determine substzntially the
lower limit of process's granularity. If the delay is made
shorter, the size of processes can be smaller. Then, the
number of processes that can be processed in parallel
will increase,

The connection mechanism which made this delay
shortest was considered to be a common bus with a par-
allel cache and a ghared memory. Then, & cluster was
introduced in the PIM. The performance goals of the PE,
the cluster and the total system are shown in Figure 8.

5.1.2 Simulators for PIM Design

The design of the PE began with an analysis of the KL1
program's behavior. The primary iotention was design
of & cache mechanizm including its protocol design, This
was made through software simulations,

The firat simulation was made on VAX 11/T85 using a
KL1-B interpreter and a parallel cache simulator, both
of which were written in the language C. The KLI-B in-
terpreter generated address patterns, by executing small
benchmark programs suech as the N-queen program. The
cache simulator analyzed the address patterns and eval-
uated the cache mis-hit ratio and treffic on the common
bua.
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In late 1986, Sequent’s Symmetry system was intro-
duced to extend the scale of simulation and to make the
simulations more precise. The Symmetry system is a
mulii processor using conventional microprocessors. On
this system, the KL1-B simulator ran at 2K to § K LIPS.

Through the simulations, the characteristics of KLI
programs gradually beeame clear. For example, execu-
tion of KL1 programs consumes a heap area very gquickly.
The locality of its memory accesses was worse than that
of usual Prolog. Many memory cells are written and
read only once. These facts motivated us to create the
MRB-GC method.

For communication among PEs, the communication
rate between PEe for KL1 programs is higher than that
for conventional language programs. PEs lock memory
words before they write them. These write operations,
in most cases, do not cause access contention for KL1
PTOETAINS,

With these results, the number of PEs in the clus-
ter was determined to be eight. The KL1-B simulator
was extended to have MRB-GC and then modified to
run in parallel using several processors of the Symmetry
system. It is now used as a base for designing tightly
distributed langnage processors [13], [L0].

5.1.3 Design of The PIM hardware System

PE Design: :

The design of PE hardware began with the design of
an instruction set. This instruction set may be called
a conecrete machine instruction set, by contrast with an
abstract instruction set like KL1-B. It can approximately
be one of two different types as follows:

1. A high-level instruction set which is similar to KLI1-
B is employed and is implemented in firmware. This
instruction set has characteristics like CISC.

2. A low-level instruction set which is directly imple-
mented in hardware. This instruction set has char-
acteristics like RISC. In this case, KL1-B inatrue-
tions are interpreted by run-time routines written in
theze low-level instructions.

Each of these choices had both advantages and disad-
vanfages. As described in 4.3.2, the basic instructions
of KL1-B had been studied in detail and well optimized.
However, instructions for memory management and net-
work control needed further study and were possibly to
be changed for better optimization in their implementa-
tion.

The advantage of the high-level instruction set with
firmware implementation is its flexibility of changing the
instruction design and thus, suitable for experimental
machines. Its disadvantage iz obvious in chip design. It
tends to need a long cycle tiine and large chip arvea to
implement its micreprogram memory.

The advantage of lew-level instruction set, however,
is its simplicity of instroclions which resulls in & short
cycle time and small ameount of hardware. This fea-
ture enables us to improve the execution time if code
optimization by compilers works effectively. If the code
optimization does not work well, result is drastic, long
cheins of instructions and slow execution fime.

Roughly speaking, the high-level instruction sef is suit-
able for a flexible conirol oriented design, and the low-
level instruction set is for a fast execution oriented de-

sign. Both of these are worth further study and evalua-

tion totally in the framework of the PIMOS implemen-
tation.

Inter-cluster network design:
The network hardware design has many problems. Most
of them are derived from the fact that its performance re-
guirements are very vague, This is because no large scale
parallel soffware has ever run anywhere in the world,
Thus, no one can imagine how it will behave and what
performance requirements are.

We are trying to design the network hardware bottom
up and are helding discussions on the following issues,

L. Control methods and their hardware support of the

inter-cluster networle

2. Structures (or topology) of the inter-cluster network

On the first item, the target of the design is to attain
fast respounse time or shortest delay for message transfer
between two clusters. One idea is hardware support for
management of the import /export table and caching of

transferred data.

