FROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by TCOT. £ 1COT, 1938

A REVIEW OF MCC'S ACCOMPLISHMENTS
AND STRATEGIC OUTLOOK FOR KNOWLEDGE-BASED SYSTEMS

Edited by Engene Lowenthal, Vice President,

Microelectronics and Computer Technology Corporation, Aunstin, Tx.

ABSTRACT

MCC's Advanced Computer Architecture (ACA)
program is divided into three large laboratories and
one small one. The large labs are tasked with
continually assessing userfindustry needs on the
J—to=10 year horizon and providing science and
technology responsive to emerging requirements. In
the most general terms, the Artificlal Intelligence
Laboratory is charged with advancing the functionality
of Knowledge-based Sytems (KBS), while the mission
of the Human Interface Laboratory is to enhance the
usability of KBS, and that of the Systems Technology
Labaratory is to provide KBS platforms with superior
performance and capacity. In addition there is a
recently formed laboratory called BExperimental
Systems which represents MCC's first publicly
(DARPA) funded project. This is a three-year effort
aimed ar tools for rapid prototyping of alternative
hardware architectural designs.

The ACA project managers summarize the current
projects and past accomplishments of each of the
laboratories. Finally, there is a brief description of an
effort to establish new long range goals for the next
decade.

1. Editor's Introduction

The organizers of PGCS'88 were very kind to
invite me to submit a paper. Unlike the other papers
offered to the Conference, however, this is not a
scholarly contribution. Rather it is a manager's
(admittedly proud) chronicle of the accomplishments
and aspirations of a very talented ensemble of
computer scientists — they take the credit for
everything reported here.

I am director of a research program called
Advanced Computer Architecture (ACA) which has
been in business about five years. The name of our
program (the largest of five at MCC) reflects the
original charter which was to compete head-on with
the ICOT=sponsored effort in fifth generation
computer systems. As the program took shape and
evolved over the past several years, however, it is
clear that our “center of gravity” is now not so much

computer architecture as knowledge-based systems.
Certainly there i a strong overlap with the original
charter, but we are emphasizing innovation in
software much more than in hardware. Thus, for
example, less energy is being put into novel parallel
hardware and more into the language and software
technologies required to exploit current and
anticipated commercial offerings in parallel hardware.

The program’s concentration on knowledge-based
systems (KBS) should not be construed as an exclusive
focus on artificial intelligence. On the contrary, we
start from the notion that most software systems
(“intelligent"” or otherwise) should be
knowledge-based, that a wide variety of benefits
derive from extracting the logic of an application and
representing it declaratively in a knowledge base. A
clear example of how knowledge bases can be
leveraged iz our approach to human interfaces, which
is described later. Throughout ACA we are concerned
with knowledge representation — expressive languages
with efficient compilation and execution.

ACA is divided into three large laboratories and
one small one. . The large labs are tasked with
continually assessing userfindustry needs on the
5-t0-10 vyear horizon and providing science and
technology responsive to emerging requirements.' In
the most general terms, the Artificial Intelligence
Laboratory is charged with advancing the functionality
of KBS, while the mission of the Human Interface
Laboratory is to ephance the usability of KBS, and
that of the Systems Technology Laboratory is to
provide KBS platforms with superior performance and
capacity. '

All of this work is jointly sponsored by member
companies of the MCC research consortium; that is,
the research is privately funded. In addition there is a
recently formed laboratory called Experimental

'Mearer term, less risky research remains the province of
MCC"s industrial partners. as does “productization™ of MCC-
develaped technology. Nonetheless, since MOC's inception
there have been many commercially valugble results and
thers is now a sieady pipeline of technology being transferred
to the sponsoring companies.

Systems which represents MCC's first publicly
(DARPA) funded project. This is a three-year effort
aimed. at tools for rapid prototyping of alternative
hardware architectural designs.

The remaining sections summarize the current
projects and past accomplishments of each of the
laboratories. The final section deals with the difficult
task of looking to the end of the century to establish
new goals for ACA's long range research. From this
point forward I have acted much more in the capacity
of an editor than author. The substantive content of
what follows was extracted from the annual plans and
progress reports of ACA's outstanding - research
leadership team: .

