mﬂEEEDIE%sNEDRFﬁ '_l;THﬂE INTERMNATIONAL CONFERENCE
N FIFTH N COMPUTER SYSTEMS 1988,
edited by ICOT. © [ICOT, 1938

263

Constraint Logic Programming Language CAL

AXIRA AIBA Ko Sakar

YosUKE SATO

Davio J. Hawrey

and Ryuzo Hasecawa

Institute for New Generation Computer Technology

4-28, Mita 1-Chome, Minatoku, Tokyo 108 JAPAN
October 6, 1988

Abstract

In this paper, we describe the current slate of develop-
ment of the constraint logic programming language CAL
{ Contrainte Avee Logique), and several fulure extensions.
CAL supports the writing and solving as conslraints
of linear and non-linear algebraic polynomial equations,
boolean equations, and linear inequalities. An imple-
mentation currently exists on the PSI machine, In the
future, we are aiming to build & very flexible constraint
legic programming language by combining multiple con-
straint solvers in one system.

1 Introduction

Constraint is one of the most important programming
paradigms and is discussed in various field of knowl-
edge processing from both the applicational and theo-
retical points of view. There are many advantages of
constraint programming. The most outstanding festure
of constraint programming is that it allows the declara-
tive description of problems. That is, a problem is solved
by indicating a goal without reference to the method by
which it should be established.

In order to solve a problem by computers, we first
have to precisely describe the problem. Therefore, in
general, we have to determine a field and objects in it. In
compuber graphics, for example, the field is an Euclidean
plane and the objects are points or other geometrical
elements in the plane.

The set of ohjects In a certain field form & system.
For example, the positions of points in Euclidean plane
and their mutual distances satisfy & set of conditions. In
general, these conditions are relations among the objects
{or the parameters representing them).

Constraints are formulas representing such relations.
The constraint programming pasadigm is that conditions
which must be satisfied by the objects in a program are
described declaratively in terms of constraints [Ste-81],

[Fik-T0], (5t5-T8]. Constraints in a program are evalu-
ated automatically and affect the execution of the pro-
gram depending on their meaning. '

When constrainis are incorporated inte logic pro-
gramming, it is natural to call it constraint logic pro-
gramming (CLP). Jaffar and Lassez were the first ad-
vocates of CLP [Jal-86], [JaL-87). Similar paradigms
{or languages) were proposed by Colmerauer [Col-82),
[Col-87), and by Dincbas, Simonie, and van Hentenryck
[Din-87]. Prolog programs are executed by a mechanism
which includes unification as a major component. CLP
it an attempt fo increase the descriptive power of logic
programming by employing constraint solving instead of
unification in its execution mechanism. Unification itself
is a kind of constraint solving. In this sense, CLP iz a
generalization of logic programming.

It is in the framework of logic programming that con-
straints give full play to their ability. In particular, the
feature of declarative description, which iz also a feature
of logic programming, is preserved naturally and com-
pletely in OLP. There is other evidence that CLP is a
natural extension of logic programming. For example,
there is a simple and unified framewark for the declar-
ative and cperational semanties of CLP. This may not
be true for a language in which control is described op-
erationally. However, the operational semantics of CLP
can be viewed as a simple generalization of the ordinary
goal-reduction technique of logic programming,

Traditicnal logie programming possesses logical, fune-
ticnal, and cperational semantics, which coincide with
each other [EmK-T8], [ApE-82], [Lle-84]. Jaffar and
Lassez showed that CLP is a generalization of traditional
logic programming in the sense that it possesses these
three semanties [JaL-87). In addition, they infroduced
algebraic semanties for CLP.

The execution steps of CLP programs depend upon
the decision of whether or not a constraint is satisfiable
in a given domain. However, we require more; the canon-
ical forms of constraints should be computed if the con-



264

straints are satisfiable. The situation resembles that in
ordinary logic programming, where unification decides
the satisfiability of a set of eguations in the Herbrand
universe, and computes the most general unifier if the
set is satisfiable. Since equations are typical constraints,
the operational model of CLP is clearly an extension of
that of logic programming. Moreover, the criteria of de-
cidability of satisfiability, and the existence and com-
putability of a canonical form, clarifics the requirements
for constrain solvers in CLP and spurs on research on ef-
ficient methods to solve constraints in various domains.
This paper describes the theoretical foundation, im-
plementation, and application of CAL {Contrainte avec
Logique), which is the CLP language being developed at
ICOT. Section 2 introduces constraint logic programm-
ing using CLP{R) as an example. Section 3 describes the
semantics of CLP, focusing on the CAL system. Section
4 deseribes the current status of CAL: the system, lan-
guage, constraint solver, and example programs. Section
5 discusses applications and future extensions of CAL.

2 Constraint Logic Programm-
ing Language

Conetraint Logic Programming Languages originated
with Prolog-1I by Colimeraver [Col-82). Subsequently, a
scheme for comstraint logic programming CLP{X) was
proposed by Jaffar, Lassez, et. al. [Jal-86], and
they gave iis semantics in a logical frame-work. This
scheme includes Prolog, Prolog-II, Prolog-111 [Cal-87],
and CLP(R) [JaM-85] which was developed at Monash
University in Australia as an example of the scheme. In a
different approach, Dincbas proposed a constraint logic
programming language in [Din-87], based on extended
unification. ) '

The difference between these comstraint logic pre-
gramming languages is the sort of constraints which they
can handle. For instance, linear algebraic and boolean
equations can be written in Prolog-111, while in CLP(R)
algebraic equations and inequalities can be expressed,
but only linear cnes can be salved. _

Constraint logic programming languages handle con-
straints by the fellowing two methods: by extending
the unification component of the logic programming lan-
guage or by introducing a mechanism called the “Con-
straint Solver”. We will discuss the processing of pro-
grams under the latter paradigm, which seems af least
as general as the former,

Constraints are identified from other predicate-
invocations by having a distinguished "constraint sym-
bol", for example the “equality symbol” or “inequality
symbol”, as their principal functor. The execotion model
is similar to that for a logic programming language ex-
cept that constreints are considered to be builtin predi-
cates handled by the constraint solver,

To design & consbraint logic programming language,
the most important question is the selection of & compu-
tation domain and the selection of relations which will be
handled a3 constraints. Dinchas proposed the following
criteria to select a computation domain whose equations
are embedded into unification [Din-87).

1. Each equation in the domain should be sclved in a
determinislic way without losing complefeness,

2. Efficient equation solving methods should exist
within the domain.

3. The computation domain should be used sufficiently
often to justify ite introduction inside unification.

We propose the following alternate set of criteria for
the selection of computation domains over which equa-
tions and other constraints may be written [SaA-88]. The
first three criteria correspond to those above,

1. Satisflability (solvability) of constraints should be.
decidable.

2. An efficient algorithm to determine satisfability
should exist.

3. The computation demain should be used sufficiently
often to justify supporting it directly in the lan-
Euage.

4, A cancnical form for a constraint should exist if it
is satisflable, and the canonical form should be con-
sidered as the answer.

The last criterion has the following meaning. For
example, the constraint X+¥=1, X-Ywi iz equivalent to
%=1, ¥=0. In thiz case, if the latter can be considered
the canonical form, the latier should be computed from
the former. Canonical forms are described precisely in
the next section.

