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ABSTRACT

Research is being conducted to develop expert sys-
tems that solve design problems. The strategy of this
research is to research and develop basic software, with
emphasis on user needs and application systemns. The
goals of this research are:

o To clarify the architecture of the expert system for
various designs by infroducing constraint-based
problem solving.

o' To propose primitive tasks to realize the architec-
ture,

o To provide an expert system building tool based
on the above considerations.

This paper focuses on and specifies constraint-
based problem solving in order to consider expert sys-
tem architecture, including the modeling facility of the
design object.

In thie case, though the design knowledge must
be supported and handled, current expert systems and
tools do not always do so, especially for the design
chject. Therefore, the handling of design object and
problem-solving mechanism are considered. Design
object representation system, called FREEDOM, is ex-
plained. Moreover, a detailed architesture for an expert
system building tool, including the knowledge compi-
lation technique for the efficient problem solving, is
described. Finally, current state of a design support
system, called MECHANICOT, is explained as a practical
example of this building tool.

1 INTRODUCTION

Design systems, such as design automation (DA )
systems and computer aided design (CAD) systems,
have been developed and used in various design fields.
More and more of these systems have incorporated ex-
pert systems and knowledge-based systems for design
problems.

Design systems can be classified as antomated de-
sign syatems or interactive design systems; it depends

on whether there is interaction during design [Eastman
81]. Automated design systems require the determina-
tion of definition of the design process and the decision-
making sequences. Automated design systems do not
nsually interact with the designer, and they demand
vast amounts of data and computation time. Interac-
tive systems arc very flexible and open-ended to the
designer, who may input multiple descriptions as in-
put specification. They have a decentralized control
structure for the design process, while the structure of
the non-predetermined decision-maling sequence and
its control depend on the designer. Most CAD systems
are interactive and are applied only to parts of the de-
sign process. Furthermore, the structure of the process
model and the decision-maling sequence for design sys-
tems depend on the design area.

Expert systems have two major applications: di-
agnosis problems and design problems. Expert systems
for design problems are being developed and evalu-
ated for various application fields, such ag VLSI design
[Kowalski and Thomas 83] [Subrahmanyam 86]; me-
chanical design [Brown and Chandrasekaran 86] [Dixon
and Simmons 84] [Mittal ef al. 86); configuration
[McDermott 82]; and process planning; [Descotte and
Latombe 85] [Eliyahu et ol. 87].

The architecture of expert systems for design prob-
lems is not yet as explicit as that for diagnosis prob-
leins. Design problems can be regarded as complicated
problems that contain a synthesis task in addition to
analysis and simulation tasks [Medland 86]. The de.
scriptions of objects to be designed are changed and
determined dynamically because of the trial and error
nature of the synthesis task, and the results from the
synthesis task are analyzed and evaluated in the analy-
sis task. In other words, first the models for design ob-
jects are selected, modified and determined so that the
design specification can be satisfied, then the synthesis
and analysis tasks are performed repeatedly according
to the model for detailed description of design objects.

Howewver, this modeling facility is not provided ex-
plicitly in existing expert systems for design problems,



and the relation between the expert system architec-
ture and this modeling function has not been consid-
ered. Moat expert systems for dmiﬁn pmh]ema Are
formalized as systems that generate detailed deserip-
tions of the design objects as the sclution by combining
Imown components, assemblies or parts, then refining
them so that the design sperification can be satisfied.
Moreover, it seems that such systems lack recognition
of the modeling eoncepl from the viewpoint of design.
Therefore, expert systems for design problems require
a sophisticated architecture that considers the design
process model, including planning and meodeling facil-
ities. .

Section 2 15 an overview of the design systems in
relation to the design process model; it clarifies the re-
lation of the expert system to the design system, When
the design process models of the expert system are ap-
plied to the design problems for automated design or
interactive design, we need to regard these design prob-
lems as a well-defined and well-structured problems,
and they are defined as routine design. This routine
design is classified in more detail, and the design pro-
cess model for each detailed design, its fundamental
design task and the relation between the classified de-
signs and practical design fields are specified.

" Bection 3 describes the architecture and neces-
sary problem-solving mechanism of the expert system
for routine design. First, researches on architectures
consisting of primitive tasks for routine design, called
design generic tasks [Chandrasekaran 86] [Brown and
Chandrasekaran 86 [Mittal ef al. 86| are deseribed as
previous works., Next, the architecture and necessary
problem-solving mechanism are described considering
generic fask research,

In our research approach, technical issues of con-
sidering expert aystem architecture for design generic
tnska, eapecially design knowledge and problem-solving
mechanisms for realization of these tasks are investi-
gated.

Section 4 considers design object model. To make
an effictent mechaniam to solve dmign prnb.lnms, we
must consider & way to model the desipgn object, which
uses knowledpe about the design object effectively. At
present, frame-based and object-oriented representa-
tions are popular knowledge representation for this
purpose. In comparisen with them, it is not sufficient
‘that the modeling method of the design object handles
the dynamie management of constraint. The maodeling
system of the design object is described according to
the above considerations,

Sectiori 5 defines the application mechanisms for
constraint representation in routine design expert sys-
tems as constraint-based problem solving, and de-
scribes them.  For this purpose, constraint repre-
sentation is classified as the general comsiraints that
are needed for routine design or domain-specific con-
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straints; application mechanisms are considered ac-
cording to these kinds of constraint. Modeling of
the design object corresponds to the formalization of
various descriptions for design knowledge and to the
method of handling design knowledge by trial and er-
ror.

These constraints are generated, derived, modi-
fied, or deleted from modeling during the design pro-
cess, The constraint-based problem-solving mechanism
is described according to the constraint classifications
by matching the design process model for a routine de-
sign with the design system.

Section § deseribes the architecture for expert sys-
tems and expert system building tools based on this
architecture, intreducing the modeling concept of the
design object and focusing on constraint representia-
tion. The design support system is proposed as the
specialized solution of the expert system building tool.
It introduces the design plan generation facility using
constraint analysis method, according to the above ar-
chitecture. .

Section T explains in detail the architecture and
current state of a support environment called MECHAN-
IcOT in which the designer ean construct design sys-
tems easily. This system focuses on mechanieal design,
using the design of & main spindle head for a lathe as
&N example,

2 DESIGN SYSTEM
2.1 Necessary Functions

A design system executes the following design ac-
tivity in an automated or interactive manner. De-
sign 15 a creative and intelligent human activity that
transforms the requirements represented by formalized
languages, symbaols, and figures, into physical objects,
In other words, given requirements, design creates the
structure and the form of the design abject aceording
to the design object model that satisfies these require-
ments. Design can also be considered as synthesis and
analysis tasks. It is necessary to consider the corre-
spondence between the analysis task and the model of
the design object.

Design consists of three phases:

o Conceptual design
o Fundamental design
" o Detailed design

The design in each phase creates the model and
executes the analysis and evaluation, and modification
in the indeterministic manner. ]

There are various design systems that cover vari-
ous design levels such as conceptual design, lundamen-
tal design and detailed design. Design systems must
execute the design activity at each level.
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Conceptual design enumerates the requirements
for the reslized design objects. It focuses on and for-
malizes the design problem, including the specification
definition. This phase begins & creative task that for-
malizes the concepts and ideas applied to the designed
object. Except for parts of the stylized design, con.
ceptual design is not formalized explicitly and is exe-
cuted according to skills such as the designers’ ideas
and experience. Designers mull and judge the concep-
tual models and choose among them. In fact, there are
design svstems for conceptual design.

Fundaments! design analyzes, evaluates, and mod-
ifies the madels from various viewpoinis according to
the result of the conceptual design. Tt does this in order
to refine the design objects and to select some models.
The methods of analysis and evaluation for each model
are predetermined, but when these methods are not
established, ther are determined by experiment and
simulation.

Detailed design refines the components of the de-
sign object and relations between components using
the selected model, according to the result of the fun-
damental design. The optimization and evaluation of
the result of the design are executed aceording to this
model.

Most design systems are intended for fundamental
design and detailed design.

Next. necessary functions Tor the design systems,
considering mechanical and VLSI designs, are de-
seribed.  In mechanical engineering, there are many
eases in which design systems such as DA systems and
CAD systems are provided for each design object. In
fact, the individuality that the design object possesses
makes it difficult to abstract, arrange, and use the de-
sign systems as the design environment, because the
corresponding model and analysis method for this ob-
ject usually change when the strueture of the design

object changes, In other words, of all the synthesis

and analysis tasks used in DA systems or CAD sys-
tems, the analysis tasks for the performance and be-
havior (function) prediction and evaluation are espe-

cially determined and provided based en the model of .

the design object. This is caused by the fact that a
change in the structure of the design object, such as its
geometrical characteristics, may result in a change in
its functions.