Al Laboratory: Douglas Lenat and Charles Patrie

Human Interface Laboratery: James Hollan and
Elaine Rich

Systems Technology Laboratdry: Haran Boral,
. Won Kim and Carle Zaniolo

Experimental Systems Laboratory: Robert Smith.
2. Artificial Intelligence Laboratory

CYC: The goal of this ambitious, intensive effort is
to encode a very large knowledge base of interrelated
concepts encompassing the “common-sense”
knowledge shared by modern humans. The potential
impact of CYC is too great to detail. in an overview
paper. Suffice it to say that success (which is by no
means assured) would have profound effects on
progress in natural language processing, machine
learning, and expert systems technology. It can be
effectively argued that we are at a “plateau™ in Al
research and that a concentrated effort such as CYC
to develop a common-sense knowledge base is an
absolute prerequisite for moving to a significantly
higher plateau.

Among the key problems facing CYC are: the
development - of an appropriate knowledge
representation language for common-sense
knowledge; determination of CYC's ontology — the
fundamental structure of knowledge; and the ereation
of tools that will allow many individuals to imtroduce
new knowledge in an efficient and coordinated
manner. '

The CYC project has made excellent progress on
all these fronts, essentially staying on the original
10-year schedule laid down in 1984, A substantial
core of common-sense knowledge, the basic
foundation upon which the structure will grow, has
been put in place. There now exist powerful editing
and visual browsing tools geared to keeping multiple
“knowledge enterers” productive while operating from
the common ontological model.

181

A new knowledge representation language called
CYCL, has emerged, not as a theory-driven effort, but
as a function of the very difficult task of encoding
commoen-gsense knowledge in all of its richness. In
addition to typical reasoming and representation
features, CYCL/CYC necessarily addresses issues of
time, space, causality, hypothetical worlds,
beliefs/contradictions, guessing, plausibility,
introspection (meta-level reasoning), causality, and
much more. As CYCL has begun to stabilize, it is
finding use in other parts of ACA and in carefully
gelected collaborative efforts outside of MCC.

The main thrust for the future is a progressively
accelerating effort to manually encode more and more
knowledge in the context of what has already been
stored. In theory, if CYC is successful, it will
ultimately learn how to acquire and incorporate new
knowledge on its own, thereby eliminating our current
dependence on hand-coding.

Throughout the project we will be evaluating CYC
as it grows, to see if it gets better at disambiguating
natural language segments, removing the “brittleness”
from complex expert systems, facilitating cooperation
among separately developed expert systems, and other
anticipated uses.

Proteus: The Proteus expert system development
tool was among the first technologies to be transferred
to MCC shareholders, and it is the first one to result in
a commercial produect (viz. the NCR Design Advisor).

Proteus began in 1984 with two observations:

* The importance of defeasible reasoning in
general, and default reasoning in particular,
had been almost completely ignored.

= Among traditional expert system development
environments, there was a severe trade—off
between efficiency and conceptual simplicity,
on the one hand, and expressiveness and
functionality, on the other.

A key decision, based on the first observation
above, was that a #ruth maintenance swtem (TMS)
should be a cornerstone in the design of a
knowledge-based application development system.
This provides a mechanism for defeasible reasoning,
the importance of which has been recognized for
constructive tasks, especially design, which involves
heuristic choices subject to iterative revision.

Froteus contains three major advances in truth
maintenance technology: A complete algorithm for
belief status labeling — if a solution is possible,
Proteus will find it; A unigue integration with rules
and frames, including inheritance; and a novel
method of representing domain knowledge to control
dependency-directed backtracking. .

182

Our approach to addressing the
simplicity/expressiveness issue has been to
accommodate multiple paradigms within a single
systern and language. However we are committed to
the view that these paradigms must be integrated at
the architectural level, rather than merely combined in
& “toolkit”. The design of Proteus includes a number
of established reasoning and representation
techniques: nonmonotonic truth maintenance with
backtracking, restricted predicate logic, frames with
multiple inheritance and metaclasses, forward and
backward inference, and Lisp s-expressions.

Future releases of Proteus will introduce
enhancements to the system's functionality, human
interface, and especially performance. Work in
progress includes a complete nonmonotonic TMS,
support for multple inheritance and metaclasses,

temporal reasoning, hypothetical worlds, a
graphies-criented development environment,
metareasoning to facilitate intelligent control of

inference, and dramatic speedups for backward and
forward inference. With respect to the latter, we have
recently developed a rule compiler that achieves over
100K LIFS on a 68020-based Unix system, and we
will be porting this technology to Proteus. .

One of the interesting offshoots of Proteus was
Argo, a modest effort carried out in cooperation with
MCC's VLSI CAD project. Argo introduced basic
learning and analogical reasoning technigues two
Proteus. These capabilities were svccessfully
demonstrated in a8 small circuit design application in
which new rules were learned from training examples
resulting in substantially faster execution times and
improved design - quality for similar circuit
specifications subsequently presented to Argo.