On the second item, several important network struc-
tures have been proposed.” Some examples are the two-
dimensional mesh of the multi-P5SI-V2, hypercube and
cross-bar,

However, no detailed discussion has been held on the
structures in connection with a module structure of par-
allel programs, distribution of parallel jobs and locality
of communication among parallel processes, because the
characteristics of large acale parallel programs are not
known yet. Af this level, software simulation is nof as
reliable as the simulation of a KL1 program’s behavior
mside the cluster. No appropriate benchmark pregram
is available. This iz something like outer space in the
research of parallel processing.

We expect that the PIMOS and some parallel applica-
tion software running on the multi-PSI-V2 will give us
some new knowledge on the above issues.

Current plan of the PIM implementation:

After the design of the PIM cluster was completed in the
spring of 1988, the design of the PIM total system which
included 16 clusters began in parallel the chip design and
production.



The design of the PIM total system made us realize
that it would contain many diffienlt problems and several
technical alternatives to be further studied, as described
above,

We have decided to deal with these problems includ-
ing many alternative cheices by dividing them among
resesrch groups at ICOT and cooperating manufactur-
ers.

adopted the low-level instruction set for its PE and a
hypercube network for its inter-cluster network. It was
designed to be extensible up to about 500 PEs. An at-
tempt was made to construct a hardware system having
128 PEs around the end of the intermediate stage. As
this development will be continued in the final stage, we
named it PIM/p to distinguish it from other PIM models
to be developed also in the final stage,

We now plan to develop several experimental hardware
systems based on different models such as the PIM/c
which will adopt the high-level instruction set for its
PE and a cross-bar nefwork, and the PIM/m which will
be an improved and extended version of the multi-P51-
V2. AN of these will use the PIMOS as their common
eperating system apd many software experiments will be
made on them.

5.2 - Functions and Organization of The PIM/p

5.2.1 Configuration of The Hardware System

The PIM/p, whose hardware system will be constructed
around the end of the intermediate stage, consists of a
main part which contains 16 clusters, a front end ma-
chine, PSL-II, and an SVF which performs maintenance
of the main part as shown in Figure 9.

Eight PEs are connected in a cluster. Eight clusters
are contained in one cabinet. Then, a PIM/p having 128
PEs consists of two cabinets.

5.2.2 PE and Cluster Architecture

The design of the PE started with the employment of &
low-level instruction set and a four stage pipeline hard-
ware for instruction execution. However, it was realized
that the complexity of some KL1-B instructions needed
too many low-level instructions to be described. Then,
some macro instructions were added to the PE's instrue-
tion set. A macro instruction is interpreted by dedicated
low-level instructions stored in a special internal memory
which coptains about 8K instructions. The instructions
stored in this memory are called internal instructicns.
Ordinary instructions are read from an instruction cache
and called external instructions. Internal instructions
can be regarded as a kind of microprogram [15].

The width of the external instruction is either four,

six or eight bytes. The function of each of these instrue-
ticne is much more sophisticated than the usual RISC

First of all, the PIM for the intermediate stage goals
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instrnction of a conventional microprocessor. KL1-B in-
structions are too complicated to be interpreted only by
the external instructions. Thus, macro instructions have
to be added.

In execution of KL1-B instructions, a conditional
branch operation depending on data types appears very
often. To perform this operation quickly, delayed branch
instructions are provided to reduce useless execution cy-
cles by augmenting the instruction execution pipéline,

A CPU of the PE has thirty-twe 40-bit general regis-
ters and other dedicaied registers for tag checking, float-
ing point numbers and so on. The contents of these reg-
isters must be seved for process switching, In execution
of KL1-B, process switching happens very frequently. Teo
perform process switching quickly, a special instruction
called slit-check is introduced using the characteristics
of KL1-B instruetions. The slit-checl instruction is a
kind of optimized interrupt checking instruction. It can
be executed in one cycle.

A PE cache is a coherent cache with a write-back
mechanism. It has two independent buffers for data and
instructions. The size of each buffer is 64K bytes. The
block sige of the data buffer is four words.

In addition to the functions described above, the PE
has functions for connecting it to the front end machine
and the inter-cluster network.

The PE is implemented on a single printed board using
five 80k-gate LSIs. The cycle time of the CPU is 50
ns. The execution speed of an append operation which
is written in KL1-B as high as about 600K LIPS. The
structure of the PE is shown in Figure 10.

