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ABSTRACT

From the very beginming, researchers in
artificial intelligence and cognitive scilence
have been accused of excessive optimism. I
hope we have been guilty of some optimism, and
in a field that has moved as far in thirty
years as this one hag, [ deny that thera has
been excess. ’

Our understanding of both human intelli-
gence and machine intelligence contimues to
widen and deepen at a rapid pace, and if there
are any limits to the kinds of dintelligence
that can be represented by computer programs.
those limits have not yet made themselves
evident. If I have been skeptical that we need
anything that is properly described az a
"breakthrough" we can proceed further, T am not
ar all skeptical about the research possibili-
ties for important new ideas and advances.

Mankind has been enthralled by four great
gquestions: the nature of matter, the origins
of the universe, the nature of life, and the
emergence of mind from matter. It is the
privilege of all us in the cognitive sciences
to spand our professional lives grappling with
the fourth of thesse questions.

Until the computer was recognized as the
general physical symbol system that it is, we
had almost no tools for imvestigacting the
nature of intelligence and mind. Combining its
intelligence with curs, we will contioue to
move rapidly toward a fuller and clearer com-
ception of the minds of both computers and
people,

1 PROSPECTS FOR COGMITIVE SCIENCE

Ten year predictions of the development
of a2 science are rather more feasible than one-
day predictions of the stock market, Scilence
and technology do not proceed in instantaneous
breakthroughs. Instead, momentous events cast
long shadows before them. It was forty years
from the recognition of the black body problem
to Planck's law, another five yvears before the
glgnificance of the quantum in that law was
recognized, another eight before Bohr con=-
strucced his theory of atemiec structure, and

another thirteen before Helsenberg and
Schroedinger provided the modern equations of
quantum mechanics., While no one (without mak-
ing the diseoveries themselves!) could have
predicted these discoveries, much less their
exact timing, there was no great problem In
predicting where the good research problems lay,
and hence, the promising directlons of research.

A ten year look shead to the future of
cognitive scicnce does not, therefore, seem too
formidable a task - provided that you deo mot
ask me what the precise results of the research
will be or just when they will cecur. 1If we
wish to sound bold, we can even call this a
look intoe the next century, which is, after all,
little more than a decade away. To look zhead
in this way, we must first study the shadows
that portend the events: We must look briefly
at where cognltive sclence has been, and at
where it now is. That is where I will begin.

2 THE ACHIEVEMENTS OF COGNITIVE SCIEHCE

In what follows, the terms "cognitive
science” and "artificial intelligence” will be
used more of less interchangeably. Both domains
are concerned with producing intelligent
behavior in computers., Cognitive science wishes
to do so in order to understand human intelldi-
gence, and the programs it writes are intended
to use the same kinds of methods that people use
in their thinking, spesking, understanding,
learning, and so on. AI wishes to produce
machine intelligence in order to augment human
intelligence, and in the programs it writes, no
holds are barred. AL can use machine nanosecond
or plcosecond speed that is unavailable to the
millisecond human brain. But the two fields
have worked so closely together since their
origin, and have borrowed so freely back and
forth, that it is not necessary to consider them
separately; the progress of each will continue
to depend upon and to support the progress of
the other.

2.1 Programming Languages

The very existence of cognitive science
depended on having programming languages that
allow complex, lrregular, constantly changing,
unpredictable structures to be stored in memory
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and processed. The iovention of list process-
ing languages, as early as 1956, provided cogni-
tive seience and AL with the programming tools
it needed and which it has relied uwpon since.
Initially rebuffed and scorned by systems
programmers &5 intolerably slow and wasteful of
computer memory, list processing languages
turned out to be a major contribution of Al to
computer sclence generally.

Beginning around 1972, LISP, which had
become the standard list proceszing languapge,
was joined by production system languages like
0F55; and more recently by logic programming,
as exeémplified in PROLOG, has been added to the
kit of Al tools. The current interést in
connectionlism and parallel networks is sure to
spawn still another class of programming
languages = early examples can already be seen.

2.2 Hardware

The obvious precomdition for cognitive
science was the existence of computer hardware
to support the execution of its programs. The
dependence of the research on computers is
beyond question or discussion. What is less
obvious is whether hardware availability has
been a major determinant of the speed at which
the research has advaneed. Has hardware been
the bottleneck, or has it always been available
when needed, with the required memory capacitics
and pperation speeds?