We now consider an example. The following is a pro-
gram to compute the product of two complex-numbers.
This program is taken from the CLP(R) manual [Hei-86].

zmult{e{R1,11},e(R2,I2),c(R3,13)} :-
F3 = RI#RZ-TI1»1Z,
I3 = RI#I2+R2+T1i.

This clause means that a multiplication of a complex
number c{RL,I1) and <(R2,I2) equals c¢(R3,I3}). Two
equations in the body of the above clause are constraints,
and the equality symbol indicates a constrainf, A char-
acteristic of the processing of this program is that the fol-
lowing three gueries can be processed against the above
clanse.



Pezmult(c(l,1),c{1,2),c(R,I}).
P-zmult{c(1,1) (R, IJ,c(-1,30).
F-zmult{c(R,I),e(1,2),e(-1,30).

For example, the processing of the second query pro-
ceads as follows.

1. 7= zmult(c{1,1),c(R,I),c(~1,33). is unified
against the clause head, and the substitution {R1/1,
I1/1,R2/R, I2/I, R3/-1, I3/3} is obtained.

2. This substitution is applied to constraints (equa-
tions) in the body of the clause, and the following
are obtained.

-1= jsR-1%]
3 = {#I+R+i

When a new constraint is obtained, the constraint
solver adda it to the set of constraints. More precisely,
a newly obtained constraint is added to the previously
computed constraint, and then computes the canonical
form of the resulting constraint. Inconsistency of the new
constraint with the previous constraint is treated in the
same way as unification failure in & logic programming

language.

3. The above system of equations is solved by Gaussian
elimination, and the canonical form {solution) R=1,
I=2 iz obtained.

3 Semantics of CLP

3.1 CLP on Many Sorted Algebra and
its declarative semantics

This section presents the basic notions needed to describe
the semantics of CLP. The argument in this section is
generally along the lines of that by Jaffar and Lasses
[JaL-87], but is different in the details.

Let 5 be a finite set of sorts, F' a set of function sym-
bols, O & set of constraint symbols, P a set of predicate

symbols, and V' a sel of vardables. A sort is assigned to |

each variable and function symbol. A finite (possibly
empty) sequence of sorts, called a signature, is assigned
to each function, predicate, and constraint symbol, We
write v 1 3, f: 8182...8, — 5, and p : $y87...5. if &
variable, v, has a sort, s, if a function symbol, f, has a
signature, 518z ... 84, and a sort, s, and if a predicate or
constraint symbol, p, has a signature, 5,25, . .. 8,, respec-
tively.

Terms and their sorts are defined inductively as fol-
lows.

1. A wariable of sort 5 15 a term of sort s.

265

2. If f is & function symbol such that f: 5182...5, —
s, and #;,43,.. .ty are terms of sorls &, 8s,...,9
respectively, then f(t1,tz,...,t,) is 2 term of sort s.

Atoemic formulae and atomic constraints are defined as
follows,

3. If p is a predicate symbol such that p : sy82... 8y,
and 14,1s,..., 1, are terms of sorts 8y, 8q,...,8, re
spectively, then plty, ta,.. ., 1.} is an atomic formula.

4. If ¢ is a constraint symbol such that ¢ : £,85. .. 8a,

and ¢34y, ..., 1, are terms of sorts £, 8:,..., 8, re-
spectively, then eofty,ts,...,1.) is an atomic con-
straint.

We write ¢ : 5 if & term ¢ has a sort 3. The sets

of terms, atomnic formulas, and atomic constrainis are
denoted by T'(F, V), A[P, F,V), and A{C, F, V), respec-
tively. A constraint is a finite (possibly empty) set of
atomie conslraints. Intuitively, a constraint is a finite
conjunction of atornie constraints, The empty constraing
means true. '

We assume that for each sort, s, there is a special
comstraint symbol, =., of signature s5. For this symbel,
we use infix notation, and the suffix s+ may be omitted if
there is ao danger of confusion,

A combination I of & class of sets, {D(s]|s € §}, a
class of functions, {D(f)|f € F}, and a class of func-
tions, {D(e)|e € C}, satisfying the following conditions
is called a struelure. A structure plays the same role as
the Herbrand universe does in the semantics of ordinary

Prolog.

1. If f is a function symbol such that f: s152...8, —
s, then D(f) is & function from D(s,) % D{sy) %---x
Di{s,) to D{s).

2. If ¢ is a constraint symbel such that ¢ : 5539, an,
then D) is a function from Di{s ) x .D[a,} X
Dis,) to {false, true}.

In what follows, let D be a fixed structure. Suppose
that D{=,), which is a fanction from D(s) x D(s) to
{false, true}, satisfies the following condition.

D(=,)(z,y)} = if z =1y then true else false

Note that =, here plays the same role as unification
in ordinary Prolog.

A class, 1, of functions, {I(p)|p € P}, satisfying the
following conditions is called an interpretation, which
plays the same role as an Herbrand interpretation in the
semantics of ordinary Prolog.

3. If p is & predicate symbol such that p : #12:... 5,,
then I{p) is a function from D(s) x D{ss) % o
D(s,) to {false, true},



266

An assignment is a function, @, from V to |, D(s)
satisfying the following condition.

4, If w: s, then 08 € D{s). (We use the symbol, @, in

postfix notation as usual.)

An assignment @ can be naturally extended to be a
function over T F, V) and A{C, F, V). Then @ € D{s)
if t is a term of sort s, and p& is false or true if p is
en aftomic constraint. Let 7 be a constraint. If there
exists an assignment, @, such that ¢ = true for every
¢ € O, then € is sald to be sefisfiable, and @ is called
a sofution of O, Similarly, @ can be extended to & be
function of A(F, F, V) mto {false, true}, denoted &1 if
an interpretation, I, is given.

A program clause, which is an extension of a definite
clause, iz an expression in the form of p: —py, P, .- P
{n = 0}, where p is an atomic formula and each p;
is either an atomic constraint or an atomic formula.
A finite set of program clauses is called 2 (constraint
logic) program. Let I be a program. An interpreta-
tion is called a model of L if for any program clavse
ir —=p,pa.....pn)€ L, and for any assignment, &,
B = pB1 =+ -+ = p &1 = true implies p&[ = true.

3.2 Functional Interpretation of a Pro-
gram '

First, we extend the function given by van Emden and
Kowalski |[EmK-76] for CLP. Let there be 2 program,
L. Based cn an interpretation, J, we can define another
interpretation, J, as fallows,

J(p) diydy,.. . dn) = )
if there is a program clause p(ty, fg, ... %) =

P1:P2y - Pm € L and an assignment, &,

such that ;&1 = p,01 = ... = pn B = true
-B.'El.d d]_ =t1g,dg =t;5’,...,dn=inﬂ

then true

elze false

Since interpretation J is dependent on program L and
interpretation J, we denote it T(L,I). Thea T(L,.)
forms a function which maps one interpretation to an-
other. An interpretation, I, is said fo be less than an-
other interpretation, J, denoted I < J, if the following
held. Fer every predicate symbol p : 5,18;... 55, and for
every element dy € D(s)),dz € DNsg),. .., du € D(s,), if
I{pldy,dg, ..., dy) = true, then J(p)(dy, ds,...,d,} =
true. Proof of the following proposition is routine.