In & cluster, eight PEs and a shared memory are con-
nected via a 64-bit wide common bus. Its address space
is 43 bytes. The current implementation of the cluster
includes 256M bytes for the shared memory.

One unit of the PIM network system is a four dimen-
sional hypercube network. Bdch node of the network has
four channels. Each channel has a one-byte data line. Its
throughput is 20 Mbyte/sec.

The current implementation uses two units of the net-
work systems fo increase the throughput. Each cluster
is connected to four other clusters using two channels
per cluster.

5.2.3 Program Execution in The Cluster

The tightly distributed KL1-B language processor uses
the cluster described above. This language processor
implements inter-PE communication using the shared
memory, Thus, it can make the communication delay
much smaller than that of the multi-PSI-V2. It is ex-
pected that the time for one transfer of message from one
PE to another can be reduced o a few microseconds or
less.
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KL1-B programs are executed in the environment de-
scribed in 4.3.2, using such dala structures as queues
and trees. Ready queunes and goal records are impor-
tant data structures. The goal records which are a tree
sbructure contain the history of program execution and
are shared by all PEs in & cluster.

If one PE throws one goal to another and this goal is
ready to be executed, it is put in a ready quene attached
to the PE. Bach PE has ifs own ready queue. As sach
goal has its own priority for its execution, each ready
queue is divided into many subgueues according to the

" priority. There are several other data structures used for

execution.

Some of these data structures are shared among PEs
in a cluster. i one data structure is accessed by many
PEs very often, it nesds fo be duplicated and allocated
in separate memory areas to aveid access contentions.

Allocation of these data structures is very important to
reduce bus braffic and cache mis-hit ratio. An important
design criterion is to raise the locality of accesses by the
opiimized allocation. This enables us to make full use
of the cache mechanism.

The language processor for a duster currently has the
fallowing data stiucture allocation:

1. A total memory area in the shared memory is di-
vided into several local memory areas and a commen
memory area. Bach local memory area is assigned
o each PE. The common memory area is shared by
all the PEs.

2. A separate ready queune is attached to each PE and
put in its local memory area because ready queuss
are most frequently accessed.

3. The goal records are connected by pointers and from
a tree structure. This iree structure extends its
branches {subtrees) according to program execution.
If one goal is dispatched form one PE to another, a



new subroot is made and a new subiree grows up.
In the current design, the goal record subtree is at-
tached to each PE as shown in Figure 11.

Goals are distributed when a busy PE throws a goal
when it receives a request from a non-busy PE.

The tightly distributed KLI-B language processor is un-
der detailed design. The design is evaluated using the
simulators described in 5.1.2.

& PIM OFPERATING SYSTEM: PIMOS

6.1 Outline of Research and Development

From the intermediate stage, the PIMOS was included in
the plan as an important research target of this project.
Before that, its role and position in the project were not
clear.

Generally speaking, many researchers of parallel pro-
cessing had realized that management of computational
resources in connection with job distribution and load
balancing was an indispensable function of parallel ma-
chines. .

However, it was difficull to tell which layer of parallel
machines should mainly perform this function: machine
architectures, language processors, operating systems, or
application programs. In research of dataflow machines
for scientific computing, this function was mainly treated
as a problem of machine architectures. Some hardware
mechanisms were proposed for this.

In research of parallel inference machines for knowl-
edge information processing, it sesmed that machine
architectures could play enly a subsidiary role for this
problem. Purthermore, considering the difficulty in the
use of parallelism from application programs by compil-
ers, language processors did not seem to be eppropriate
to embed this function in themselves, This made us de-
cide to develop a parallel operating system for the PIM,
namely, the PIMOS, although we did not have any con-
crete idea of embedding this funciion m the PIMOS.
Even now, this situation has not yet changed greatly.

To start the research and development of the PIMOS,
the following design policies were made:

1. A practical operating system used for large scale
software experiments. .
2. A stand-alone self-contained operating system.