Antares: Two of the major problems confronting
the developers of KBS are that independently
developed expert systems cannot in general be
interconnected to work together and that there is no
established means for several experts to develop an
expert system jointly. Antares, {a new project) will
utilize principles of distributed KBS to solve these
problems. The result will be a set of methods for
interconnecting separately developed KBS 1o enable
them to cooperate in solving problems beyond the
capabilities of any one of the KBS. This proposed
system can be viewed as a new type of “shell” for the
modular development of EBS. It will vse the
common—sense knowledge in CYC to provide a basis
for globally consistent semantics among the KBS, but
will not require globally consistent beliefs.

Among the advances required to achieve the
Antares objective are: mechanisms for control that
enable cooperative problem solving behavior among a
set of EBS; representation of principles of
“self-interest” within CYC that can be the basis of

negotiation and cunperiﬂﬂn among agents; and

 implementation of a general expert system whose

expertise is the control and enforcement of
cooperation among other expert systems. .

Planning and Decision Making: The primary
characteristic of current decision support tools is that
they are numeric. They are typically based on utility
theory and require significant gquantification of
variables by the user. This quantification task can be
difficult or even meaningless. Only recently has work
been done to derive appropriate numbers through
user-supplied partial orderings. But knowledge
acquisition is not the overwhelming disadvantage of
the numeric approach. The real problem is that
conclusions are not the result of symbolic reasoning.

Decision support methods based on symbolic
reasoning are flexible, explicable, and can be revised
intelligently. Numeric approaches are not. . The
semantics behind numeric methods are compiled and
encoded into efficient but obscure algorithms. It is.
difficult to employ alternative computations or modify
existing ones to fit the semantics of the problem.
Explanaticns supporting decisions, including rejection
of alternatives, are difficult to generate and usually
not satisfactory. The traditional numeric approach is
weakest -in supporting revision of decisions and
conclusions. But it is our hypothesis that revision is a
fundamental paradigm for decision making. This is
especially true for complex planning.

Planning and Decision Making is a new project
which will build up the experience gained with
defeasible reasoning in the Proteus project. The goal
is to build complex tools which assist in the design of
plans - by allowing incremental development and
revision of plans. Such systems will be “logical
spreadsheets™ that allow a user 1o minimally revise a
plan given new data or hypothetical situation changes.
The system will also allow users to Interactively
construct plans using simplifying assumptions and to
support reasoned retraction of such assumptions when
constraints are violated. Finally, the system should
provide explanations for the current plan state. _

It is unlikely that we will gain the requisite insights
into understanding drafting and revising plans by
armchair contemplation or by building toy problems.
Qur approach is to design a model of planning by
iterative revision based on reasonably complex
applications. We will work on a series of increasingly
difficult planning systems. By intimately
understanding each system, we will be able to derive
the requisite insight to improve our model for use on
the succeeding problem.

3. Homan Interface Laboraiory

Cur work in the HI Lab is largely motivated by the
belief that interfaces of the future will increasingly be

to KBS and will themselves be knowledge-based. This
belief is based both on industry trends in KBS
development and on the realization that the key to
increasing people's productivity Hes primarily in
making interfaces more collaborative and allowing
people to work closer to their conception of the task
rather than requiring them to learn details irrelevant o
the accomplishment of their real goals. The only way
to provide users with this higher—level flexible access
and to enable interfaces to be more cooperative and
adaptive is to represent the user's task, the language of
interaction, the application, and the user. This and the
expected continued increase in the development of
EBS mativates our focus on knowledge-based
interfaces,

HITS: Because many powerful interfaces must rely
on several interface capabilities, it is important that
our various tools for providing thess individual
capabilities be designed to function in concert to
produce a s=ingle, = inteprated, knowledge-based
interface. As a result, we are working on the
development of HITS (Human Interface Tools), which
is an integration of the tools we are building
throughout the laboratory. Our work on HITS as an
integrated set of tools is intended both to guarantee
that the integration of our tools is possible and to
provide us a way of experimenting with such a toolset
in order to refine our design. We will release versions
of HITS each year. Each such release will incorporate
both new results in the overall structure of HITS and
new results from our work on the individual pieces of
HITS. We expect it to evolve over time, providing
shareholders with prototypes and demonstrations of
concepts and serving us internally as an experimental
vehicle for grounding, motivating, and coordinating
our gcientific and technological efforts.