Proposition 3.1 The set of oll the inlerpretations
forms a complete lattice with respect to <, and T(L,_) is
confinuous on it, That 15 to say, the following conditions

hold.
1. FI<J then T(L,I) < T(L,J).

2 Ifh<hL<..., thensup T(L, L) = T(L,sup L)

For any ordinal aumber, ¢, mterpretations T T e and
T | o are defined by transfinite induction as follows.

T T o= if o 18 & successor ordinal, 5+ 1,

then T(L, T T f) else aup{T' 15| 8 <o}
T | &= if & 15 & successor ordinal, #4 1,

then (L. T | #) else inf{1" | # | § < a}

The definition after “else” iz adopted also when & = 0.
Thus, T T 0 becomes the least element with respect to <.
That is to say, for every predicate symbol p: 8y82... 35,,
and for every element, d; € Dis;),dy € Disy),...,dp €
Dsa). T 1 0(p)(dy,dey. .., dy) = false. On the other
hand, T | 0 becomes the greatest element with respect to
<, That is, for every predicate symbol, p: &1, 82,0 .., 55y
and for every element, d; € D(s,),dy € D(s52),...,du €
D{’sﬂ.jj 'II i U[.P}{dl:l'in“ g :ldﬂ-] = true.
It is easy to show the following.

TT0£TT1=TT2=...
Tie=Tl1=2Tl2=2...

From Proposition 3.1 (1} and the fixed-point theo-
rem with respect to order homomorphisms of a com-
plete lattice, T L, ) has the least and the greatest fixed-
points. We write them Up(T, L} and gfp(T, L), respec-
tively. Then, for some sufficiently lerge ordinals, & and
B Mp(PT)=T17Teand gip{T, L) =T | §. In fact, it
is easy to show that lp(T, L) = T' T w from Proposition
3.1 (2). In general, the greatest fixed-point gfp(T, L) is
different from T" | w.

Lemma 3.1 For any program, L, the followding condi-
tions hold.

1 T(L,I) < T if end only if I is ¢ model of L. Es-
" pecially, the greatest element, T' | 0, is the greatest
maodel of L.

2 Up(T. L) is o model, and for any model, T,
lip(T, L) < I. Therefore, Up(T, L) is the least model
af L.

Here, we define the syntactical counterpart to the fune-
tion, T(L, ). Consider a pair of an atomic formula, p,
and a satisfiable constraint, . For convenienee, we de-

_note this pair p : —C' and call it a QA-pair (question and

anawer). We denote the set of all QA-paire QA From a
subset, 5, of QA, ancther subset, T, is defined as the set
of all QA-pairs, {p(si,84,...,5.) 1 =07}, such that there
is a program clause, p(fy,fz, .. atn) | —PLaB2r 1 P E

- L, and

1. Far each p;, p; is an atomic formula such that (p; :
—%;) € &, or an atomic constraint such that C; =

{r},



2. G=‘[31 =11,32 =tg,...,£“ =:,-|_}L| GIUGEQU....U

3. is satisflable.

We denote T, defined above, Q(L,5). Then Q(L, )
is & function which maps one subset of QA to another.
Function XL, ) has a similar propeity to T(L,.) with
regpect to the inclusion relation on sefs, C

Proposition 3.2 @(L,_) is confinuous with respect to
the inclusion relation of sets . That is, the following
conditions hold,

L IfSCT, then Q(L,5) C Q(L,T).

2. IS C8C..., thn UQ(L,S) = Q(L,US).

Similarly, @ 1 o, and @ | & are defined as follows,

& Ta=il«is a successor ordinal, 3+ 1,

then Q(L,Q T f) else | QT H| B <a}
& | & =if & is a successor ordinal, #+ 1,

then Q(L,Q | B) else (Y{Q1B |8 < a}

In particular, ¢ 70 = and @ | 0 = QA. The following
are also routine.

QT0CQIICQT2C
@I02Q112Q22-

Q(L, ) has the least fixed-point, iip(Q, L), and the great-
est fixed-point, gfp(@, L). For sufficiently large ordinals,
aand f,p(Q, L) =@ o, and gfp(Q,L) = Q | f. In
fact, ¥p(Q,L) = Q 1 w, but gfp(Q, L) is different from
| w, in general.
For § CQA, an interpretation, |5|, is defined as fol-
lows,

IS“:PJ I::dhdzl' . "'I-dll]
if there is 2 QA-pair (p(t1,ts,...,1:) : =C) C §
and an assignment, @1,
such that &y = 4,8, ds = 8,9,...,d, =t.8
and @ is a solotion of &
then true
else false

Lemma 3.2 For any pragram, L, and for any ordinal,
o, TTe=|QTalandT[a=|Q | al

By the above lemma, Up(T,L) = |Mp(@,L)| and
glp(T, L) = | gfp(@, L)|.

267

3.3 Operational Interpretation of a
Program

This section defines an operational model for CLP. A
formula in the form of py, g, ..., pa; C is called a goal,
where each p; 15 an atomic constraint or an atomic for-
mula, and (' is & satisfiable constraint. When n = 0, the
goal comprising only a satisfiable constraint is called a
successful goal. L be a program. The (exiended) SLD-
resolution is the process which obtains a new goal from
another goal py,pa,. .., ps; € in the following way.

1, If py is an atomic constraint such that D = {p; }UC
is satisfiable, then the goal, pa,...,pn; 0, is ob-
bained.

2. If py = p(s1,%2,-..,85) i5 an atomic formula such

© that there iz a program clause (p(ty, s, .. otm)
—q1, G2y -k} € P such that D = {JL = #;,89 =
tay. ..y 8m = tw} U C is satisfiable, then the goal,
L' T PR [ - I £ D, is obtained,

A sequence of goals, Gy, Gy, ..., Gy, is called an SLD-
resolution sequence if each Gy, is obtained from G by
SLD-resolution. Here, we define a success set, SS(L).

SS(L}={(p: -C)eQA |
there exisis an SLI-resolution sequence which
begins with the goal, p; 8,
and ends with the successful goal, C'}.

Theorem 3.1 For any program, L, |lip(Q,L)] =
155(L)).

The reader can easily see that if p is input as a query,
a constraint, C, such that (p : —C) € S5(L), is out-
put as an answer from the system, The above theorem
guarantees the correctnese of this mechanism.

3.4 Constraint Solving and Canonical
Forms

According to the operational model of CLP described in
the previous section, decidability of the satisfiability of
conskrainfs is necessary and sufficient to execute a pro-
gram by (extended) SLD-resolution. However, a satisfi-
able constraint, as it is, may not be a satisfactory form
of output from the system. For example, the constraint,
{x+y =3, £~y = 1}, is satisfiable, and is there-
fore qualified to be output as an answer according to the
definition in the previous section. Howewver, the answer
that users actually want in many cases is something like

“{z =2, y=1}. In this sense, constraint solving should

not be a mere decision on the satisfiability of constraints,
but a conversion of consiraints into another form that
users can understand easily.