3. A single operating system showing a parallel ma-
chine as one system.

4, To be described in KL1 and be independent from
architectural details.
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The PIMOS research goal in the infermediate stage
was defined to have two basic management functions.
One was a function for program execution management,
which introduced a layered structure in program execu-
lion using meta-programming. This function is called
“Sho-en”. Another was a function for resource manage-
ment, which manages such computational resources as
CPUs, memories and input foutput devices,

-Before the PIMOS starts to run, it is loaded from the
front end machine using the OSP functions. After it
starts, it contzals the entire hardware system. The front
end machine is regarded as a special PE which controls
inputfoutput devices (FEP functions). The PIMOS may
imnﬁlne that FEP is also runrli.ng as a parl of PIMOS,

To make the scope of its development 2s small as pos-
sible, it was decided to buid its programming environ-
ment on a PS-IL A peeudo parallel KEL language pro-
cessor and PIMOS were built on PSI-IT; however, most
inputfoutput operations including man-machine inter-

face were performed by the SIMPOS.

This programming environment including the PIMOS
built on the SIMPOS is called the PIMOS-5 {PIMOS on
a single processor). It is not easy for us to make many
copies of the multi-PSI-V2 to distribute them to software
researchers. The PIMOS-5 on PSI-1I will be the most
popular parallel programming tosl m the bc;i'nning of
the final stape.

The PIMO5-5 has a debugging teal that can change
the order of process scheduling by random numbers so
thal programmers can detect bugs cansed by a different
execution order. The development of the programming
environment deseribed above was also included in the
research goals.

Research on the PIMOS began with the design of its
functional specification. As the functions of the PIMOS
were closely related to that of KL1-C, the design of KL1-
C was carried out concurrently. In the spring of 1937,
their conceptual design was completed.

The functional design of the PIMOS and KL1-C pra-
ceeded with experimental software building so that the
design could be verified. This software was built on Se-
quent’s Symmetry system using the language C and or-
ganized into another KL1-C programming environment
called the PIMOS development support system (PDSS).
The PDSE has 2 KL1-C language processor including
the Sho-en function and micre-PIMOS, both written in
the language C. The functional design was completed in
the spring of 1988,

In the summer of 1988, the kernel part of 2 KL1-B
firmware interpreter began operation on a PSI-II as de-
scribed in 4.3.2. The PIMOS-5 also started running on
the PSI-II for debugging and also for development of
demoenstration programs for the coming FGCS'88 con-

ference. The PIMOS-M (The PIMOS on the Multi-
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PSI-W2) is still under development. The PIMOS-M and
PIMOS-S are almost the same except that the PIMOS-
M runs on & real parallel environment and will produce
more bugs than the PIMO5-5 because of real parallel
execution of its program. These two versions of the PI-
MO3 are planned to be released in the summer of 1989,
The PIMOS-M and PIMOS-S are shown in Figure 12.

6.2 Function and Organization

6.2.1 Main Features of The PIMOS

The main role of the PIMOS is to provide ifs users
with an efficient and safe program execution environ-
ment by managing a variety of computational resources
such as computing resources, memory resources and in-
putfoutput devices.

The mosl basic and important function of manage-
ment is protection of the operating system against user
program bugs. Reflecting on this function, user pro-
grams are also protected. To implement the manage-
ment, structuring of program execution is indispensable.
For mstance, some conventional operating systems use
a layered ring structure for program exscufion manage-
ment to protect themselves from user program bugs.

In the PIMOS, this structuring mechanism weas imple-
mented as one of the program execution control func-
tions. It was named “Sho-en®, Using this function, re-
source management functions were implemented.

Functions for program execution control:
PIMOS nesded the structuring of program execution to
implement management mechanisms as described above.

However, FGHC, which was the base of KL1-C, lacked
any structuring mechanism. Its execution structure is
flat. Then, this mechanism was added as an execution
mechanism of KL1-C nsing meta programming . Meta-
prograsuming separates program execution into two lev-
els, a meta level and an object level, using a special
program call called & meta-call.

In KL1-C, this call was named a “Sho-en™call. “Sho-
en” in Japanese corresponds fo *manor” in English. Ex-
ecution of KL1-C programs repeats a call of & goal which
is something like a subroutine call. The Sho-en call is
a special goal call. Program execution being expanded
under this cell is treated as a unit of computation be-
ing managed separately. This unit is called a Sho-en. A
Sho-en call sesme lile the entrance to a Sho-en.

A Sho-en call can be made in any Sho-en recursively.
Thus, this call makes a tree-like structure in program ex-
ecution. In this case, Sho-ens are nested making a parent
Sho-en, children Sho-en and grandchildren Sho-en. Us-
ing this structure, program execution control functions
of the PIMOS are implemented.