The models of VLS] design for the analysis of
the performance and behavior (function) and evalua-
tion are fixed and formalized as the design method-
ology, beecause structural changes have little effect on
the function and bebavior. The hierarchical struacture
of the VLSI design, especially the nested structure
with the function, can be represented by combining
the lower level functions so that interactions between
sub-structures of the design can be minimized.

2.2 Routine Design
2.2.1 Definition of Routine Design

Routine design determines the structure of the de-
sign objeet by combining predetermined components,
given the model of the basic components and structures
of the design object and the methods by which they are
tor be analyzed and evaluated., In routine design, the
two levels of design activity, funetional level and phys-
ical level, are executed. First, functional level design
iz executed, It includes the functional decomposition
of the specification mto a functional description such
as functional specification, unit, bleck, or component.
Next, physical level design is executed. It contains the
decomposition of the functional description into a phys-
ical description of the components for implementation.
Finally, the physical description can be obtained as the
solution of the design. _

Routine design satisfies the following items.

1} The functional ar behavioral description can
be formalized explicitly as the design require-
ment or specification.

2) The design plans at each phase can be for-
malized. They consist of a préblem decompo-
sition method such as functional or structural
decomposition of the specification or problem,
a refinement method, an analysis method, and
an evaluation method.

Routine design can formalize a design that has
been realized as a well-defined and well-structured
problem. It is a design that uses the same expertise
and problem-solving method in the previous design.
The design specification of routine design is well under-
stood. The problem can be solved using the standard
problem solving method, and DA systerns and semi-DA
systems are realized instances of routine design.

Modification or edit design can also be interpreted
as typical routine design. They improve the results of
previous designs (the explieit specification of the design
paramneters and their dimensions).

In contrast with these DA systems and semi-DA
systems, most CAD systems that conduect drawing,
mass property determination, finite-element analysis,
or dynamics analysis, provide only basic assistance fa-
cilities for the designer. They are not suitable for rou-
tine design, which decides whether the design result
satisfies the design requirements.

2.2.2 Design Process Model and Fundamental
Design Task '

This section describes the fundamental tasks in
the design process model.

Considering the design process of routine design,
the following items are required [Rinderle 87].



1} Interaction between conceptual design, funda-
mental design, and detailed design

2} Design objects can be structured with mini-
mal or ne interaction between conceptual de-
sign, fundamental design, and detailed design.

3) The design process can be structured so that
the design tazk at each phase can be executed
independently.

Fig.. 2.2.2 describes the design process model in-
cluding design cbject model. The design process de-
composes the design problem into sub-problems, and
the design tasks at each abstract level are executed top-
down. The design specification given as input must be
a well-defined representation, and the design process
must be modeled as a well-structured problem.

The fundamental task of the design at each level
consists of planning, problem decomposition, refine-
ment, optimization, analysis, and evaluation tasks. It
corresponds to repetitive refinement in terms of the ex-
erution of these tasks.
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Fig. 2.2.2 Design Process Model

Especially, we must consider strategies for the de-
composition of the problem or specification at each
level in order to discuss the design process model for the
routine design. The strategies of the problem decompo-
sition must take into acesunt the interactions between
functional description and physical description for both
circuit and mechanical design, These strategies are not
always formalized clearly and applied in the mechan-
ical design, as they are in the VLSI design. In VLSI
design, the design process at each level is formalized to
make the design task more simple, modular, and easy

to apply:
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In mechanical design, most interactions are caused
by the execution of the constraint representation com-
posed of the funetion concept, which is based on phys-
ical laws, and the feature eoncept of the form, such
as the topology or geometry of the design object at a
functional or physical level. The design problem must
be dealt with by investigating the degree of decompo-
sition of the problem or specification. The structure of
the design object at the functional level is assumed to
have already been decided when the above items are
examined.

2.2.3 Classification of Routine Design

The design has three levels: new design, combi-
natory design, and parametric design [Tomiyama and
Hagen 87].

New design is executed at each design phase as
conceptual design, fundamental design, and detailed
design. Ii is executed from scratch without using re-
sults of previous designs. It is a creative activity by
the designer and the design process is modeled as an
ill-stroctured problem.

Combinatory design realizes the design objects
by combining the basic predetermined eomponents ae-
cording to the result of the previous design such that
the input specification can be satisfied.

Parametric design determines and modifies the at-
tribute parameters of the design objects when their
structures can be fixed and the somponents can be de-
scribed in the form of the attribute modeling,

Routine design applies to combinatory design and
parametric design only. It ineludes tasks for both com-
binatory and parametric design.

3 EXPERT SYSTEM ARCHITECTURE
FOR DESIGN TASKS

We will begin by discussing important current is-
sues concerning expert systems, focusing on mechanical
design and VLEI design. After that, we will describe
related works, necessary architecture, and problem-
solving mechanisms in order to consider a suitable ex-
pert system architecture for design tasks.

In mechanical design, it is difficult to modular-
ize the design object because geometrical information
(such as the representation in three dimensions) and
manufacturing and assembly information are closely
linked with the design object. The behavior of the de-
sign object changes as the geometric features change,
because the geometric features or form deseription de-
pend on the functional description or fabrication infor-
mation. This behavioral change results from the dy-
namic ¢reation of the model about the components of
the design object.

In contrast to the VLSI design, feature descrip-
tion at the functional level has little effect on feature
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deseription at the physieal level and it is diffieult to ab-
gtract the components of the design object from their
behavior or function. Therefore, given the specifica-
tions, It is difficult to determine whether the behavior
satisfies the specifications and it is necessary to con-
sider the analysis task.

3.1 Previous Works

The present trend in architecture research for
the design tasks can be divided into two types: the
problem-solving based approach, and the design object
modeling based approach. In rescarch on the design
object modeling based approach, the ICAD system are
considered as typical example [Phillips and Rosenfeld
&7).

In this section, research based on the problem-
solving approach, called gemeric task, is described.

Typical research has been conducted on architec-
tures consisting of primitive tasks for routine design,
called design generic tosks, focusing on the mechanical
design.

These architectures provide ways to structure
knowledge for the various design deseriptions and solve
design problems, thiis reducing the gaps between fune-
tions needed for the task in the design process and
functions supported by expert system building tools.

We describe one branch of this research below.
The DESI system [MeDermott T8] represents an expert
system for the design problem at an early stage. This
system focuses on the design problem of an analog fil-
ter by regarding the design tasks as the problem-solving
approach. It is the system that introduces generic task
concept for the design problem.

" Thus, in VEXPERT system [Dixon and Simmons §4,
Dixon et al. §7], the design task is modeled using the
problem-solving approach and is extended, and the de-
sign process of this system is regarded and modeled
using the design-evaluate-redesign architeciure, The
redesign task in this design-evaluate-redesign architec-
ture executes the new design according to the new de-
sign plan and the systems cannot realize the local mod-
ification facility for the analysis and evaluation of the
result of the design.

The AIR-CYL system deals with the weak points
of the redesign task differently from design-evaluate-
redesign architecture based systems such as the VEX-
FEAT eystem, in that it provides a local modification
facility by improving the problem solver. DSPL is a de-
sign language supported for building the ATR-CYL sys-
tem. It supports the ability to describe the design pro-
cess model in terms of the combination of the problem-
solving agents [Brown and Chandrasekaran 86, It is
rather difficult for the designer to build the system us-
ing this design language.

The PRIDE system [Mittal et al. 80] is the design
support system. not for automated use, but for mter-

active use. In the PRIDE system, the problem-solving
agent is described more easily than by using DSFL in
the AIR-CYL system, and & local modification facility
with multiple context management and a search con-
trol facility for the user are added and extended to the
problem, solver.

The ALIR=CYL and PRIDE systems realize local mod-
ification facility, but when the form or structure of the
design object, and the material for implementation are
modified, it is very difficult for these systems to analyze
and predict the behavior of the modified design object.
Therefore, in this case, the behavior analysis of the de-
sign objeet based on the first principle of the physical
environment is required. The PROMPT system [Murthy
and Addanki 87 is & tool for design problems which fa-
cilitates the behavier analysis of a complicated design
ohject by realizing the simulation mechanism, and by
introducing deep knowledge and first prineiple to the
design generic fask concept.

In design problems, the optimization problem of
parameters iz especially required. The ENGINIOUS sys-
tem [Nicklous et al. 87] is an automated design system
that bases on the same design-evaluate-redesign archi-
tecture as VEXPERT system and integrates the simula-
tion facility using the execution of CAE program and
sophisticated techniques for optimization.

~ 3.2 Architecture and Problem-Solving

Mechanism

An expert system for routine design performs the
following four tasks by examining existing systems, es-
pecially the mechanical design mentioned above [Na-
gasawa 87].

1) Determines structures (mechanisms) of the
design object

2) Optimizges the attribute parameters for struc-
tures of the design object

3) Searches the attribute parameters for struc-
tures of the design object

4) Optimizes and transforms structures of the
design object

The design for the expert system is applied to rou-
tine design only and includes combinatory design and
parametric design.