Although the idea of a coordinated system for
building interfaces is by now widely accepted (such
systems are often called User Interface Management
Systems), HITS is unique in that: it supports the
construction of interfaces to KBS, for which it is often
not possible to design unambiguous, humanly
learnable input and output languages; the component
tools of HITS are themselves knowledge—based; HITS
fully supports the construction of integrated
multimedia interfaces.

The various components of HITS are discussed in
the following sections.

Graphical Interfoces: The approach we are taking
in graphics is exemplified in our work on Pogo, a
declarative representation system for graphics. We
expect that future graphics systemd will consist of two
components: high-level declarative graphical
descriptions and hardware specific interpreters of
those descriptions. Separation into these two
components has many advantages. Chief among them

183

are the increased portability of code, the speed that
will come from an increasing realization of specific
interpreters in hardware and the ability to make use of
specialized computaticnal hardware, and the facility to
efficiently provide views on multiple displays and
form multiple conceptual perspectives.

Our plan, in keeping with our overall
knowledge—based approach, is to work on the higher
semantic levels of graphical representation and try to
build on top of existing efforts for the lower lavels of
graphical representation. This has led us to focus our
graphics work in three areas: high-level twols for
graphical interface development, representation of
graphical and design knowledge, and exploration of a
novel interactive work surface interface paradigm.

The major problems that are being attacked are
how to provide users with natural methods for
specifying behaviors for new dynamic icons, how to
have graphical editors automatically represent
substantial portions of the knowledge needed to enable
integrated multimodal interfaces and to make it
possible for the tools to critique interfaces being
constructed in terms of graphic design principles, and
how to support paper and pencil kinds of interactions
on an interactive worksurface.

Recent accomplishments include implementation
of a number of experimental graphics tools such as
the Pogo representation system and an editor for
constructing “dynamic icons”, i.e. their form and
behavior. Excellent progress has been made on the
Interactive Worksurface, the software and hardware
for a system with a flat stylus - sensitive display that
uses neural net technology to recognize sketches or
annctations that are hand-drawn on the surface.
Experimental versions of the IWS are now
demonstrable.

Matural Language Interfaces: Our approach to the
problem of providing natural language interfaces is to
design, build, and evaluate a series of natural
language understanding and generation programs that
can be incorporated into HITS. Our goal is to produce
systerng that can be effective as componemts of
complete interfaces even though the general problem
of natural language use in unconstrained environments
will likely remain intractable for decades.

There are three key problems that exist with
current natural language systems and to which we are
trying to find solutions in our work. The first such
problem is that the linguistic knowledge in most
existing gystems is not portable and must be
reconstructed for esch natural language interface.
Our work is attempting to represent this knowledge in
a portable way. Rather than trying to approximate
this knowledge in-ad hoc structures, as is often done in
natural language interfaces, we are attempting. to

184

ensure portability by exploiting a linguistically sound
theory of morphology and grammar,

A second problem is that rules that translate a
natural language sentence into structures interpretable
by application programs must be reconstructed for
each interface. Although there is no way to avoid this
reconstruction entirely, two approaches are being
pursued to minimize this effort. The first is to exploit
as much as possible the knowledge in the application
program itself. Secondly, we are providing powerful
tools so that the interface specific knowledge can be
built as efficiently as possible.

A third problem with existing natural language
interfaces iz that they are often superficial in the sense
that they do not build on detailed knowledge either
about the task that is being performed or about the
dialogue that is taking place. As a result, many
sentences cannot be interpreted at all and many others
are interpreted incorrectly. Our work is attempting to
improve this situation by tying the natural language
systemn more closely into the knowledge base of the
application program and by providing a deeper
analysis of the entire discourse as more than just a
sequence of sentences.

The project has produced a series (Lucy) of
increasingly sophisticated natural language
understanding systems together with an editor (Luke)
which can be used to assoclate linguistic information
with domain objects in an application knowledge base.

Intelligent User Assistance: Although an important
goal of the HI Laboratory's overall efforts is the
design and implementation of interfaces that make the
correct use of an application program as obvious to
users as possible, in the foreseeable future we will not
be able to build interfaces that make the complete
functionality of the application and its interface
immediately knowable. The goal of the Intelligent
User Asslstance (IUA) project is to support the
development of advising and coaching systéms by
providing three key capabilities: a generalized
architecture for advising and coaching; a knowledge
base of advising and coaching strategies that can be
exploited within the generalized architecture; and a
set of tools for building the application-gpecific
knowledge that each instance of the generalized
architecture must also exploit.