268

Two constraints are said to be equivalent if they have
the same solutions. We write 0 ~ D if O and D are
equivalent. For example,

{e+y=3,z~y=1}~{z=2y=1}

Clearly, ~ defines an equivalence relation for con-
straints. Suppose that for each equivalence class, E,
there is a representative, E |. The equivalence class
to which ' belongs is denoted [7], and the representa-
tive, [C] 4, is called the cancnical form of C. Let us
call an algorithm, a, satisfying the following conditions,
a constraint solver with respect to |.

1. adecides the satisfiability of an arhitrary constraint.

2, a computes the canonical form of an arbitrary sat-
isfiable constraint,

When there is & constraint solver, as defined above, the
SLD-resolution in the previous section can be improved
to compute the canonical form of the union, D, of con-
straints instead of merely malding the union. Actually,
the unification procedure of ordinary logic programm-
ing can be seen as mmputntinn af the canonical form of
equality constraints in the Herbrand universe. Moreover,
computation of the canonical forms may make program
execution more efficient, if there is an algorithm that
aolves consiraints inﬂemtall:,r based on the canonical
forms.

3.5 Examples of Language and Domain

A typical domain of CLP is the field of all the algebraic
numbers, of which the formal language, for example, is
defined as follows.

5={A}

F={x:AA = A +:AA — A}U {fraction 1= A}
¢ =1{=}

P = {string starling with a lowercase letter}

V = {string starting with an uppercase letter}

We assume that there is cnly one sort A of algebraic
numbers for simplicity. We define a structure for the
above language as follows.

D{A) = the set of all algebraic numbers
D(x) = multiplication
D(+) = addition

D(fraction) = the rational number it denotes

It is clear that we can write pnlymnﬁal equations as
constraints.

The next exa.l:uple is CLP in a Eou]ea.n algebra (or
more precisely, in & Boolean ring). The language and

the structure is defined, for example, as follows,

= {B}
F {A:BB—=B,o: BB-—-BJ._—IE-T—rB]-
C={=}
P = {string starting with a lowemase letter}
V = {string starting with an uppercase letter}

D{B) = an arbitrary Boolean algebsa
D{A) = conjunction

D(@) = exclusive disjunction

D(L) = false

D(T) = true

Ordinary Prolog can be defined as an CLP language
as follows.

= {H}
I = {string starting with a lowercase letter}
¢ ={=}

P = {string starting with a lowercase letter}
V = {string starting with an uppercase letter}

D{H) = Herbrand universe = {ground term}
D{F) = syntactic construction

4 CAL
4.1 The current status of CAL inter-
preter

The present CAL is not a single language, but a family
of languages over different computation domains. Lan-
guages within this family are as follows.

On DEC2080, there are three CAL interpreters: Al-
gebraic CAL for algebraic equations, Boolean CAL for
boolean equations, and Linear CAL for linear algebraic
equations and inequalities. On the PSI, there are: Al
gebraic CAL, Boolean CAL, and Typed CAL; the last
supports constraints in many sorled algebra described in
Section 3.

In the actual CAL interpreter, some semantically im-
pure features have been added for the convenience of
users, as was done for Prolog. Since we will be discussing
the actual CAL interpreter, we will also mention these
features where it seems appropriate.

On both DEC 2060 and PSI, each CAL interpreter
comprises the following components.

1. Pre-processor

Tranzlates CAL source program and
query into EC-10 Prolog on DEC 2060,
and into ESP on PSI

9. Constraint solver

Receives constraints, and computes their
canonical form.



4.2 Evaluation of CAL programs

The: current CAL implementations are layered on top
of Prolog systems using preprocessors. The most sig-
nificant difference between logic programming languages
and constraint logic programming languages is that the
former maintains the solution of unifications as bind-
ings, and the latter maintains the cancmnical form of a
constraint (a set of atomic constraints). Both language
classes, however, must maintain these partial solutions
during both forward (resclution) and backward (back-
tracking) execubion of their programs. The preprocess-
ing of & CAL program is done in similar way to that for
a DCG [Definite Clause Grammar); namely, a pair of
variables is added as the last arguments of each clause,
for the input of the cld, and the output of the new con-
straint.”
A CAL program

mult{c(ni,ri},c{az,u}',cfﬁ.a,._taj} =
R3 = Ri#R2-T1%I2,
I3 = RiwI2+R2%I1.

is translated into the following Prolog program.

zenlt(e{R1,11),c(R2,12},c(R3,I3),V0,V2) :-
constraint (R3 = R1=R2Z-T1#I2,V0,V1)
constraint (I3 = Ri+*I2+R2%I1,V1,V2).

The meaning of predicate censtraint/3 is to add
a newly obiained comstraint, which is passed through
its first parameter to the canonical constraint, which is
passed through the second parameter, to compute a new
canonical constraint, and to unify it to the third param-
eter.

In the same style, the preprocessor adds two extra vari-
ables to all predicates excepl those built into Prolog.
Since the cubput of the translation is a Prolog program,
we only need o provide a predicate constraint satisfy-
ing the above specification.

4.3 Algorithms for Constraint Solving

As shown in the example in section 2, algorithms for
constraint solving should have the ability to solve ‘con-
straints imcrementally. Since constraints are obtained
one by one, canonical forms are obtained by transforming
former canonical forms and newly cbtained constraints.

We now describe the algorithms for'the constraint solv-
ing component of the following CAL interpreters.,

1. Algebraic CAL
2. Boolean CAL
3. Linear CAL

269

4.3.1 Algebraic CAL

In this section, we describe.the algorithm for Algebraic
CAL. The Buchberger algorithm for computing Grébner
bases of palynormials, which has been used in recent years
in computer algebra and geometrical theorem proving, is
utilized as the consiraint selving algorithm,

Buchberger introduced the concept of Grébner bases,
and presented the algorithm to compute the bases of
input polynomials [Bue-83].

Without loss of generality, we can assume the form
of equations to be p = 0. Let F={p =0, p» = 0,
vory Pa = 0} be a system of polynomial equations, and
let I be the ideal generated from {py, pe, ..., P} in
the polynomial ring. The following theorem shows the
relationship between elements of J and solutions of E.

Theorem 4.1 (Hilbert's zere point theorem)

Let p be o polynomial, BEvery solution of E is also a
solution of p = 0, if and only if p* is an element of I for
some integer n [Hil-00].

The next corcllary is important for determining the
solvability of constraints,

Corollary 4.1
E has no solutions if and enly if1 € T,

By the above considerations, the problem of satisfying
the polynomial equation p = 0 under constraints & can
be transformed into the problem of the determination
of whether & polynomial p* belongs to the ideal gener-
ated from E or not. Buchberger gave an algorithm to
determine whether a polynomizal belongs to the ideal or
not.

In the system of polynomial equations, each equation
can be considered as a rewriting rule which rewrites the
maximal monomial to a remaining polynomial under a
certain ordering of monomials. When the left-hand sides
of an arbitrary pair of rewrite rules are nol mutually
prime, their least common multiplier can be rewritlen to
two polynomials by two rules. The pair of these polyno-
mials is called the eritical pair of these two rules. Among
critical pairs, there may be ones whose rewriting are not
confluent. This kind of critical pair is called divergent.