One must give a mixed answer to this
question. Current systems for visual or audl-
tory pattern recognition, chess programs, and
some cther expert systems, could not operate at
tolerable speeds on the computers available as
recently as five or ten years ago. In this
genge, the remarkable and continuing advance of
hardware has been absolutely essential to the
development of AL and cognitive science. We
may expect this to continue to be true in the
future: we will find needs for even faster
computers, with ever larger memory capacities.

But one can ask a different question: Has
hardware development been the bottleneck that
has limited the rate of progress in cognitive
science? Here, the amswer 1s largely negative.
The rate at which machine intelligence has been
pushed into new domains and new levels of per-
formance has depended mainly on the ingemuity
of the researchers. When new ideas have been
invented, hardware has usually been available
to implement them - not always with the speed
and scope that we might wish, but sufficiently
well to test the soundness of the ideas. Basie
research seldom has to be carried out in real
time.

There are exceptions. In designing pro-
grams to play chess, machine speed has been of
the essence, and mech (not all) of the rapid
progress of tha past five years has come from
the ayailability of specizl purpese hardware,

Some of us have long believed that computer
chess research should put more emphasis on
incorporating chess knowledge in the programs,
and less on speedlng up brute-force search.
However, the history of progress in that field
does not support our position. Will the future,
as chess programs reach grandmaster levels, be
different? That spot on my crystal ball is
rather foggy.

A few years ago, the ides was popular that
AT programming would be greatly facilitated by
the availability of special LISF machines or
PROLOG machines. Those machines now exist and
they achieved a speedup - but only that. They
allow us to execute important primitive opera-
tions more rapidly, but they still compete with
powerful general-purpose hardware, and the
verdict iz not clear whether the special-pur—
pose machines will be cost effective. At any
rate, they represent not a “breakchrough" but
just another source, one of many, of speedup in
hardware.

In the case both of PROLOG and of languages
for comnectionist programming, it is widely
believed that major problems of execution aspeed
would be solved if we had massively parallel
hardware, and much effort is now being devoted
to bringing about that result. I am skeptical
on two scores: (1) that parallel hardware is
the angwer to exponential explosion of search
{a problem that plagues PROLOG), or {2) that it
i1g, even in principle, feasible to design
parallel hardware that has genuine general pur-
pose capabilities.

T will have more to say later on both
these points. For the moment, I would simply
ohserve, firstc, that some impressive special-
purpose parallel hardware hags already been
produced (e.g., array-processors, or the chess
machines mentioned earlier); second, that there
are no convincing demonstrations of massively
parallel gemeral=-purpose hardware; third, the
newer supercomputers.; with only a little
parallel capacity, but offering the fastest
computing that is available, are used mostly
for numerical analysls, and except for
connectionist research, have found relatively
little applicatiom in cognitive science.

The significance of the first observation
1s that we can, indeed, achleve major speedups
{which wound, but do not slay, the dragon of
exponential explosicn)} by parallelism adapted
to special uses. The significance of the
gecond 1s that we do not now know how to bring
ahout several-order-of-magnitude speedups in
general-purpose parallel architectures. The
significance of the third is that spccess in
designing effective parallel systems may not be
the key to progress in cognitlwve secience.

2.3 Programs

For this audience, I do not need to list



the many domains in which computer programs
exist that reach or surpass human levels of
intelligent behavior, or the many answers we
have gained to our questions about how the human
mind manipulates symbols in thinking, problem
solving, langnage understanding or learning. I
shall only try to summarize some of the common
characteristies of these programs, character-—
istics that seem important to defining the
nature of intelligence itself.

Firat, we do achieve speeds in computer
programs that are simply uwnattainable for people
- speed in arithmetic operations being the most
striking example. Nevertheless; we have found
that speed and brute force, unless combined with
heuristics borrowed [rom our understanding of
human cunning, does mot go far toward achieving
intelligence.

Very early in research on human intelli-
gence, some of the heuristics were discovered
that permit people to search wery selectively in
problem spaces that would otherwlise be far too
large for human computational capabilicies.
Even rather simple hill=climbing heuristics,
which select the next search step with the aim
of increasing some evalwation function, have
proved powerful for reducing the necessicy for
extensive search. More sophisticated, and
widely used, is means—ends analysis, which
guides search by comparing the current problem
state with the goal state, detects differences
between them, and takes actions to reduce the
differences.

These and other search heuristics were
found through research on relatively simple
puzzle-like problems, which don't require much
real-world knowledge of cthe solver, but which
figvertheless can be guite diffieult for peoplsa
when they first encounter them.