I a program executed in a Sho-en fails or encounters
an unexpected event, it is reported to its parent Sho-

a3

Operating System
(meta-level

Sho-en call

aontrol

Raport

User Program

ob ject-level)

Figure 153: An image of Sho-en

en. The parent Sho-en can control the execution of the
children Sho-en in many ways such as contiouing and
aborting. With this mechanism, protection function is
realized in the PIMOS. A Sho-en is shown in Figure 13.

Another important function of the program execution
management is priority control. In the PIMOS, each
parallel processe made by goal calls is given some priority
in execution. This priority is used to control the order
of execution. It is given to each process in two ways.
Omne is to give it to each goal call using KL1-P: This is
fine-grained control, Another is to give it to each Sho-en
wsing & Sho-en call. This is coarse-grained control.

Functions for resource managerment:

The purpose of resource management of the PIMOS is
to prevent unnecessary consumption of computational
resources, for example, caused by program bugs such as

an endless loop.

This management is performed for the following re-
sources. One is the management of computing resources
and memory resources. This is implemented using the
Sho-en mechanism. Another is the management of in-
put/output devices. They are managed by the PIMOS
using a resouce free.

A Sho-en or usage of 2 device Is treated as a unit of
management and called a task. A Sho-en is a task. For
a Sho-en, the resources are managed s follows. When a
Sho-en call is made, the amount of computing resources
and memory resources can be specified by the parame-
ters in the call. If this amount iz used up in the Sho-en,
it is reported to its parent Sho-en. Then, the program
of the parent She-en can make it start, suspend, resume
or abort.

Current implementation of the PIMOS:
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A total PIMOS system consists of 2 PIMOS main med-
ule, an FEP module and a CS5P module

When the PIMOS is used on the rmulti-PSI-V2, the
mein module is loaded to all ihe PEs before the PIMOS
starts. Users programs can be loaded in two ways. One
is to load a program which has been linked statically be-
forehand. Another is to dynamically link programs in a
module database and load it to specified PEs. The con-
tents of the module database are dynamically changed.
Thus, efficient implementation is used for this:

While a user program is being executed, many Sho-
ens are made. Some She-ens are made spanning two or
more PEs. In this case, a foster parent is made in each
PE in which a descendant Sho-en is made. When the
program terminates, its Sho-ens also disappear. Because
of the delay in packet transfer, racing will occur just as
the case of reclaiming of the import/export table entries
in 4.3.2. This problem is solved by a method called
weighted throw count (WTC) [12].

Currently, the PIMOS is designed as a single-user
multi-task operating system, To extend it to & multi-
user system, additional functions must be added for ap-
propriate distribution of computational resources among
users, resolution of resource access conflict, and s0 on.
This needs further study.

However, the current PIMOS has a function to divide
PEz logically into several groups and assign them to mul-
tiple users, This function iz currently sufficient to use the
multi-PSI-V2 for software experiments,

7 CONCLUSION

This paper describes the research activities of the par-
allel inference system in the intermediate stage. They
include the multi-PSI system, the PIM, KL1 language

proceszsors and the PIMOS.

The problems to be solved to develop these hardware
and software systems were not clear at the beginning
of the intermediate stage. As they appeared, we solved
them one by one, repeating many experiments.

In this problem solving, the multi-PSI sygtem played a
much more important role than had been expected, This
meant that the development of the loosely distributed
KLl language processor was much more difficult than
had been anticipated.

As we fried to make the hardware systems tools for
software development, their specifications had to be con-
servative. However, we had many difficult problems
in building the hardware, especially i chip design and
hardware inspection.

Finally, the PIMOS-5 has partialy begun eperation on
a PSII with many bugs. Although we are still doing
our best to make the PIMOS-M start on the multi-PSI-
V2 before the FGCS'SE conference, we are quite sure
that it will be completed and released to our users at
the beginning of the final stage,

The PIM/p is now under production. If is a very com-
plex hardware systemn although it consists of only two
cabinets. No serious technical problems are left; how-
ever, we have to create efficient methods for its debug-
ging and testing, Then, we shall have the fastest and
the most sophisticated inference machine in the world.

The multi-PSI-V2 and the PIM/p will enable us to
make much larger scale parallel sofiware experiments in
the finel stage.
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