Having conducted empirical studies of people
performing tasks and of advisors helping them to do
50, we have begun developing a series of prototype
advisors for specific domains and to construct a set of
tools that are useful in doing so. We have in mind a
sequence of systems that range from intellectual
amplifiers that themselves do relatively little problem
salving (but that effectively augment the
problem-solving abilities of their users) to intelligent
assistants that can be given high-level problem

descriptions and drive the collaboration required to
reach a solution to that problem. There are several
more specific dimensions that form the basis of this
evolution. One is the extent to which it is necessary to
incorporate a general purpose planning system. We
are petting promising results from a restricted
planning system in which soclutions to individual
problems are generated by referring to a hierarchical
maodel of the way that experts solve problems in this
domain.

Another dimension along which we ecan increase
the power of our systems is the flexibility of the
interface between the user and the advisor. One
powerful idea is that of the advice abject. Each advice
object corresponds to an entity in the interface, such
as the screen aohjects representing the application’s
data structures or procedures, or a piece of advice.
Associated with each such object is a s=t of strategies
and knowledge structures that can be accessed by the
user by clicking on the cbject in the interface,

A, third dimension is the locus of conrol. Control
may reside entirely with the user who must ask
specific questions to get advice. Alternatively, control
may reside with the system, which may be able to
volunteer advice under appropriate’. circumstances,
We are exploring both of these approaches.

Last year we transferred the initial version of an
experimental Interactive Development Environment
for Advising (IDEA). IDEA allows developers to
implement domain-independent and domain-specific
advisory strategies which can be invoked either by the
user on request, or by the system itself when it detects
a situation that calls for advising. At run—time IDEA
maintaing a history of user interactions with the
system at various levels of abstraction. It is able to
compare this trace with an ideal model of the use of
the application (as provided at development time by
an expert) to produce efficient, cognitively appropriate
advice.

4. Systems Technology Laboratory

The mission of the Systems Technology Laboratory
is to develop systemn architectures and associated
technologies that are commensurate with projected
improvements in the functionality and usability of
future computer applications. Within the broad
charter of investigating high performanee, high
capacity platforms for symbolic computing, we are:

s covering both conventional (sequential) and

parallel execution environments

s paying particular attention to the problem of

providing wvery - high speed access to, and
manipulation of, very large knowledgebases.

Both the computational and data management
demands of gymbolic applications must be
successfully addressed.

Logie-based Programming Languages: In the next
two decades, the market for symbolic applications
will experience a tremendous growth largely asa
result of knowledge-based applications and expert
gystem applications becoming widespread in the
business world. Since these new applications will be
based upon and extend the functionality of existing
management information systems, there will be an
acute need for programming languages and systems
that are effective in both the domain of
knowledge-based applications and in that of the
more . traditional applications, such as database
management and retrieval.

The Logic Data Language (LDL) is designed to
amalpgamate the functionalities and enabling
technologies of relational databases with the
general purpose symbolic application development
capabilities of logic programming. Thus, the LDL
system sfipports rule based programming, pattern
matching and inferencing, as in Prolog, along with
the transaction management, recovery, integrity and
schema based data = definition facilities of
relaticnal databases. - We are pursuing - two
experimental implementations of LDL: one is for
a highly parallel database machine (Bubba), the
other is for a single processor workstation
environment. By the end of 1988 we will transfer a
version of LDL- rumming on Unix workstations,
which will provide a highly portable and efficient
demonstration vehicle for IDL. The execution speed
of LDL is expected to be competitive with that of
current procedural languages. The compiler includes
an optimizer that automatically penerates efficient
execution plans for queries.

LIFE (a Logic of Inheritance, Functions and
Equations) tackles the problem of extending
logie programming with knowledge representation
primitives such as -generalization and inheritance.
Moreover, it merges key features from functional
programming and object oriented programming and
alzo embeds functional and relational constraints
and residuation. Performance is obtained by wiring=in
the inheritance mechanisms in the unification
algorithm. Our experience with LIFE applications
suggests that the language represents a powerful
tool for the development of ambitious symbolic
applications such as CAD expert systems and
natural language parsing. Furthermore, the LIFE
experiment is teaching us important lessons on
how to integrate different declarative languages,
and to add knowledge representation primitives to
such languages in a clean and efficient fashion. The
LIFE interpreter is nearly completed and within a year
we will have a compiler.

Future plans center on building upon the
experience gained in LDL and LIFE to develop a
single advanced language that combines their

185

strengths and in addition
non=programmers through
techniques.