Fig. 3.2 shows a basic structure of expert system
for routine design based on the design process model.
First, structures of the design object {structural model)
are determined by searching the predefined design style
of the design object, or by configuring or combining the
predefined components. After determining structures
of the design object, and refinement of the engineering
model is executed. This refinement can be regarded as
the optimization of the atiribute parameters of strue-.
tures of the design object and can be regarded as the



search of the attribute parameters considering imple-
mentation constraints such as resources. Structures of
the design object are transformed or modified locally
without the changes of the required functional or be-
havioral specifications by the optimization task, if pos-
sible.
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Fig. 3.2 Baasic Siracture of Expert System for Routine Duisn

Inn LSI design, after the structure of the design ob-
jeet 1s determined by combining the predefined compeo-
nents, the components and their attributes are refined.
The structure is then transformed and optimized to re-
solve the trade-off problem so that the specifications
are not violated.

"In most mechanical design, structures or mecha-
nisms of the design object are predetermined, and the
search and optimization of the structural parameters
are executed based on that predetermined structure
or mechanism. Design where all the components and
relations among them are determined after structures
or mechanisms of the design object are determined is
called parametric design.

Architectures based on the above generic task con-
cept do not support the modeling facility of design
knowledpge, especially the design object; and when re-
garding the design knowledge as constraint representa-
tion, it seems that the architectures are insufficient for
this generic fask approach and unable to handle the
constraint representation. Therefore, an architecture
that includes the constraint representation, its applica-
tion mechanism, and the modeling facility, is required.

This comstraint representation is proposed as &
new paradigm for knowledge representation, and the
application mechanism is proposed as a new paradigm
for the architecture of routine design expert systems.

The application mechanisms for constraint repre-
sentation in routine design expert systems are defined
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as constraint-based problem solving, Modeling corre-
sponds to the formalization of various descriptions for
design knowledge and the handling of design knowledge
by trial and error. Constraints are generated, derived,
modified, or deleted from modeling during the design
process.

The constraint-based problem-solving mechanism
is considered according to the constraint classifications
by matching the design process model for & routine
design with the design system.

3.3 Technical Issues

There are many issues concerning expert system
architecture for design tasks, called design generie lash.
The following items are shown as practical issues [Nagad
88a).

1} Relation of Expert System to Design System

2) Meodeling of Design Process

3) Modeling of Design Object

4y Control of Problem Solving during Design Process

5) Improvement of Problem Solving and Knowledge
Representation Mechanisms

We will describe our research approach for these
iterns shown in Fig. 3.3.

To resolve the above issues, we focused cn and
investigated knowledge representation and a problem-
solving mechanism to realize design process.

There are various kinds of knowledge in design
problems. Two of them are design knowledge, com-
posed of knowledge about the design object and knowl-
edge about the problem solving.

Knowledge about the design object includes
knowledge about the structure of functional and phys-
ical components. Knowledge about problem solving
includes knowledge about ways to refine, a.nﬁ.l_',rz:e, and
evaluate the design object.

When considering the expert systems for design
task and expert system building tools for design prob-
lem, design knowledge, especially knowledge about the
design object, must be .separated from the problem.
solving mechanism to make the architecture clear.

However, this design knowledge is not always clas-
sified explicitly and used separately. And current sys-
tems and tools do not support and handle the knowl-
edge about the design object, and it is not encugh that
their problem-solving mechanism handles the design
knowledge efficiently.

In Section 4, we investigated the design object
model, The design problem requires ways to model
the design objects so that we can use the knowledge
that have about them. It also requires ways to solve
problems by using this knowledge.
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The FREEDOM system is explained as the modeling

aystem of the design object according to this consider-
ation.

By the way, when we consider the problem-solving
mechdnism for design knowledge in current systems,
there are the problem-solving mechanisms both for
knowledge about design object and for knowledge
about problem solving, and each mechanism is not in-
tegrated into the identical problem solver. Fortunately,
each mechanism can be integrated easily by regarding
these knowledge as constraint representation. '

However, existing expert systems and tools do not
support and handle the constraint representation, and
it ie not enough that their problem-solving mechanism
handles the constraint representation efficiently.

In Section 5. we discussed the application mecha-
nism for constraints, By constraint, we means either
general constraints necessary for routine design, or con-
straints that are specific to one.

As described above, the effective utilization of de-
sign knowledge and eficient problem solving are re-
quired to expert systems for design problems, beeanse
various knowledge must be treated.

Knowledge compilation is being investigated for
raising of the efficiency of the problem solver in many
problem areas, such as diagnostic and machine learning
problems [Anderson 86),

This compilation is a technigue by which knowl-
edge in declarative form, such as faets and theories,
shout the domain is stored and this stored knowledge
is applied and utilized by interpretive procedures. This
technique makes existing paths of processing more ef-
ficient rather than enabling new paths of processing.

Therefore, more efficient procedures specific to the
task domain can be generated using the knowledge
compilation technigue.

. In our research, this compilation technique is ap-
plied to a design problems. especially mechanical de-
sign by considering the design knowledge as constraint
representation., :

Concretely, given the design plan generated by
compiling constraint representation, derived from the
concept of the design task and design object, and
problem-solving heuristics, the design activity corre-
sponds to the interpretation and execution of this de-
sign plan and it can be regarded as constraint satisfac-
tion problem. The synthesis and analysis tasks in the
design process are interpreted and executed according
to this design plan generated by knowledge compilation
on the predetermined system architecture. The inter-
pretation and execution of the design plan corresponds
to the execution of the design system.

However, at the moment there are many cases
where only constraints are given; design plans are not.

Therefore, the environment of this design plan
generation using the knowledge compilation technique

and its interpretation and execution are required.

In Section G, we describe the architecture for ex-
pert system and expert system building tocl according
above considerations.

At present, as various design systems inclhuding ex-
pert systems, especially for mechanical design, are im-
plemented using a typical procedural language such as
Fortran, Pascal and C, and these systems for only
specific design problems are provided to designers as
individualized systems. Therefore, it is inconvenient
and inefficient for designers to use them for design.

In this case, for the designer, the design knowledge
must not be represented merely in the form of the pro-
cedure. This knowledge must not be deseribed speeific
with the specific problem solver.

To reduce these inconvenience and inefficiency of
existing design systems, it is necessary for the designers
to provide a support systems in which the designer can
construct design systems easily.

After all, the facility where the designer can build
the expert system for design problem by representing
the design knowledge, not procedurally, but declara-
tively, and in the form independent of the problem
solver, is required.

Thus, the environment of this design plan gener-
ation using knowledge compilation may be considered
as support for a CAD system construction environment
customizable by the designer.

In Section 7, the expert system building tool,
called MECHANICOT, that supports the problem-solving
mechanism that suits the design knowledge in the form
of the declarative description, by considering their ar-
chitectures as uniform framewcork from the viewpoint
of constraint-based problem solving, is described.
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4 DESIGN OBJECT MODEL
4.1 Object Model in the Design Expert System
4.1.1 Role of Design Object Model

Design objects in design systems are represented in
the form of model deseriptions. A design object model
represents information and knewledge about design ob-
jects, such as their atiributes, shapes, structures, and
50 on. During a design process, a model that satisfies
all requirements is constructed; it represents a solution.

Models used in conventional design systems con-
sist of data structures that are merely static. They
need to be interpreted and manipulated in terms of
design tasks or procedures. Only the knowledge about
design methods is important, and the knowledge about
design objects is embedded in model manipulation pro-
cedures or design methods. In conventional design sys-
temns, it is difficult to make effective use of the knowl-
edge about design objects. Also, high performance de-
sign and the establishment of a general methodology
by which to build design expert systems may be ob-
structed because two kinds of knowledge are not iden-
tified.

To avoid a combinatorial explosion and to solve de-
eign problems effectively, it is important to represent
the knowledge about design objects as object models
and to put those models to practical use in the de-
sign process. A framework must be developed that
represents knowledge about design objects that help
to make a design process support mechanism that can
solve problems.

4.1.2 Frameworks for Representation

A frame system has been used to represent struc-
fures and attributes of objects in knowledge systems.
Using a frame system, we can represent each element of
an object in understandable, and modular form. Re-
cently, an object-oriented paradigm whose concept is
similar to frame system has been generally used and
also applied to design problems. Though conventional
object-oriented languages are suitable for representing
structures, attributes and behaviors, they do not pro-
vide farilities for representing and using constraints on
design objects. Constraints are typical and important
knowledge in design’ problems.

Methods by which to represent knowledge about
design objects that introduce constraints have been in-
vestigated [Stallman and Sussman T77] [Sussman and
Steel 80] [Heintze ef ol. 87]. These provide efficient for-
malizm for knowledge representation in terms of declar-
ative description. but they are not suitable for the rep-
resentation of large-scaled and complicated objects be-
cause they lack structural representation.