Let E be a set of given equations, and B be & set of
rewriting rules. A Gobner base of £ is computed as the
final £ by the following algorithm:

1. R0

2. For each equation [~r in E, simplify it by rewriting
rules in A and arithmetic operations. Let & be an
equation resulting from this simplification. If & =
0, then this equation is thrown away. Otherwise,
replace the original equation { =r in E by e = 0.

3. If E=9, then end.



270
4. Belect an equation e = 0 in &,

B. Let I be the maximal monomial in e under a oer_tn.i.n
monemial ordering. Solve e = 0 with respect to [I'.
Let I" = r* be the result.

fi. Add arule ' — ' o A,

7. Add every divergent critical pair of rules in & to E
as equations.

8. Goto 2.

The next theorem states the relationship between ide-
als and Grébner-bases.

Theorem 4.2 {Buchberger)

Let R be a Gribner-base of system of equations, {p =0,
pa=0,..., 7, =0}, T be an ideal generated from {p,
Day vvqy Pu}. Then g polynomial p belongs to 1 if and
only if p can be rewritten into 0 by R.

The next theorem certify the wvalidity of Grobner-
base as canonical form of constraints. Here, irreducible
Orobner-base 15 the base in which no couple of rules can
rewrite each other.

Theorem 4.3

Suppose that the monomial ordering is fired. Let E and
F e systems of equations. If an ideal generaled from E
is same as that from F', then the irreducible Grébner-base
of B is same as that of F.

In Algebraic CAL, constraints can have *=" and “=="
as their constraint symbols. A constraint f = g indicates
a so-called active constrainf, and the constraint solver.
computes the new cancnical forms by adding this con-
straint. That is to say, the Grobner-base is modified to
satisfy f = g. On the other hand, f == g 35 a kind
of a passive congtraint, and the constraint solver checks
whether f = g is satisfied or not under the corrected con-
straints. “Passive” as used above has a different meaning
from that used by Dincbas. The meaning here is con-
straints without modifying Gribner-base. This is anal-
ogous to "==" in Prolog, which does not cause unifica-
tion. Note that the relationship between constraints and
ideal is not complete. For instanes, X = ( iz satisfied
under constraints {X* = 0}, but it does not belong to
the ideal generated from {X? = 0}. Therefore, check
of the latter constraints needs more careful use of the
Gribner-bage than rewriting with it.

This “==" iz added to the system for the convenience
of users,

4.3.2 DBoolean CAL

Inn this section, we deseribe the algorithm used in the con-
straint solver for Boolean CAL. In Boolean CAL, boolean
equations can be written, and can be processed as con-
straints. The typical computation domain is the set of
truth-values,

There are many decision procedures for the solvability
of boolean equations. Among them, the tppical one is se-
mantic unification employed by Dincbas [Din-87]. We, in
CAL, use the approach of Boolean Grébner-bases [SaS-
87| which iz obtained by slight modification of Buch-
berger algorithm, We think that this method has advan-
tages in the following points:

1. This algorithm computes answer constraints with-
out introducing extra variables. Thus answer con-
straints can be understood easily.

2, There exist canomical forms for comstraints, and
their meaning is clear.

In Boolean CAL, given constraints are translated into
baoolean polynomials, and then the Grobner-base of them
are computed. This s the evaluation of constraints in
Boolean CAL.

A hoolean equation is & polynomial whose coefficients
are 0 or 1. Moreover, we can define it o that degree
of each variable in every monomial is 1. That is to say,
there are no monomials such as 2%y in boolean equations.
Instead, it must be written as ay. This is caused by the
fact that every elements in boolean rings are idempotent,

The most significant diffexence between boolean equa-
tions and ordinary algebraic equations is that the con-
straint evaluation in the former can be completely de-
scribed by the ideal.

Corresponding o the theorem 4.1, the next theorem
holds.

Theorem 4.4

Let p be a boolean polynomial. Every solution of the sys-
tem of boolean equations E= {p, =10,...p, =0} iz afse
a solution of p=0 if and only if p iz an element of P,

The algorithm to compute boolean (rébner-bases is
almost the same as that for polynomial rings, excepting
the following points.

For a boolean polynomial .-‘U( + 2, AZ 4 £ is called
its gelf eritical pair, where A, X, and Z are a variable,
a monomial, and a ;n:ul:.rm:smia.l1 I‘Bspe:ﬁi‘l.'\?.ljf, and AX is
the maximal monomial in AX 4+ Z. In boolean ring,
z+r=0and zz ==,

AX+Z=0=(AX+Z)(A+1)=AZ+ Z =1,

which certify that AZ + Z should be a critical pair.
YThis property holds in arbitrary boolean rings




By using the concepl of the self critical pair, the al-
gorithm to compute boolean Grébner-bases can be ob-
tained by modifying that for Grobner-bases as follows,

In 7,, not only divergent critical pairs but also diver-
gent self critical pairs are added to F as equations.

For boolean Grébner-bases obtained as the above,
‘Thecrem 4.2 and 4.3 are hold as they are. Refer to [Sa8-
88] for preciseness.

4.3.3 Linear CAL

In this section, we describe constraint solving in Lin-
ear CAL. In Linear CAL, linear equations and linear in-
equalities can be written and processed as constraints. A
number of constraint solvers based on either the simplex
or Min-Max method have ben proposed for their solu-
tion. We are now developing a simplex-method based
constraint solver which satisfies our eriteria for compu-
tation domains,

However, since the canonical form ab present is not
easily understandable by users, we have to consider the
following points:

1. The method of output of answer constraints.
2. Canonical forms of constraimts.

3. Constraint solving algorithm.

4.4 Programming Examples

In this section, we describe the description power of CAL
by showing programming examples for each of its con-
straint solvers,

4.41 Programming Examples in Algebraic CAL

As we described above, the major characteristic of Al-
gebraic CAL is the ability to solve non-linear equations.
The following examples include one on the edges and
surfaces of triangles, and several of geometrical theorem

proving.

Example 4.1 {Geometrical Theorem Proving)
The following theerem is considered.

Theorem 4.5

Let ABCD be an arbitrary quadrangle, and £, F, G, and
H be mid-poinis of edges AB, BC, CD, and DA, respec-
fively. Then the quadrangle EFGH iz a perallelogram.

271

Bzd,yi)

o

F(z5,y5)

Cl=2,y2)

Gz6,y6)

| A0,0) H(z7,0) D(z8,0)

Fig.—1: Geometrical Theorem Proving

To prove the theorem, we transform this geometrical
problem to an algebraic problem by introducing Carte-
sian coordinate system. A mid-point (s, 4s) of 2 seg-
ment {23,3) - (3, ya) can be represented by equa-
tioms T3 = (23 + 23)/2, 32 = (1 + 1a)/2. The fact
that segment (21,91) — (T2,1) is parallel with segment
(#3,83) — (24,34) can be represented by an eguation
(2 —w)f(za—2) = (s — wa)/ (24 — 23).

These equations are represénted by CAL as follows:

mid(X1,¥1,%2,¥2,%3,¥3) :-
2#47 = Y14%3,
25Y2 = Yi4¥3,
para(X1,¥1,X2,Y2,X3,Y5,14,v4) :-
(K1=X2)*(¥Y3-Y4)==(¥1-Y2)*(X3~-X4) .