Bubba: Bubba is a highly parallel database
machine designed to support a large mix of
transactions and query programs of varying
complexity all running concurrently against a large
database. The market motivation for Bubba is the
trend, brought about by relational technology, towards
high-level interactive interfaces to operational
databases. We believe this trend will lead to the need
for large. “information servers” providing support for:

a large volume of transaction classes requiring
immediate response and simple update
transactions)

» complex update . transactions, representing a
shift from batch processing to imteractive
processing

s & large number of query programs representing
a spectrum of information needs -- from
simple requests for stored information to
requests that derive new information by
applying complex transformations to the stored
data (including - deductive database
management)

The goal of the Bubba project is the design of a
dedicated scalable architecture that is dramatically
superior in cost/performance compared to a
mainframe-based system providing similar
functionality in the early 19%90s time frame. We
envision using Bubba to support a variety of
application classes.

The project began in 1984 and is currently in the
midst of experimental implementation and modeling
activities. Most of the research issues have already
been addressed and resolved. The purpose of the
implementation and modeling activities is to
demonstrate our ideas and validate them with high
confidence.

Bubba is undergoing implementation on a
commercially available 40-node multiprocessor. We
are collaborating with the Languages project to insure
that LDL object code will execute efficiently on
Bubba, as a demonstration of Bubba's ability to
effectively support deductive database management as
well as relaticnal and transaction processing demands.

A series of working prototypes will be completed

and transferred throughout the coming year. Beyond
this the plan is to shift emphasis from parallel

database management to parallel architectures for
advanced KBS of the variety envisioned by the AT and
HI Laboratories.

Orign: The increasing use of object-oriented
languages and concepts has exposed the need for

can be used by
visual programming

186

augmenting object-oriented programming and
application systems with database capabilities. At a
minimum, object-oriented programming systems
require objects to be persistent and sharable, so that
objects generated during the execution of a program
will be accessible to the subsequent invocation of the
program, and they may further be accessible to a
number of concurrently executing programs. Beyond
this, within the application domains to which the
object-oriented approach is well-suited (including
CAD and Al), a number of complex tasks which
application programmers have traditionally had to
program should be offloaded to the database system:
such tasks include version control, change
notification, and long-duration transactions.

There were thus a number of major research
problems that had to be solved. The impact of
object-oriented concepts on the database systern had
to be fully understood (and vice-versa). The Orion
database project was initiated in 1985 to address these
research issues and to develop a database systern that
was well-matched to the unique requirements of
object-oriented systems. A non-distributed version of
Orion (Orion-1) was released in May of 1987. Since
then we been focused on research, design, and
prototyping of the Orion-2 homogeneous distributed
object-oriented database system. In Orion-2, each
workstation will have a full-function Orion which
manages a private database. Further, each
workstation Orion will participate in the access and
management of a common shared database.

After Orion-2 is transferred to shareholders the
emphasis of the project will shift to support for
distributed heterogeneous databases, perhaps starting
with a bridge between logic-oriented (LDL) systems
and object-oriented (Orion) systems.

CODE: In conventional object-oriented languages
and systems, objects are ‘passive’, in that they
respond only to messages. However, message
passing in these systems assumes a synchronous
protocol, i.e., the sender of a message is blocked until
receiving a reply from the receiver of the message. In
confrast, concurrent objects are ‘active’ with a high
degree of autonomous control, Le., they have more
knowledge and responsibility than passive objects to
activate themselves and interact with other objects.
Concurrent objects may be activated by any type of
event, including messages, timer interrupts, and
user-specified trigger conditions. The high degree of
autonomy in concurrent objects implies an
asynchronous communication among objects, and
makes concurrent objects well-suited to modeling
concurrent or distributed applications such as the
scheduling and simulation in computer-integrated
manufacturing. Further, successful execution of such
applications on parallel/distributed hardware has the
potential for dramatic improvement in performance.

CODE (Concurrent Object-oriented Design
Environment) is a new project focused on fully
exploiting the concurrent object concept. Among the
research goals are:

» formalization of a model of concurrency
{communication) which will allow maximum
exploitation of parallelism in an application

» unification of & sclected model of concurrency
with the abstract object model

e augmentation of concurrent object-oriented
programming with- database support (building
on the Orion experience)

Neural Networks: This is a brand new project
whose long term goal is to develop a theory and
practice of newural computation to enable its
widespread use as a computing technology. Activities
will include: examination of scaling properties of NN
learning algorithms, and development of new learning
algorithms; development of the mathematics and
language to describe adaptive systems; investigation of
the properties of the individual neuron as well as
collections of neurons working together in biological
systems; incorporation of time as a variable in neural
computational ~models; and investigation = of
heterogeneous neural network models (e
incorporating several problem-solving methods, each

. specialized for a class of sub—problem).