Investigations introducing constraints to an
object-oriented paradigm have been done [Borning 81,
Borning and Duisherg 86) [Harris 86] [Struss 87], and
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have made it possible to represent properties of de-
sign cbjects in an understandable form. However, only
constraints on numerical attributes (instance variables)
can be represented in these systems, and these con-
straints may be used only to caleulate the values of
attributes.

Representation of structures of design objects is
an important part of solving a design problem, so a
function to describe and use structural constraints is
tieeded.

While the object model in an analytical problem
such as a diagnose is formalized in a fixed form, one in
a design problem fakes a varinble form beeause of the
nature of the dynamic change. In a design problem,
the model handling functions such as selection, modifi-
cation, and refinement are important in design object
modeling, since the designer constructs a object model.

4.1.3 Use of Object Model

The architectures for knowledge systems and ex.
pert systems are different according to the way the sys-
tems use the object model. We are examining two of
these ways, One is to generate a design plan by analyz-
ing and compiling knowledge about the design object
model and design methods. We call this knowledge
compiling methed and will describe it in more detail
later, It is suitable for a parametric design.

The second way is to provide a system for support-
ing design process interpreting knowledge that is de-
scribed on object models. The system makes it possible
to construct only models that saiisfy the constraints,
and also supports their effective construction.

This second way is suitable for a problem in which
the structure of the design object is not given or not
fixed. In such a case, the problem must be solved by
trial and error or by interaction with users. Currently.
the design object system is being developed and is ex-
plained in the next section.

4.2 FREEDOM : A Design Object
Representation System

4.2.1 Basic Functions

Here, a knowledge representation system for de-
sign object modeling, A Framework for REprEsent-
ing Design Object Model (FREEDOM), that facilitates
an effective problem-solving mechanism, is presented
[Yokoyama 88]. FREEDOM provides the facilities that
keep the state of the model for constraint satisfac-
tion and supports design tasks, and currently it is
being developed and implemented using ESP language
[Chikayamks 84] on a PST machine [Taki ef al. 84).

It is useful to distinguish between a model repre-
senting a solution and a model representing general and
fundamental knowledge about design objects. Here, we
eall the former an instance model and the latter a tem-
plate model. For example, in a mechanical design, the
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fundamental structure of the machine and constrainis
on attributes are described as a template model, and
the values of size and material atiributes of parts are
described as an instanee model.

.This system describes a template model and sup-
ports the creation of an instance model that satisfies
the design requirements. Fig. 4.1 represents the basic
structure of A design system that includes the FREEDOM
system, Knowledge about a design object, namely an
object model, is deseribed in this system. Procedures
caused by design tasks are positioned outside.

Procedures caused by design tasks correspond to
the manipulation of an instance model on this system,
modifieation of elements and values of attributes, addi-
tion of constraints, and so on. At this time, the FREE-
DOM system creates an instance model that satisfies the
constraints for realization of an effective design,

Design 3ystem
Design Object Medel
. Madal Dasign
Teaplate Instanca Manipu- | Procedures
Model Madel latien | (Knowledge
(Knovledge on Design
on Design (Design nethods)
Objects) Bata)
FREEDOM

Flg.4.1 Baszle Structore of 2 Design System with PREEROM

4.2.2 Knowledge Representation Framework

Enowledge representation provided in the FREE-
DOM system, based on an object-oriented paradigm,
makes it possible to deseribe constraints in declara-
tive form. A template model corresponds to classes in
the ohject-oriented paradigm, and an instanece model
corresponds to instances. The features of knowledge
representation are described below.

(1) Introduction of Constraints to
an Object-oriented Paradigm

Constraints play important roles in solving prob-
lems in designs. They reduce a combinatorial explo-
sion, and values of attributes and structures of objects
can be determined using them. Thus, it is effective to
introduce the constraints concept to an object-oriented
paradigm. Constrainte are described in the form of a
predicate.

The whole-part relation, so-called part-of, is an im-
portant way to represent the structure of objects. The
relation is classified into two: the first is that parts are

needed to construct the whele; the second iz that parts
are not needed to construct the whole. For example,
the relation of a rectangle and its four sides corresponds
to the former case and the relation of a bookshelf and
books in it corresponds to the latter ease. The former
is called & consists-of relation and can be regarded s
a structural consiraint of an object.

Because constraints may be generated dynami-
cally during a design process, functions for addition
or deletion of a constraint on an instance must be pro-

vided.

(2) Dynamically Changeable Relation
between Class and Instance

In a design process, parts that satisfy the design
requirement must be searched and the values of their
attributes must be determined.

For example, after the values of atiributes of an
instance that corresponds to a selected class have al-
ready determined, the designer may want to perform
an operation that changes the class to another class to
which the instance belongs.

In this case, in existing object-oriented languages,
we must remove an instance that belongs to old class,

. ereate an instance that belongs to new class, copy at-

tributes common between these two classes, and re-
move the old instance.

Therefore, the FREEDOM system handles the rela-
tion between class and instance, the instence-of rela-
tion, which can be changed and maintained dynami-
cally. This makes it possible to design effectively, be-
cause it is unnecessary to create a new instance and to
copy attributes.

It is inefficient for a realization of & system to ad-
mit a dynamic change of class definition with no restric-
tion. Moreover, it is not necessary to change a class
definition dynamically because class change is needed
when only & part of the corresponding instance is mod-
ified.

In general, class change is required becaunse a top-
down design is regarded as a refinement from a ab-
stract level to a concrete level. An is-o hierarchy of
clazses which represents relations between an abstract
level and a concrete level is applied to & refinement. A
dynamic change of a limited class definition is refined
according to a hierarchy of fs-e relations.

{3) Class Hierarchy using is-u and includes
Relations

As discussed before, a refinement is performed
aecording to a hierarchy of is-a relations of classes.
A class hierarchy with multiple inheritance is not-al-
ways represented using a relation between an abstract
level and a concrete level, but using inclusion relation
of function in many object-oriented systems. It also
makes a class hierarchy too complex to understand.



Thus, 12-a relations can be declared only in the
case when two classes helong to the same category,
and they must be represented in the form of sinple
tree structures. A refinement in a design process corre-
sponds to the search operation of a class that satisfies
design requirements by referring to the ds-a tree strue-
ture. .

The multiple inheritance mechanism is useful for
representing inclusion of functions, so a definition of
this fncludes relation is introduced for representation
of the class hierarchy.

Here, a class with an tneledes relation is not ap-
plied to the corresponding class, but to the correspond-
ing subelass. Refinerment is executed only to a specific
class such as inclede class,

Fig. 4.2 represents an example of class hierarchy
of plates. Relations, such as the iz-e relation between
PLATE and BOARD, the includes relation between
PLATE and METAL, and the is-a relation between
TIRON and METAL are deseribed. It is possible to sim-
plify description of class hierarchies using the fncludes
relation.

includes ¢
class BOARD -—---->
ineludes | SHAPE tis=a tis-a
tlass RECTANGLE class TRIAKGLE
fswa [ ds-a | swame ie-a | SHaPE
ineledes
clasa FLATE =—====—3| wlass MNETAL
is=a EOARD lz-a f NATER 1AL
inelidas | METAL tisa t is-a
clazs [RON elass ALUNINDW
is-a |i|m|. is-a lm.u.

Fig. 4.2 Class Blerarchy with "iz-a" and “ineludes™ relations

4.2.3 Functions Required for Supporting
the Design Process

FREEDOM provides functions to keep the states of
mstances, that satisfv constraints, derived from design
object model. These functions make it possible to solve
design problems effectively. The functions of this sys-
tem are described below.
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elass  PLATE
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 density 7.9 densi Ly LT
i
T instance-of
instanee  a=-PLATE
area 100
attribete | thickness H]
nEEE
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Fig. 4.3 Chamge of 2 Class by Constraimt Satisfaction

{1) Maintenance of a Model that Satisfies
Constraints

The attributes of = design object model are repre-
sented mumerically or symbolically, and their values can
be obtained by solving constrainis derived from them.
For example, when there is the constraint on four at-
tributes shown below, such as mass, density, area and
thickness, the value of one attribute is determined if
values of other three attributes are given,

mass. = dengity * area * thickness

In FREEDOM, a definition of & class is regarded as
a description of constraints on objects belonging to a
certain category. Search for a elass that satisfies design
requirements iz realized using a constraint satisfaction
mechanism.

In other words, when a structure or atiribute of
an instance is modified, if constraint satisfaction can-
not be executed in the class to which it belongs, the
class may be changed automatically to another class
to satisfy the constraints. In this way, it is possible fo
gearch for a class that saiisfies design requirements by
a modification of a corresponding instance.