By evaluating the following query agaiost the above
program, the given theorsm iz proven,

?‘mid{ﬂ:u :K‘L:}"ijxi ifl}:
mid(x1,y1,%5,y5,%2,y2),
mid(x2,y2,26,y6,%x3,0),
mid(x3,0,x7,0,0,00,
para(x4,yd,x5,y5,%7,0,%6,y6) ,
para(xd,yd, x7,0,%5,y5,26,v6),

The basic idea of this program and query is to certify
that the two pairs of segments, whose endpoints are con-
strained to be the midpoints of the original quadrilateral,
are parallel, .

As mentioned before, we introduce the constraint sym-
bol “==" in the above program for programming conve-
nience.

Example 4.2 (Heron’s formula)

The problem is io obtain the relationship between the
length of three edges of a triangle and its surface. For
an arbitrary driangle, let | be the length of its base edge,



272

h be its height, and s be its surface. Then the following
relation holds: [+ h = 2+ 5, implemented as the predicate
sur.
Then, we describe the Pythagorean Theorem by the
predicale tight. Let a and b be lengths of edges which
are connecled to the square corner, and e be the length
of the other edge. If o + b = &, then that triangle is o
right triangle. In the following program, n*m means n™.

Moreover, the fact that an arbitrery triangle can be di-
vided into two right trinngles is described by the predicale
tri (see Fig-8).

sur(L,H,8) := L*H=2#3,
right(a,B,C) := A"24B"2=C 2.
tri(4,B.C,58) :-
C=CA+CE,
right{CA,H,A), right(CB,H,E),
aur{C,H,3).

Hl

A CB

Fig-8: Three edges of a triangle and its surface

When a goal in which all arguments are free
trifa,b,e,s) is given, this program outputs the
Grobner-base with 7 rules. Among them, there is the
following rule which contains only a, b, ¢, and s. This is
equivalent to the Heron's formula.

¢"2 = (-cTd+ -1%a~d4+2%(2%b"2%a"2)+ ~1%b™4
+2%(2%c"2¥a"2)+2%(2%c"24b"2)) /16

This program will also run with instantiated queries.
For instance, if a goal tri{3,4,5,8) is given, then
2~2=36 i output.

Exa.r;np]e 4.3 (Conditional Extremum)
Compute the conditional ectremum using Lagrange’s
method of indeterminale cogfficients,

The following CAL program realizes Lagrange's
method of indeterminate coefficients.

ex(F, Constraint,Vars) :-
lag(Constraint, Lag),
dife(Vars, F, Lagl}.
lag([ 1, 0) :- !.

lag( [L=R |Cs], Mult=(L-R)+Lag) :-
L=R,
lag(Cs, Lagl), !.
dlfﬂ([ ]: -3 -_-:l H= Hr
difs([Var |Vars], F, Lag) :-
dif(F, Var)=dif(Lag, Var), !,
difs(Vars, F, Lag).

The first argument for a predicate ex is an objective
function whose extremum will be computed, the second
argument is & list of conditions on the computation, and
the third argument is a list of symbols whose values can
be modified (that is to say, this is a list of variables).
dif (F,Var) denotes a polynomial obtained by differen-
tiating & polynomial F by a variable Var. This notation
is built into the CAL interpreter for the convenience of
users.

Strictly speaking, dif(F,Var} is not a polynomial, but
a term in the Prolog sense, and so it is misleading to
describe it as a consteaint. However, we introduce it for
Drogramiming convenience.

This program can be used to solve the following prob-
lem.

FProblem 4.1

Divide a circle inte two fans by two radial culs, making
two cones. The problem is to obtain the angle between the
two redial cufs which marimizes the sum of the volumes
af the two cones.

We ean assume a circle of radius 1, sinee the answer
doesn't depend on the size of the circle. After making the
first cut, make the second one at a distance 7 + r along
the circumference, measured in one direction, # — r in
the other. Suppose the cones have height sA and B
respectively. Then, factoring out constants, we obtain
the fellowing query. .

ex((1/2+r) " 2ezp+{1/2-r) " 2%k,
[eh~2+{1/24x)"2 = 1, sB~2+(1/2-7)"2 = 1],
[s&, sBl).

This program outputs 2 Grobner-base of three rules,
among them the following degree-7 polynomial which
contains r as its only variable. Howewer, if boih sides
of this equation are divided by r, then it becornes a cu-
bic over r®, whose roots can be obtained easily.

7 = (29/12)#c 5+ (~1T7/48)+r"3+(6/ET6) %

4.4,2 Programming Example of Boolean CAL

As we mentioned zbove, Boolean CAL handles boolean
equations. Here we present the verification of a logic
circuit taken from [Din-87] as an example of its use.



Example 4.4 (Cross Circuit)
The problem iz fo prove that the following cireuit is a
cross eircuit,

Fig.=8: Cross Circuil

To prove that the circuit is a cross circuit, we must do
the following. First of all, we describe the specification of
the circuit in terms of boolean equations. Secondly, the
relation belween inpul-terminals and oulpui-terminals

are described. Accordingly, the following program is ob-

tained.

cir(X,Y,A.B) :-
14 = ~XVI3, I3 = XAY, I6 = ~Y¥VI3,
I8 = ~I4VI3, I9 = ~ISAL3,
A = I4A111, I11 = I8vIS, B = IGATL1l.

The following query is evaluated against the above pro-
gram. In the query, all arguments are left free.

?- cir(x,y,a,b}.
The resulting cutput proves the result,

xab

y=a

5 Extensions of CAL

At present, we have three consiraint solvers for CAL.
Meoreover, we implement Typed CAL in which users can
use constraints on several types of objects simultane-
ously. In this section, we describe Typed CAL, and some
future extensions.

5.1 Typed CAL

The basic idea of Typed CAL is to realize constraints in
many sorted algebras discussed in Section 3, and thus
allow users to use muliiple constraint solvers simulia-
neously. Typing is introduced to indicate the sorts of
parameters. In execution of a program, a suitable solver
iz selected auntomatically according to the fype of each
atomic constraint. At the time that we designed Typed
CAL, the Buchberger Algorithm to compute Grébner
bages, and the algorithm to compute boolean Grébaer

273

bases were available. We made an experimental imple-
mentation of Typed CAL on the PSI-machine with these
two constraint solvers. Recently, a third constraint solver
based on linsar programming has been implemented, and
there are plans to implement another constraint sclver
for real closed fields. We intend to add two new types
corresponding to these new solvers to Typed CAL.

The indication of the type for each constraint will be
made as follows. Available types will be:

1. alg (algebraic number - To invoke a constraint
solver for Grobner-bases),

2. bool (To invoke a comstraint solver for boolean
Grébner-bases),

3. lin (To invoke a constraint solver for linear equa-
tions and linear, and inequalities),

4. real (To invoke a constraint solver for the real

closed field),

5. _ (Toinvoke oxdinary unification for ordinary Prolog
term)

The type of a constraint is indicated by placing 2 *:"
followed by the appropriate type-name after the con-
straint.n

To allow users to write formulae in the head of a clause,
we will introduce type declarations for predicates. For
instance, type declaration :- type plalg, beel, _).
means that the first ergument of p is an algebraic con-
straint to compute Grobner-bases, the second argument
is a boolean constraint, and the third one is an ordinary
argument in Prolog. For instance, we may write the fol-
lowing program:

p(R+Y, ~B, €} :- Q.