Optical Computing: MCC got involved in optical
computing in a small way a few years ago and we are
now considering gearing up a significantly larger effort
in this interesting technological domain. The past
work was centered on investigating the potential of
photorefractive crystals as a medium for mass storage,
gsomewhere between RAM and disk in the storage
hierarchy.

Our results have been sufficiently encouraging that
we anticipate increasing our investment in this line of
research. The proposal includes new work in such
topics as optical switching networks and optical neural
nets. Some of this work is funded by DARPA.

5. Experimental Systems Laboratory-
(DARPA—fonded)

Rapid advancement of leading edge computing
system technology requires a balanced mix of
theoretical, analytical and experimental research. It is
likely that recent thrusts into high performance
parallel computation will require increasing emphasis
on experimentation. Indeed, there is a clear
worldwide trend toward exploratory prototyping of
systems that embody innovations in hardware, system
software and application technologies.

The recently launched MCC Experimental System
Kit (ES-Kit) project may be viewed as a source of

1989-93 timeframe, related rescarch is expected to
evolve in directions that place more emphasis on
exploitation of ES-Kits to conduct important
experimental research at MCC. One could thus view
the near—term work as foundation-building, with a
longer term objective being use of ES-Kits to rapidly
advance computing systems technology.

Two distinet research directions appear to be
likely. The first will be software-oriented, typically
involving the emulation of new systems layered onto
ES-Kit configurations that in effect provide scalable
and unusually configurable high performance parallel
host systems that are impractical to obtain as
commercial products.

The second major thrust will emphasize the
development of experimental VLSI and subsystem
hardware incorporating innovations that are
impractical in some sensge to study via software, The
emergence of affordable rapid hardware prototyping
technologies will tend to naturally accelerate the
evolution of high performance hardware in. most
technical as well as business sectors of shareholder
interest. Tt is therefore important to be near the
leading edge of experimental hardware research,

A basic set of ES-Kit hardware and software
building . blocks are being developed during
1988-1989. Later research is expected to produce a
sequence of more advanced hardware and software
prototyping meodules, whith exploit emerging new
technologies offering increased performance, capacity
and functionality,

Collaboration with other research groups is
expected to promote development of specialized
meodules and support tools, which are ‘compatible with
and further expand the applicable domain of ES-Kits.
{(Given vigorous government and industrial support, it
is possible that within two or three years, the majority
of the module types available to ES-Kit users could be
developed elsewhere.)

Substantial research and development beyond the
scope of the initial ES-Kit contract is expected to be
launched in future years. Some of this work will
undoubtedly involve task-specific development of
modules, tools and related capabilitics, under
sponsorship of follow-on government contracts,
Other experimental systems work producing
proprietary technology could be sponsored by MCC
shareholders. _

6. ACA’'s Next Steps

Most of the research undertaken by ACA has been
motivated by a mission and goals established at the
time of MCC's inception. Even as we continue to
work towards fulfillment of these goals, it is clear that
new research must be motivated by an updated
perspective on future competitive pressures. Thus we

187

have found it appropriate to define new long range
“beacons” predicated upon a collective vision of how
people and institutions will use computers at the turn
of the century. The task is to intersect that vision with
an assessment of ACA’s technical strengths and
weaknesses to determine how the research agenda
should evolve and how the organization must evalve to
meet the challenge.

We ‘are midstream in this exciting, difficult
process, starting from the simple notion that
information systems of the future - including very
large, complex systems - will be knowledge-based.
From the vantage point of the computer scientist this
may seem to be a mundane prediction by now, but in
practice there are myriad technical and organizational
problems inhibiting implementation. But if we are
moderately optimistic about the march of technology,
and if we assume that the practical barriers . are
eventually overcome, then we can speculate about a
powerful spectrum of systems whose end points are
characterized by the two research directions shown in
Figure 1.

Intellectual Intelligent
Amplifiers Agents
= ~]

T

i

m Ll

e
Artificial Human
Intelligence Interface

Figure 1: Directions for the Future

The first is towards the development of smarter
and smarter systems. This direction has as its
ultimate goal the creation of an intelligent agent similar
to a person. Such an agent would be given a problem
to solve. It would then solve it, with only minimal
interaction with its user, and report back its result.
The second direction is towards the development of
intellectual amplifiers: systems that allow people to
function in smarter ways by augmenting their
perceptual, memory retrieval, and reasoning
processes. These systems do not solve large problems
autonomously. Instead, they interact with their users
as the users solve the problems. The first of these
directions is supported by the evolving body of
research in artificial intellipence; the second by the

188

work in buman interface technigques and cognitive
science.