For example, a problem to determine the kind of

-a plate 15 considered. Fig. 4.3 represents 4 class hier-

archy of plates,

Theugh 2 &-PLATE instance for representation
of the solution ecorresponds to an JRON-PLATE in-
stance, where an area and thickness are determined,
its class is changed to ALTMINUM-PLATE according

to the constraint on the mass.
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{2) Support of Top-down Design

Generally, designs are executed in a top-down
manner, g0 the main operations consist of refinements
of chjects. Refinement is executed in fwo ways: the
first way is from the abstract level to the concrete level,
and the second way is from the whole to parts. The for-
mer corresponds to refinement using is-a relations and
the latter corresponds to refinement using includes and
constata-of relations in FREEDOM,

Te-a relations ar'e used to select a system structure
or a component type, fncludes relations are used to
refine parts of an object in parallel from several view-
points, and conaists-of relations are used to design some
components divided from an object, independently.

A class declared as a part with & consists-of rela-
tion can be applied to a subeclass of a declared class,
such as & class with an fneledes relation. Thus, & design
process can be considered as follows: first, an instance
of an abstract class is created, then it 15 refined alomg
an #s-a hierarchy and divided into parts using includes
and consisis-of relations, and those divided parts are
refined. This cycle is repeated in the design process.

As mentioned above, the FREEDOM system repre-
gents not only knowledge on design objects but also
supports design tasks

5 CONSTRAINT-BASED PROBLEM-SOLVING

MECHANISMS
5.1 Constraint Representation

Constraints can be defined as certain relations or
conditions that may exist between components of the
design objects, as relations or conditions between prop-
erties of those design objects, and as expressions of laws

or rules whicl must be satisfied (expressed in the form
of equalities or inequalities). One example of an ex-
plicit constraint is & constraint on the structural infor-
mation from the modeling representation of the design
object. The other examples of constraints are Kwrch-
hoff s lawse and Qb s law in cireuit analysis [Stallman
and Sussman 77] [Sussman and Steel 80|, the number
of resources. costs, operation priorities and dates in
job-shop scheduling [Fox 83, and the edge connections
that are physically possible in attempting to recognize
a line drawing [Clowes 71]. However, the given repre-
sentation of constraint is not always used effectively in
existing systems. The effective use of such constraints
should make it possible to restrict searches in the so-
lution space, thus improving efficiency by eliminating
unnecessary searches, Not many of the existing tools
supporting the construction of expert systems provide
an environment that makes it easy to express the con-
straint concept explicitly. Therefore, the person con-
structing the system must use the tool development
la.ugungc to attemnpt to realize mechanisms for ap‘pl}ring
constraint representations which depend on the design

object. Most design problems ean be regarded as con-
straint satisfaction problems. For instance, considering
the concept design generic fosk, constraint handling is
equivalent to checking the constraints in the test pro-
cess of the generate and test method. In the step-wise
refinement method, consteaint handling invelves refine-
ment from an abstract level to a more concrete level,
and the constraints imposed at each level also change
dyoamically. In general, when a set of given specifica-
tions is refined, it is also usually divided into different
sub-problems, and there are often interactions between
constraints on different sub-problems as well.

Those functions are required for problem solv-
ing according to the classification and effective solving
mechanisms of constraints when addressing problems
of a synthetic nature, such as in design and scheduling,
The purpose of this is to provide the person comstruct-
ing the system with an environment that enables the
convenient representation of eonstraints.

5.2 Classification of Constraints [Nagai 88h]

{a) General (Domain-independent)
Constraints for Routine Design

Constraints are classified according to the follow-
ing characteristics,

1} Classification According to Generation
Method

Constraints may be classified according to whether
they are menerated statieally or dynamically. Statie
constraints are specified in advance, and are constant
and unchanging, Dynamic constraints depend beth
on interactions with the user and on the systemn; they
tend to change, with their range of applicability vary-
ing. Such constraints may be interpreted as incem-
plete knowledge, and, in order to manage changes in
truth in the knowledge base accompanying changes in
constraints, the functions of the Truth Maintenance
System (TMS) [Doyle T9] and Assumption-Based Truth
Maintenance System (ATMS) [delleer B8] are necessary.

2) Classification According to Importance

Constraints may be classified according to impor-
tance into ub]igu.tur}r or quuisih-. constraints, and BUg-
gestive constraints. When such a distinetion is made,
not all the constraints are selected and executed on an
equal basis. That is, the importance of a constraint
may depend on the context, the time, or ancther con-
cept. All obligatery constraints must be satisfled, and
theae are given explicitly. Suggestive constraints are
also referred to as weak constraints, and are used as
guides in choosing the optimum branch at a node in
the search tree. Such constraints may be described in
rule form, and are given priorities and other attributes.



3) Classification According to Scope

Constraints may also be classified according to
whether they apply locally or globally: this distine-
tion ie weed in evaluating states in the search space.
Lo-cnlj."Panstraints are used to conduct searches when
a state changes within a given model, object or pro-
cess and the scope over which the constraint is vahd
is limited to within the model or ohject or process.
(Global constraints are used when a state is to be eval-
nated using not only local constraints, but all related
constraints, without impesing any limit. For instance,
when the solution space is divided and searches per-
formed, this is equivalent to taling into account all
those constraints that have been applied to states lead-
ing up to the present state, or to evaluating different
parts of the solution space relative to each other.

4) Classification According to Propagating
Variable Information

Conatraints may be classified according to the
propagating variable information, that is, depending
on whether the variables of constraints propagate over
value, or whether the constraint propagates over the in-
terval bound in which the variable can take on a value
or values. At present, the constraint logic programming
svstem |Dincbas 86) [Heintze et al. 57|, CONSTRAINT
svstem [Sussman and Steel 80], and most other con-
straint systems [Borning 81] handle only constraints in
which values are propagated.

Constraints that propagate over interval bounds
in which variables can take certain values, are de-
scribed using inequalities, and the variables of the con-
straint are mot constant; these constraints propagate
aver the interval bound as a label. Most design prob-
lems include sub-problems that can be solved using the
method of existing operations research; it is essential
that the architecture should enable funciions to operate
in & unified framework based on constraint propagation
in labels with interval bounds [Davis 87).

When considering practical design problems, there
are some combinatory possibilities of handling of above
classified constraints, '

{b) Domain-specific Constraint
for Routine Design

There are various domain-specific constraints for
routine design. These constraints are related to the
simplified design process composed of the coneeptual
design, fundamental design and detailed design.

In particular, structural constraints should be con-
sidered in routine design. Structural constraints are re-
flected in terms of the design style, and specifications,
and requirements at each abstract level of the design,
and determine the structural decomposition, partition,
and design style at a lower design level. In hierarchi-
cal design, it should be noted that the constraints are
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propagated to a lower design level. The design style
constraints decide the structure of the design object
and the problem decomposition at a lower design level.
Constraints are partitioned through the structure of
the design object and decomposition of the design prob-
lem. For example, there are the implementation con-
straints (technology-dependent constraints at the im-
plementation level),

5.3 Necessary Functions

The functions required for constraint-based prob-
lein solving [Nagai 88b] are listed below.

1) Funciion for Constraint Propagation
and its Control

In the process of satisfying constraints, and when
values are assigned to variables of the constraint, the
values of other constraint variables may be determined
by the former variable; this is the mechanism of con-
straint propagation. Such a mechanism must take into
acecnint both cases considering local constraint propa-
gation and cases where the problem cannct be solved
by local constraint propagation alone. A typical ex-
ample of the former 15 the propagation methed using
data-flow analysis introduced in the CONSTRAINT sys-
tem. An example of the latter case is the variable elim-
ination method of simultancous equations. In partie-
ular, when using propagation methods based on data-
flow analysis, the trade-off between constraints, such
as occur when regarding the TM2 as & constraint sat-
isfaction problem {CSP) [Dechter and Pearl 87], may
result when the propagation is not always sufficient.
Clearly, a strategy for eontrolling constraint propaga-
tion is needed. Interactions between constraints and
the least commitment of constraints are also indispens-
able for realizing the constraint propagation. For in-
stance, in practical design problems, if we consider de-
s1gn by step-wise refinement, interaction between con-
straints applying to sub-problems that are schved sep-
arately is extremely important. One approach to the
problem of constraint interactions is to minimize inter-
actions between sub-problems. This approach is the
one adopted in the MOLGEN system [Stefik 81a, 81b).
It is referred to as the least commitment; by delaying
constraint evaluations as far as possible, refinements
according to the design plan are executed, and evalua-
tions are performed when necessary.

2) Constraint Relaxation and Selection

Relaxation and selection are apphied to weak con-
straints. Relaxation of a constraint is equivalent to
searching for alternatives to the specified constraint.
That is, at the failure stage, when a constraint has not
been satisfied, an alternative constraint, at the same or
o lower level, ig sompht. Selection invelves the choice
of a constraint when there are two or more competing
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constraints, and is regarded as constraint interpreta-
tion. In this way, it is thought that constraint relax-
ation and selection can be formilated as a planning
problem [Descotte and Latombe 83],

3) Preservation and Management of
Dependency Relations

In processes where the values of constrained vari-
ables are propagated through the execution of com-
straint propagation mechanisms, when contradictions
in variable values arise, the preservation and manage-
ment of dependency relations among constraints, vari-
ables, and constant values are deemed impeortant to
resolve such contradictions and to explain the propa-
gating values [Harris 86).