Suppose that we evaluate the following query against
the program.

pl5, true, a).

Unification between the query and clause-head suc-
ceeds, and the algebraic constraint X4¥=5, the boalean
constraint ~ B = true, and the substitution {C/a} are
abtained. This result is brought about by the prepro-
ceasing of the above program into the following clause.

p(D1, D2, ©

Thus, the above constrainis and substitution are ob-
tained.

By intreducing types into predicates, we can imple-
ment very similar features to those provided by Dincbas’
semantic unification [Din-87).

The following is an example of nsing type declarations.
The next clause solves the man and horse problem, us-
ing constraint typing, but without predicate type decla-
rations.

t= ¥+YaDi:alg, ~ B = D2:bool, @



274

mah (Man ,Hersa, Legs, Heads) :-
Heads = Man+Horse,
Legs = Man*2+Horse+d.

By introducing a predicate type declaration, the above
program can be written in the form of & unit clause as

follows.

:= type mah{., _, alg, alg).
mah{Man, Horse, Man*2+Horse+4, MantHorse).

5.2 The requirement for CAL from ge-
ometry theorem proving

In this section, we discuss geomeirical theorem proving,
a typical application of CAL. Elementary geometry can
be classified into the following hierarchy of classes, ar-
ranged in order of incressing size. i) affine geometry,
ii) pre-Euclidean geometry, and iii) Euclidean geometry.
Example 4.1 belongs to i), In general many theorems in
clasa(i) can be proved by using & simple Grébner base
method. The case of class(ii) is more complicated,

Example 5.1 Three perpendiculars drown from three
vertices of a Iriangle converge. Let 4,B,C be three ver-
tices aof a triangle, DLE be the feet of perpendiculars
drawn from A,B respectively, and F be the intersection
point of the lines AD and BE.

We put A=(uy, 0), B=(ua, 0), C=(0, us), D=(x,, xa),
E={xs, =), F=(x5, xs). Then the conditions are ex-
pressed as follows. )

Dison CB by = uyzs +uazy =10
ADLCE  hg = ugzg — ugmy + wqup =10
Eison CA hy = 3y + ez =10
BELCA g = zqus —uguy) 4w
Fison AC hg =324 — 2285 —wyzg + sz =0
Fison BE hg = zam6 — 2azs + vazg —ugzg =10

Convergence of the three perpendiculars is expressed by
the next equation.

g == E’E:u

i we evaluate g = 0 under the constraint by =
0,...hg = 0, by a CAL program in the same manner
as example 4.1, the system replies “N0". The problem
i5 that when

W=ty =uy=10,

the constraint becomes @,2g — Xy = 0, FaTg — T4Ts.
Clearly g = 0 does not obfain under this degenerate
condition, where A, B, C are congruent,

For solving this kind of nondegenerate problem, the
well-known Ritt's Decomposition Algorithm [Rit-38] is
very effective. Not oaly can we make a complete prover of

clasa(ii) problems using this algorithm, but also it is very
powerlul for decomnpesing algebraie constraints, The rea-
son we can make a complete prover of class(ii) problems
fairly easily is that it has models over the complex num-
bers. On the other hand class(iii} has models over the
reals,

We are now implementing this algorithm as a con-
straint solver for CAL.

Example 5.2
Take two squares ACDE, BCFG oulside of o given trion-
gle ABC, Let M be the midpoint of AB. Then DF=20M.

In order fo express “outside of * algebraically, we need
inequalities over real numbers,

It is well known that we can have a complete prover
for class(iil} using Taraki's algorithm or Collins’ quanti-
fier elimimation algotithm [Col-T5]. However these algo-
rithms are not impractical due to their time and memory
inefliciency. Implementing efficient algorithms dealing
with the real closed field to meet the needs of geometoy
thecrem proving is our future task.

5.3 parallelization of CAL

Parallelization of CAL ia still in the stage of preliminary
investigalion, and we do not have a definite policy under
which all resesrches are conducted. Here, we discuss
problems in parallel eonstraint logic pregramming based
on the current CAL.

Programs in a constraint logic programming language
fit mto one of the following two cases:

1. There is a definite constraint set (deterministic
type). The purpose of computation is to obtain a
unique solution. All the examples in this paper are
of this type.

2, There are several possible constraint sefs {nom-
deterministic type). Among these, a searching is
done for a consistent constraint set. This is a kind
of search problem, and iz seen in epplications like
CAD and some kinds of puzzles.

Problems of the former type do not nesd exhaustive
search and, therefors, fii committed-choice type lan-
guages like GHC, Those of the latfer type definitely de-
pend on the search mechanism povided with logic pro-
gramming langnages, and need *OR-parallel” execution
or an equivalent. If an exhaustive search type problem
is programmed in GHC, for example, conversion to a
committed choice type program or simulation of exhaus-
tive search by an interpreter is necessary. We aim at
rescarch into (i) parallelization of Constraint Solver, {ii)
parallelization of Inference Engine, and (ifi) design of &
parallel OLP language. Before researching of (i) and



(iii}, however, the characteristic of application programs
should be investigated. '

Tf the future parallel CLP language is implemented in
GHC, it may be reasonable to change the operational se-
mantic of CLP to fit committed choice execution, though
practicslity of this approach iz highly dependent on ap-
plication characteristics. If this is the case, the specifica-
tions for guards and suspension rules should be similar
to those for GIHC, Our current opinion is as follows. Tn
a GHC-like CLP language, we can write passive con-
ghraints in the guard part of a clause and active con-
gtraints in the body part. Committed choice of & clause
is cansed by satisfection of all the head unification and
all the passive constraints in the guard parts. When they
are not satisfied currently but are satisfiable, the execu-
tion of the clause is suspended until a new zetive con-
straint is obtained. A lot of GHC features are reserved
by this CLP vession of GHC, and so this approach makes
it easy to implement a system for constraint programs of
deterministic type.

6 Conclusion

CAL is still under development, and its final shape is not
yet clear. However, we can see three future directions for
developrnent.

1. implementation new constraint solvers

For example, a constraint solver of lin-
ear inequalities, or specializations of
the quantifier elimination algorithm men-
tioned in section 5.

2. combining constraint solvers for application

Among the applications of Grébner bases,
the automated theorem prover for elemen-
tary geometry is one of the most success-
ful topics of research. We are planning
to develop a theorem prover for geom-
etry as a CAL application. Since con-
straint solvers based on Grobner bases are
not strong enough to support a prover,
we have to develop subalgorithme of the
quantifier elimination. Furthermore these
must be available in a uniform environ-
ment, which should be realized by Typed
CAL. In this uniform enviromment, it
would be better to make hierarchies of
constraint solvers, since a general algo-
rithm is usually less efficient than its spe-
cializations.