In their extreme forms, these goals are different
and some of the technologies required to suppert them
are different. But, as the figure attempts to convey by
the shaded region between the two lines, there is
actually substantial owverlap between these two
directions, both in the goals and in the necessary
technologies.

Intellectual amplifiers can be more and more
helpful as they become able to take on more and more
complex tasks. Intelligent agents are only intelligent if
they interact with their users when that is the best way
to acquire the information that they need. Further,
some of the best ways for amplifiers to interact, such
as through natural language and image recognition,
require substantial intelligence in their
implementations. This overlap means that we can, by
following a single, broadly based research strategy,
provide to our shareholders the necessary technology
for the creation of both classes of systems. This
technology will be derived both from the continued
progression of work in artificial intelligence and in
human interface technology, as well as from research
into the systems problems that must be solved in order
to provide the platform upon which these other
techniques can be delivered effectively to users,

We are now in the process of identifying some
specific regions in the shaded area of figure 1 for
further refinement and (eventually) development.
Although we naturally want our research results to be
as generically applicable as possible, we are interested
in selecting a few particular targets to motivate our
research, focus the work, and communicate its
potential commercial benefits. The challenge is to
choose opportunities that are at once intuitively
profound in their market impact, feasible in the
10-year outlook, and yet well beyond the reach of
today's technology.

Bibliography

Artificial Intelligence Laboratory

Lenat, D. and E. Feigenbaum, “The EKnowledge
Principle and the Breadth Hypothesis™, Proceedings
IICAT &7, Foundations af AT Workshop, MIT.

Lenat, D, “CYC: Using Common Sense Knowledge
to Ovwercome Brittleness and Knowledge
Acquisition Bottlenecks”, AT Magazine, Vol. VI, No.
4, Winter 1986.

Ballou, N., H. Chou, F. Garza, W. Kim, C. Petrie, D.
Russinoff, D. Steiner, and D). Weoelk, “Coupling An
Expert System Shell with an Object-Oriented
Database System”, The Jouwrnal of Object-Oriented
Frogramming, SIGS Publications, Vol. 1, No. 2,
Junz/July 1988.

Huhns, M. and R. Acosta, “Argo: A System for
Design by Analogy”, [EEE Conference on Al
Applications, Summer 1988,

Huhns, M., L. Stephens, and D. Lenat, “Cooperation
for DAI through Common Sense Knowledge”,
Proceedings of the 8th Workshop on Distributed
Artificial Intelligence, May 1988,

Petrie, C., D. Bussinoff, and D. Steiner, "PROTEUS:
A Default Reasoning Perspective, Proceedings of
Fifth Generation Systems, MNational Institute of
Software, 1986.

Human Interface Laboratory

Tarleton, P. Nong and M. Tarleton, “POGO: A
Declarative Representation for Graphics”, to
appear in Object-Oriented Concepts, Applications,
and Databases, W. Kim and F. Lochovsky, editors,
Addison-Wesley, 1988,

Avery, L, “Interactive Worksurface: An Interface
Paradigm for Sketchable Things”®, Telematics
Workshop, May 1988,

Rich, E. and 5. Luper-Foy, “An Architecture for
Anaphora Resolution”, Proceedings, Second
Conference on Applied Natural Language Processing,
February 1988.

Wroblewski, D. and E. Rich, “Luke: An Experiment
in the Early Integration of Natural Language
Processing”, Proceedings, Second Conference on
Applied Natural Language Processing, February
1988,

McKendree, J. and J. Zaback, "“Planning = for
Advising”, Proceedings of CHI 1988, May 1988,

Systems Technology Laboratory

Zaniolo, C., "Design and Implementation of a Logic
Based Language for Data Intensive Applications”,

invited paper, Proceedings, Sth International
Conference/Symposium on Logic Programming,
August, 1988

Boral, H., "Parallelism and: Data Management®,

Proceedings, 3rd International Israeli Comference on
Data and Knowledge Bases, June 1988,

Copeland, G., W. Alexander, E. Boughter and T.
Keller, “Data Placement in Bubba®, Proceedings,
SIGMOD 88, June 1988,

Kim, W., N. Ballon, J. Banerjee, H. Chou, J. Garza
and D. Woelk, “Integrating an Object-Oriented
Programming System with a Database System”, To
appear in Proceedings, 3rd Annual Conference on
Objece~Oriented Frogramming Systems, Languages
and Applications {OOPSLA), September 1988,

Peterson, C. and J. Anderson, “A Mean Field Theory
Learning Algorithm for Newral MNetworks”,
Published in Complex Systems I, 1987.