4) Monitoring Mechanism for Constraint
Evaluation

A monitoring mechanism for constraint evaluation
should not be cmitted from any problem-solving mech-
anism that relies on constraint representations. [t man-
ages constraint checks and ensures consistency, and is
to some extent realizable using demeons or attached pro-
cedures.

5.4 Role of this Mechanism to Design Process

This section considers constraint-based problem
solving relative fo the design process. As discussed
previously, the fundamental task at each design level
makes the iterative design composed of the problem de-
composition and refinement proceed according to the
design plan. If a design fails, redesign is executed, and
the problem is decomposed and refined again. It back-
tracks the previous design decisions in the tasks at the
higher level or executes local modification at the same
level, and executes the iterative design.

. Mechanical design that mainly belongs to para-
metric design can be regarded as the generate and test
+ failure recovery {4+ optimization + analysis and eval-
unation) paradigm.

Planning decomposes and refines the problem or
specification according to the design plan. The de-
sign style determined from the design plan (the con-
figurational or architectural knowledge about the de-
sign object) is indexed by the requirement or specifica-
tion of the design, and can be regarded as 5 constraint.
The refinement, optimization, and analysis and evaln-
ation tasks are selected and executed according to this
constraint. The decomposition of the requirements or
specifications of the design are executed by applying
this design style constraint.

Parameters and constraints: between the hierar-
chies of the design are propagated upward or down-
ward or the interactions among the decomposed sub-
problems occur when there are constraints among
them, so it is necessary to consider the tasks for these

types of processing, such as constraint pesting an
propagation. :

Assuming that problem decompesition ean trans.
form or map the sub-problem to the component or
assemnbly, there are two ways to decompose a prob-
lem. The first way is problem decomposition into suhb-
problems with interactions; the second way is prob-
lem decomposition into independent sub-problems. In
the first way, it is important to consider the relations
among the compositions at the same level. In the sec-
ond way, it is important to consider the relations be-
tween the components and sub-components.

Refinement transforms the divided specification
into structural representation composed of the com-
ponents and relations among them. These relations
among components can be regarded as a constraint.
Constraints on the component attributes are partiou-
larly important. For example, the propagation mech-
anism of constraints of the conponent attributes, n
decomposition into interacting sub-problems is differ-
ent from that in decompesition into independent sub-
problems. The former mechanism propagates the in-
teractions among sub-problems as the constraints, and
the latter propagates the constraints upward or down-
ward according to the hierarchical representation of the
design ohject when there are no interactions among in-
dependent sub-problems.

Optimization modifies the structural representa-
tion locally, so that the functions expressed in the spec-
ifieation do not change.

5.5 Constraint-based Problem Solving
on Generate and Test (G & T) +
Failure Recovery (FR) Paradigm

Tasks for routine mechanieal design eonsist of the
determination of structures and structural parameters
of the design object, without the optimization and
transformation of structures of the design object.

The structure of the design object in routine de-
sign is determined by combining the components or is
determined according to predefined design styles of the
design object. It is determined by retrieving the ap-
propriate design style from the predetermined design
plan.

The components are implemented using the stan-
dard parts by looking them.up in catalogues or by using
non-standard parts by the design. Most of the selec-
tion strategies of standard or non-standard parts for
component implementation are described in the spec-
ifications or requirements. They mostly depend on &
trade-off of the performance against eost,

The necessary architecture for this design can be
formalized as the generate and test + failure recovery
(+ optimization + analysiz and evaluation) paradigm
shown in Fig. §.5.



The problem-solving primitives are the generator,
propagator, tester, and failure recoverer.

The generator assigns values to parameters or as-
signs functional components to the components for im-
plementation. This parameter can be classified in one
of two ways according to the type of the value: one
takes the continuous value, and the other takes the
discrete value. The former assigns parameters of the
attributes by local modification based on the predeter-
mined component. The latter assigns parameters by
retrieving the standard parts for implementing compe-
nents from the catalogue, a table look-up method,

The propagator assigne the values to the param-
eters by using the active evaluation of the constraint
and propagation of constraints, )

The tester checks the constraint and can be con-
sidered as the passive handler of constraint, In general,
the inequality deseription can be handled by the tester,
but in some contexts it can also be considered and han-
dled as the generator. .

The failure recoverer modifies the attributes of the
components locally using the advice mechanism and
replans the problem decompesition. The advice mech-
anism can be considered as the repair of the partial or
local design using the heuristics about the attributes
of the components. It uses the above generator and
propagator as primitives. In failure recovery handling,
the obligatory or suggestive constraints must be han-
dled. The advice mechanismn by the selection and eval-
uation of the constraint is executed to the ohligatory
constraint. For the suggestive constraints, planning
such as a compromising elgorithm is required in order
to relax and select this constraint, This is & mechanism
that satisfies as many comstraints as possible, too.

Design knowledge, especially the constraint repre-
sentation such as the varlous formulas about the fea-
tures of the functional or physical environment is eom-
piled and this compiled representation can be consid-
ered as the constraint network, when the structure of
the design object, configuration of the components, is
fined, '

In other words, the constraint-based problem-
solving mechanism in the generate and test + failure re-
covery architecture corvesponeds to the execution of the
representation generated by compiling varions kinds of
this design knowledge based on the fundamental tasks
of the design process such as planning, problem decom-
position, and refinement.

6 ARCHITECTURE FOR AN EXPERT
SYSTEM BUILDING TOOL

6.1 Knowledge Representation

Designers’ knowledge must be casily represented
in & building tool, to enable them to build an expert
system by themselves. In this section, representation of
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design knowledge about problem solving is described,
since an object model which is knowledge about 2 de-
sign object itself has already been discussed in Section
3.3. Design knowledge about problem solving consists
of methods to analyze object models, to evaluate and
modify solutions, and plans to design the object and
search from candidate solutions.

Methods to analyze object models are regarded
as constraints; they are expressed in the form of for-
mulas derived from physical laws or experiments, and
are composed of equalities, inequalities and mathemat-
ical functions, Methods to search from catalogues, ta-
bles, and graphs are also included in this knowledge,
in terms of deciding parameters. Knowledge to mod-
ify solutions generates alternatives after determining
modification scope, if solutions cannot satisfy design
requiremnents.  Modification scope is not only locally
close within a subproblem, but also globally related to
other subproblems. Knowledge to evaluate solutions,
often expressed by inequalities, decides whether solu-
tons can satisfy design requirements such as functions,
efficiency, and cost performance. Plans to design indi-
cate orders to solve constraints given as analysis meth-
ods and requirements, but plans to search restrict the
search space when many alternatives exist. Using this



310

Knowledgn about . Enowledge nbout
— [ Inputs from a designer ]
) [Feien eairemen prien wiog
Inherit — 3 fchasih
Mredidy +* Modily
Libearles of ~— Constraint Annlyzer == Libraries of [ Bullding tocl |
ubject model “Genourates design plan knowledge
“Frovides Intarfacs batwoen | probilem polving
deakgn kmowledgekproblem solver
k2
Deslgn Knowledge |, |Frotiem Solwr { Output:
(Dibjack modsl + Knowledge about e bruak. serec) Bpealalized sxpect aystom ]

peoblem selving )

Fig.6.2 Architecture for an Expert Bystem Building Tool

with evaluation knowledge, problem solving is made
more efficient. Thus, design knowledge about problem
solving has various representation types.

In addition. knowledge that 15 independent on a
design object and heuristics that is closely dependent
on a certain design object are mived. For-example, de-
sign formulas and searching from eatalogues in design
knowledge about problem solving, and basic parts and
function units in object models are independent from
a design object. .

Therefore, with the aim of enabling designers to
represent, this knowledge easily, we employed the ap-
proach that these independent kinds of knowledge are
prepared as system libraries: sets of design formu-
las and catalogues in knowledge about design problem
solving, and sets of basic parts and function units in
object models are prepared respectively. And these
knowledge are expressed in object-oriented. Because
an chject-oriented system has advantages that parts
and their attributes are represented naturally as object
for object models, and knowledge can describe declara-
tively as methods for knowledge about problem solving,
Consequently, designers’ heuristics can be expressed
explicitly, by referring to or by inheriting and modi-
fying libraries.