3. Parallel CAL

275

The firal form of CAL will be a paral-
lel constraint programming language with
full functions obtained as the results of
the researches described n [ and 2. In
the design of parallel CAL, however, deep
consideration of cost-effectiveness iz nee-
esgary. In particular, the characteristics of
algorithms used in application programs
should be carefully investigated, For the
moment, a few prototype languages will
be designed and implemented experimen-
tally according to characteristics, for in-
stance deferministic or non-deterministic,
of application fields, through which we
can gain our experience in order Lo unify
those prototypes into paa‘aﬂcl CAL.

The argument on semantics of CAL [5a5-88)] is mainly
along the lines of that by Jaffar and Lassez [Jal-87].
Here we summarize the differences. We separated the
constraint symbols from the predicate symbols. In gen-
eral, a CAL programmer knows what function symbols
and constraint symbeols mean, but does not know how the
system solves constraints. In this sense, these symbols
are built-in to CAL. On the other hand, a programmer
must know all about the predicate symbols because he
introduces the symbaols. Therefore, the semantics of con-
straint symbols and function symbaols should be given a
priori as & structure, while predicate symbols should be
defined by the programmer. In this situation, separat-
ing the symbols at the beginning enables us to dsfine the
semantics naturally, In [JaLl-87], the constraints are sup-
posed to go ahead of the other literals in & elanse. For
flexibility, we did not assume this. We did not diseuss
finite definability, solufion compaciness, or satisfaction
completeness, since we are not, very interested in negation
as fetlure, in particular, in constraint logic programming.
There are many predicates for which negation as failure
is inappropriate. Even if a predicate fits such negation,
there is most likely to be a decision procedure for the
predicate, and in such a case, it seems fo be more nat-
ural in constraint legic programming fo incorporate the
decigion procedure into the constraint solver. Instead
of these three topics, we discussed the canonical forms
of constraints as svitable output from a constraint logic
programming system.

Both CAL and CLP{R) can obtain an answer in the
form of & relation among parameters, in particular, m
the case where many parameters in a goal remain free.
This effect is very similar to that of perfial evaluation,
eg. [T.a;F-Eﬁ], or the wnfolding lechnigue in logie pro-
gramming, e.g. [TaS-84]. However, the result is more
impressive and effective in CAL, since computation of
Grobner bases is much heavier and much more compli-
cated than mere unification.



276

In the present version of Algebraic CAL, the imagi-
nary value of each variable in 2 constraint is an algebraic
number i.e. a complex number which could be a solu-
tion of a polynomial equationr with infegers as its coef-
ficients. If we have a constraint solver over a more re-
stricted domain, the efficiency of solving some problems
is drastically improved. For example, when we know a
variable = can take only a réal number as its value, a
constraint like ¥ 4+ 1 = 0 leads to a contradiction. On
the other hand, we might want to have non-algebraic
constraints like sin(z) = 1 or e = 7. We might have to
extend the domain to all complex mumbers. There are
many requirements other than these for describing and
solving constraints. In order io satisfy these require-
ments, constraint solvers must be completely changeable
by users. We designed the system so that users can de-
fine constraint solvers for their own purpose, by making
the semantics of the domaine precize, and implementing
corresponding solvers.

[Eeferences)

[ApE-82 | K. R. Apt, and M. H. van Emden, "Con-
tributions to the Theory of Logic Programming”,
JACM, 28(3), July, 1982, pp.841-862.

[Bue-83 | B. Buchberger, "Grébner Bases: an Algebraic
method in Polynomial Ideal Theory®, Technical Re-
port, CAMP-LINZ, 1983.

[Col-75 | G. E. Collins, “Quantifier Elimination for Real
Closed Fields by Cylindrical Algebraic Decomposi-
tion,” Lecture Notes In Computer Science 33, 1975,

[Col-82 | A. Colmeraver, "PROLOG-II - Reference
Manual and Theoretical Model”, Internal Re-
port, Groupe Intelligence Artificille, Universite Aix-
Marseille II, October, 1982,

[Col-87 | A. Colmerauer, “Introduction to Prolog-1117,
ESPRIT'87, Achievements and Impact, Proc. of the
Ath Annual ESPRIT Conference, Brussels, Septem-
ber 28-20, 1987, Morth-Holland.

[Din-87 | M. Dincbas, H. Simeonis, and P. van Henten-
ryck, “Extending Equation Solving and Constraint
Handling in Logic Programming”, ECRC Internal
Report, IR-LP-2203, February, 1987.

[EmK-76 ] M. H. van Emiden, and R. A. Kowalski, “The
Semantics of Predicate Logic as a Programming
Langnage®, JACM, 23(4), October, 1976, pp.T33-
T42.

[Fik-T0 | R. E. Fikes, “REF-ARF: A System for Solv-
ing Problems stated as Procedures”, Artificial Intel-
ligence, 1, 1970, 27-120.

[Hei-86 | M. Heintze, J, Jaffar, C. 8. Lim, S. Michaylov,
P. Stuckey K. Yap, and C. N. Yee, “The CLF Pro-
grammer’s Manual = Version 1.0, Department of
Computer Science, Monash University, 1986.

[Hil-90 | D. Hilbert, “Uber die Theorie der algebrais-
chen Formen", Math. Ann. 36, pp.473-334, 1890.

[TJaL-88 ] J. Jaffar, and J-L. Lasses, “Censtraint Logic
Programming®, [BM Thomas J. Watson Research
Center, Internal Memo, 1986,

[JaLl-87 | J. Jaffar, and J-L. Lasses, “Constraint Logic
Programming” , {th IEEE Sympoesium on Logic Pro-
gramming, 1987,

[JaM-85 | J. Jaffar, and 5. Michaylov, “Methodol-
ogy and Implementation of a Constraint Logic Pro-
gramming System”, TR 54, Department of Com-
puter Science, Monash University, June, 1985.

[Llo-84 | J. W. Lloyd, "Foundations of Logic Pro-
gramming”, Springer-Verlag, 1984,

[Rit-38 | R. F. Ritt, “Differential Equation from Alge-
breic Stendpoint,” AMS Colloguium Publications
Volume 14, New York, 1938,

[SaA-88 ] K. Sakai, and A. Aiba, *CAL : A Theoretical
Background of Constraint Logic Programming and
Itz Applications {In Japanese)”, Information Pro-
cessing Society of Japan, vol. 88, No. 8, 38-5F-24,
pp. 9-17. Feh. 12, 1988,

[SaS-88 | Y. Sato, and K. Sakai, “Boolean Grobner
Bases", LA-Symposium, February, 19588.

[Ste-81 | M. Stefik, “Planning with Constraints”, Arii-
ficial Intelligence, 16, 2, 1981.

[StS-78 | G. . Steele, and G. J. Sussman, “Con-
straints”, MIT Al Lab Memo 502, Cambridge, Mas-
sachusetts, 1978.

[TaF-86 ]| A. Takeuchi, and K. Furukawa, “Partizl eval-
uation of Prolog Programs and Its Application to
Meta Programming”, Information processing 86,
Dublin, North-Helland, pp. 415-420, 1986.

[TaS-84 | H. Tamaki, and T. Sato, “Unfold /Fold trans-
formation of Logic Programs”, Second Infernational
Lagic Programming Conference, Uppsala, 1984.