6.2 Architeeture for an Expert System
Building Toal

Az shown above, we divide design knowledge into
object medels and knowledge about problem solving,
This enables us to maintain knowledge and to modify
knowledge flexibly. Viewing knowledge and require-
ments as constraints, constraint based problem solving
is employed, '

To build an expert system suitable for a design
problem by a designer, we propose a building tocl that
regards inputs of design knowledge as constraints, gen-
erptes design plane by analyzing their dependenecies,

and provides an interface between design knowledge
and a constraint solver. ’

We used a constraint analyzer to obtain facilities
for this building tool. The constraint analyzer, similar
to a lmowledge compiler [Araya and Mittal 87] [Nagai
88¢] and a constraint compiler [Feldman 88], analyzes
dependencies among constraints and produces a design
plan to solve a problem efficiently. In other words, the
constraint analyzer specializes knowledge by combining
knowledge independent from & certain design object
and designers’ heuristics which depend from a certain
design object. Fig. 6.2 shows the architecture of the
toal.

Inputs to the tool are design requirements, object
models, and knowledge about problem solving. They
are given by specifying systemn libraries, or by modi-
fying libraries with referencing or inheriting libraries,
RBeferencing results of previous design and designers’
heuristics about searching from alternatives are also
represented as knowledge about problam solving.

From these inputs, the tool analyzes dependencies
among constraints and parameters, generates a design
plan, and provides an interface between design knowl-
edge and the constraint solver. The output from the
tool 1s a specialized expert systemn including designers’
heuristics.

T MECHANICOT: A SPECIFIC EXPERT
SYSTEM BUILDING TOOL

As an example of & specific expert system building
tool, MECHANICOT [Terasaki ¢f al. 88], which is under
dmrelupment1 18 described. MECHANICOT is a tool for a
mechanical parametric design. It analyses dependen-
cies between structures of a design object and param-
eters, produces a design plan, and builds a specialized
design expert system.



7.1 Design Problem of Main Spindle Head
in a Lathe

The design object is the main spindle head of 2
lathe, shown in Fig, 7.1. It consists of a main spindie
to grip a workpiece and to rotate it, A motor as a power
source, V-belts and a pair of pulleys to transmit power
from the motor to a pulley-shaft, bearings to support
both the main spindle and the pulley-shaft, and two
pairs of gears to change the main spindle speed. The
problem is to determine the dimensions of each part
and find each part number by searching catalogues.

The design requirements must be satisfied:

o Cutting capacity and the maximum dismeter of
the workpiece )

o Maximum rotating speed of the main spindle

o Maximum entting depth and feeding speed

o Minimum life time of the bearing to be evaluated

This is a parametric design problem in which the
structure of the design ohject is fived and knowledge
about problem solving is well known [Inoue ef al. 88].
In addition, parameters are discrete values which are
decided by searching from catalogues or by adjusting
to standard values. Tab. 7.1 shows input requirements
and design parameters.

i Bh-!?eed gear
(wheel) ™,
Main-spindle |: Low=speed

oot
I:[/_ll]z '(/]i:lml'

Pulley(small)

Fig. 1.1 Outline of Design Object
— Maip-gpindle Head Of Lathe —

Tab. 7.1 Hxanple of Input & Design Paraoeters

Input paraneters

Cutting eapacity

Horkpiees matarizl
Tool material

Forkpiecs diameter{max.
Main-spindle speed(max.
Cutting depth {max.
Feeding spesd ;rm:.

Drill diameter
Drill speed

nax.
mAx.

Evaluatlien

Life of bearings

[eslgn parametars

Decided by Main-spindle dismeter

caleulation Pulley-shaft diameter
Gears & pulleys ratio
Kumber of gear teeth
Gears pitch diameters

REesult af Bearing mount type

pravious design

Bearing span

Search from Bearing part nupber
catalogues or Kotar  part number
tables V-belt part number
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Pulleys part number

7.2 Specific Example of an Expert System
Building Tool

7.2.1 Input
a) Design Object Models

Design object models consist of the structuse of
the design object, constraints derived from structural
relations, and design parameters. The structure is hi-
erarchically represented: the whole of the design ob-
ject, function units, and parts which are elements of
a function unit are described as class objects respec-
tively. Fig. 7.2.1.1 shows this class hierarchy in the
cage of Fig. 7.1, Description of chject models is com-
posed of consizi_of for component elements in a fune-
tion unit, censtraint for constrainis from structural
relations, and peremeler for design parameters. Fig,
7.2.1.2 {a) shows the object model definition for a class
pulley.shaft which is one of the function units in the
main spindle head.

b) Knowledge about Problem solving

Description of knowledge about problem solving is
shown in Tab, 7.2.1. Equalities and inequalities, and
search method from catalogues, tables and results of
previous design are included in the form of table, ex-
cepts in the form of functions and egualities. There
are two types in inequalities: one is used for limit-
ing generating space of alternatives, and the other is
used for testing solutions. Searching from catalogues,
tables may have alternatives, similar to inequalities
which used for restricting search space. To handle
such constraints, they are classified into four types: de-
sign_method, generalor, tester, and adjust_by.



J1z2

spiec_input
i t : Inheritance relation
uin_spiglﬂlq_sw 7 : Class included in the systen libraries

mr%tu_mtni-. s'i?ﬂ.dard palley sys feducEion sys
main_motor pulley sys oy _reduc sys

skandard. gpur: gear sys -li{ltshm' Line shaft
lowspeed_gear_sys highspeed_gear sys nain_shaft pul ley_shaft

P Is_-h‘hﬂl;m qtahw_bear:iafi

front_bear main rear_bear_main

Tront_bear_pulley rear bear pulley

Fig. T.2. 1.1 Hierarchical Class Structure of Main Spindle Head

class.name
pulley_shaft;
imherit from
lime. shaft;
comsistof
front_bear_pulley, rear_bhear_pulley;
parameter

front_bearing type, rear bearing Ly pe;

constraint
#frant bear_pulleyishalt_dis := shafi.dia,
o I “shaft.dia’ is designed, prepagates it to ‘shaftdia’
% in the class ‘front_bearing'. Thi= i= 2 consiraint to
% fit & bearing on the pulley shaft.
fifrom bearpulleylivpe (= lronl bearing.type,
wHront baxr pulleylshalt rpm = rpm. o,
frear _bear_pulley!shaft dia = shafi dia,
#rear bear_pulleyltype ;= rear_bearing type,
firear bear pulbeylahallrpm = rpm.max;

end.

class name

lineshafi;

parameter
shaft.din, holedia, msterial, rpmanax,
twisting mnement, slearing.strength,
torsion.angle;

end.

Fig. 7.2.1.2 {a) Object Model Definition for the class pulley shaft

Functions and search method from catalogues or
tables which have no altermatives indicated by de-
sygn_methed, whereas having alternatives such as in-
equalities used for restricting search space are ex-
pressed by genevator. And fester represents inequalities
used for testing solutions led from generator or evaluat-
ing solutions. To adjust solutions to standard values as
a filter is adfiest by, Knowledge about design problem
solving is presented by specifying a methed_neme and
a type of method as described above to a parameter
in an object model.. Fig. 7.2.1.2 (b} shows an example
of the object model definitions including design_method
description for the elase pulley_shaft.

Tab. 7.%.1 Deseription of Enowledge about
Probles Salving
Description type

desigm_sethod
{No alternatives)

tor
iﬁmeram 2lternativas)

Funetions, equalities
{Besults of previous design)
{Catalogues er tables search)

Inequalitics

{Liriting generating scope)
Catalogies orf tables search
Refer from results of previous

design
Equalities tester
Inesualities (Evaluation & test)
Tables search adjust
(Filter

¢} Design Requirements

‘Design requirements indicate the design object,
parameter names which are given as an input, and re-
lations between design parameters and input parame-
ters. To express the design object, the highest class
name in 4 class strueture is given by design_object. For
instance, the class name for design_object is the class
main_spindle_sys in the case of Fig. 7.2.1.1. Names of



elags_name
pulley _shafi;

inherit_fram

line_shaft:

consist_of

front_bear_pulley, rear bear_pulley;

parameter

[ront bearing Aype, rear bearing type:

cansiraint
Wfront bear_pulleyliype ;= frantbearing.type,

P
#rear bear_pullevishafe rpm o= ppm

design_method
{ [front_bearing-type. rear_bearing.type|,
bearing mount search{#result of_previous_design,
front bearing-type, rearbearing type)
B
%o Parameters “front. bearing.type’ and ‘rear bearing type’
% are designed by the method "bearing monntsearch’ in the

b elass ‘veault ol previonsdesign ',

end.

clags.name
u:m-th;ﬁ-;

pheameler
shafi.dia, hole.din, material, rpmomex,
twisting.moment, shearingstrength,
torsion_anghe;

design_method

{ [shat.dia],
shaft dia(#shaft_dia_calc, twisting-moment,
tarsion_sngle, shearing strength,
holedis, shaft dis)
| 3
% Parameter 'shaft dia' is designed by the method
¥ "shafidia’ in the class "shafi_dia_cale’.
T And parameters ‘twisting moement®, tersion sngle®,
% 'shearingstremgeh’ and 'hole.dia® are input for this methed,
{ |:I1l|=||.rj:|'|.5.:l:'=|15l-h.:|r
shearing strength searchi#material data_base,
matertal, shearing strengih)
}:

e

Fig. 7.2.1.2 {b) Adding Design Methods for the class pulley shaft
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input parameters are represented by parameter, Note
that specific values of input parameters are given when
the system which is produced by the tool is actually
executed. The relations between input parameters and
design parameters are given by comstraints, indicating
which design parameter in a class receives a value from
a input parameter.

7.2.2 Design Plan Generation

Design plan generations using the constraint ana-
lyeer after being given design knowledge are described
below. Generating a design plan, similar to data-flow
analysis in a compiler, is accomplished as shown.

1) Subgoals are assigned to  constraind,
generator, tester, design_methed, and adfusd by in
each class. In the case of processing conairaind, a
subgoal 15 assigned to each constraint statements,
Otherwise, a subgoal is given to each methods.
Note that the name of each subgoal should be
unigue, Fig. 7.2.2 (a) shows the assignment of

this Huhgnﬂl.

2) Subgoals are integrated into some goals, based on
the input-output dependencies of parameters. The
way of giving names to goals is exactly the same
as the case of subgoals, Fig, 7.2.2 (b) shows this
grouping from subgoals to goals.

3) An execution sequence of goals iz determined
based on the input-output dependencies of goals.
The sequence is managed in a class that is one
level higher than the class in which the goal is
included. For instance, in the Fig. 7.2.1.1, the
sequence of goals in the class pulley_shaft is man-
aged by the class my_reduc_sys. And goals in the
class main_spindle_sys are controlled by the class
apee_input. Fig. 7.2.2 (c) shows the hierarchieal
control of the calling sequence.

Analyzing dependencies between constraints
mitiates from the lowest level of the class hierarchy.
That is to say, the level including a class tnpul_shaft
and a class front_bear_pulley exist on the start level, in
example of Fig. 7.2.1.1. The analysis proceeds towards
the highest level class spec_imput. In the case when in-
heritance relations are exist, the constraints are not
processed along class hierarchy between parent classes
and a child class, but are treated as a flat set of the
constraints included in both parent classes and their
children classes.

The advantage of this constraint analyzer is to an-
alyze the relation between generater and fesier for re-
alization of an efficient execution of generate and test
loop.

When G & T loops are included in execution state-
ments, a generalor corresponding to a testeris found by
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class_name
pulley_shafe;

ot

constraint
#iront bear_pulleylshaft.dia = ahaft.dis,
= pulley shait subgoall

Pt

#:’MrJﬁ!eur...pu“uy'lu'm[t.rpm = PPN,
= pulley shait subgoalé

designmethed
{[fmmr..bﬂrin:.t}'pu. rear bearing-type],
bearing_mount search(#result of previous_design,
el

]'; = pulley shaft subgoalT
omd,

class name
line_shafe]

o~

design_method

{ [ahaft. dis],

shaft.dia{@shafi diz.calc, twisting.moment,
T

}, = lineshaft_subgoall

{ ;:h-eu.rj.ng_-urenglh].,'

shearingstrength search{g@material.data_base,

s}
}.‘- = lingshaft. subgoal2

end.

Fig. 7.2.2 (a) Subgoals Assignment

analyzing dependencies of constraints. It is considered
that an execution of those statements 1s equivalent to
a realization of the Dependency-Directed Backtracking
(DDB} mechanism.

7.3 Considerations

The MECHANICOT system provides a design sup-
port environment where a designer can input and mod-
ify design requirernents, design knowledge composed of
the model of design object and design process easily
and where the design plan can be generated using con-
straints derived from that knowledge.

At present, the MECHANICOT system is being de-
veloped and implemented using ESP language on a PSI

pul ley_shaft Enu
(untarlia]} [4 n-ie_dlia:: {Lwisting_lnml} <tarsi'm_angla>

|

line_shaft

_subgoald

L ¢shearing
_strength»

line_shaft_subgoall
[ |
[ ¢shaft_dia>
! |

| pulley_shatt_subgoall | | pulley_shaft_subgoals |

<front_bear_pulley!shal r._dtaHrear_m:_n;Jllerlshaf t_diax»

pulley_shaft goall
<rpl_|nu>

1
| |

Ipullew_shafl_suhenall | !'pullm-_shaft_suhgnulﬂ

3 L
<front_bear_pulley!shaft_rpm»<resr_bear pulley!shaft_rpm:

pulley_shaft_goald

| palley_shaft_subgoalT l
l <front_bear typad l Lrear_bear _type»

|pulle:r_shaft_submal2 | |p’uller_shaft_subma15 I

| |
<front_bear_pulleytyper  <rear_bear_pulley!typer

Fig. 7.2.2(b} Grouping of Subgoals as Goals

machine, This system is in the style of an antomated
system with no user inferaction. It receives design re-
quirements and design object representation written in
ESP-like language ag input, and generates the design
plan written in ESF as output. The following items are
not provided sufficiently or are missing.

{1) Support of Multiple Context Management

The design object must be modeled and repre-
sented from various points of view, as shown in Section
4. These points of view to the design object can be
interpreted as the desipn contexts. A multiple context
management mechanism is required for the execution
and evaluation of design object models under eertain
design contexts as alternatives. This is a very effective
and important mechanism for design systems. '

(2} Improvement of Constraint Analyzer
In this system, only the handling of static con-



class spec_input has
design_objeet blockl;

goal (fspes_input) :-
spec_input_goal [ (#spec_input),
blockl_goall {(#blockl),
blockl_goald{¥blockl),
blockl_goal 2{fblockl);

spec_input_goal | (Fspee_input) -
spac_input_subgoall{®spec_input),
spec_input_subgoal2{fspec input);

class blockl has
consist_of partsl;

block!_goal1{#blockl) -
Blockl subgoall {Eblockl),
block]_subgoal? (#blockl) ;

blockl_goal 2(Fbloekl) -
block]l subgoald (fblockl},
blockl_subgoald ($hlockl);

block]_goal 3(8blockl) :-
partsl_goall {¥partsl),
paris0_goali (#partsl),
partsl_goal2{#partsl);
end.

class partsl has
imherit_{rom parts0;

partsi_poall{§partsf} :-
partsl. subgoal | (fpartsl);

partsl_goali{#partsl} :-
partsl_subgoal 3{Epar lﬂl;.
partsl_subgoal 2{fpartsl);

¢lass partsD has

partsd_goal |l (fparts0) :-
partsh subgosll{$partsa),
. partsl_subgoal 2 {(fpartsd) ;
end.

Fig. 7.8.2{C) Hierarchical Control of Calling Sequence

straint and obligatory constraint is considered. For ex-
ample, because the role of a constraint such as a gen-
erator and tester to a constraint-handling mechanism
is predetermined, the interpretation of a constraint is
fixed.

However. the handling of dynamic eonstraint, such
as addition, deletion and modifieation of constraints
during design process, and suggestive constraint, is not
investigated,

Therefore, both static analysis for constraint and
dynamic analysis, including constraint relaxation, are
required for realization of dynamic constraint handling,
considering a eurrent constraint analyzer.

(3) Improvement of Constraint Solver
In this system, a specific mechanism for the
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constraint-based problem solving shown in section 5, is
not realized, and a constraint propagation is performed
using unification function in ESP language. Moreover;
for the above dynamic constraint handling, constraint
solver including constraint propagation and relaxation
mechanism, is required,

(4) Improvement of User Interface

Currently, the systern does not provide a friendly
user interface, where the designer can give knowledge
about design requirements and the design object in the
form of a schematic deseription as an input, interacting
with the system.

Such a user interface facility linked with a design
object modeling facility is required,

The design plan generated uwsing consiraint ana-
lyzer is executed by an inference mechanism of ESP
language, but in future an interpreter for the design
plan will be implemented and this design plan descrip-
tion will be interpreted and executed by it.

8 CONCLUSION (FUTURE WORK)

In conclusion, the architecture of expert systems,
including the design object medeling facility for routine
design, was proposed by focusing on constraint-based
problem solving composed of constraint representation
and the application mechanism. _

For realization of this architeciure, the design ob-
ject representation system, called FREEDOM, and the
design support system, called MECHANICOT, were de-
scribed. Particularly, the MECHANICOT system supports
machining tools, specifically a main spindle head of &
lathe, a design target.

Our future research is to clarify the architecture
of expert systems for various routine designs, such as
LSI design, mechanical design, and configuration, by
regarding constraint-based problem solving as a new
paradigm. In other words, this research is to propose
generie tasks for various routine designs. We will also
propose primitive tasks for the constraint-based prob-
lem solving required to realize the architecture of ex-
pert systems for various routine designs,

Purthermare, incorporation of knowledge acquisi-
tion system, especially for acquisition of design knowl-
edge using design object modeling facility and a so-
phisticated user interface, and the use of ATHS as a
knowledge maintenance system is required in order to
realize more effective and practical design system.
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