The intelligence of experts, on the other
hand, is most often applied to domains that have
g large information content. We know today that
the human world-class expert (in every one of
the dozen or more demains that has been studied
intensively) bases his or her expercise on the
possassion of vast knowledge as well as on the
ability to do means-ends analysis or other forms
of dnference. The expert typlcally knows 50,000
or more "things" (we call them "chumks") in the
domain of expertise. We have evidence that this
knowledge is stored in a production=like form,
like am indexed encyclopedia. The index enables
the expert to recognize key factors (cues,
gymptoms) im situations in his or her domain,
and thereby to access the knowledge stored in
the encyclopedia about the significance of those
Symptoms.

Each of us, expert on our own native
language, recognizes while reading any one of
50,000 or 100,000 words in this language, and
ratrieves immediately from memory our knowledge
about the meanings of these words. Doctors do
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the same with medical symptoms, chess masters
with wvisible features of the chess beard, and -
g0 on., We know (becavpse we have done 1t) that
we can build expert systems, capable of per-
forming at the level of human experts, by con-
atructing such encyclopedias in the form of
production systems and endowing them with a
lictle capability to do means-ends reascning or
other inference.

Today,; we alsc know that those responses of
human experts that wa call “intuitive" or judg-
mental,"” or even Yecreative," are precisely acts
of recopgnition, based on the 50,000 chonks held
in memory. As Pasteur put it, "Accidents
happen to the prepared mind." Enowing that, wa
have pushed our computer explorations into the
domain of i1ll-structured problems and creativity.
Programs have been constrocted and tested, like
EURISKD, BACOH, and KEKADA, that are capable of
creating new concepts out of old, and scienti-
fic laws from raw data, and which can plam,
intelligently, sequences of experiments for
achieving a research goal.

Most of the accomplishments of ‘cognitive
science up to the present time relate to the
programming of relatively well structured tasks,
where the goals and admissible operators are
fairly clearly defined. More recent successes
with programs that do sclentific discovery -
and in gquite a different realm, with programs
that compose music and make creative drawings -
raise our aspirations for the field. The tasks
performed by such programs- involve waguely
defined goals and no clear boundaries for the
legality of "moves." There are no longer, if
there ever have been, clear limits to the kinds
of human cognition that cam be analyzed by the
methods of cognitive scilence.

When cognitive scilence began, I suppose
most of us thought it would be easiest to wiita
programs to do ordinary everyday things -
observing, recognizing, making physical move-
ments = while it would be very hard to simulate
the "higher" flights of the human mind into
seientifiec and professional activity. It turned
out exactly the opposite. Professors, engineers,
and businessmen have been muech easier to simu-
late than bulldozer drivers. Building systems
to mateh the human eyes and ears, and their
control over the fingers and hands, has proved
to be the meost diffifcult of all our research
challenges.

We should have predicted that. (We didn't.)
The masmalian sensory and motor systems have
been evolving for nearly & half billlon years.
There has been plenty of time for natural selec-
tion to hone them into complex and finely-tuned
devices. The new brain, which distinguishes us
from the rest of the mammals, has been develop—
ing for less than a miliion years. With such
a short period of shaping, it is probably still
a very gimple and crude device - indeed that is
exactly what our cognitive science research amd
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expert systems have been revealing to us. For
this reason, the hardest problems ahead are
atill cthose of understanding and simulating the
sensory and motor systems,

From the very beginning, cognitive science
hes been fascinated with the processes of learn-
ing, but fascination has not always been accom—
panied by rapid progress. In the early years,
we had one spectacular success, Samuel's pro-
gram for learning to play checkers. But we
also had disappointments, for example in our
éxperiences with Perceptrons and other schemes
for gelf-organizing networks.

In the past decade, however, research in
learning has taken off again, and much has been
aceomplished.  One of the most significant
accomplishments is the understanding we hawve
gailned about how people can learn by examining
worked—-out examples, and then "re-programming'
themselves to retain the skills employed in
working the examples = skills that then can be
transfered to other problems.

The computer counterparts of schemes for
learning from examples and learning by doing
{(i.e., by solving problems) are adaptive produe-
tion systems. Adaptive production systems are
simply production systems that can form new
productions and add them to memory. Beginning
with the work of Wewes a decade ago, it has
been demonstrated convincingly that such systems
can be built for learning subjects, like algebra
and geometry, at high school level.

The insights we have galned [rom adaptive
production systems.that learn from examples have
already been applied in several research studies
to the improvement of human teaching and learn—
ing. For example, in 2 study carried out with
Chinese colleagues in a Beijing publie school,
we have showm that the entire three-year algebra
and geometry curriculum can be taught from
examples and problem-solving practice, without
lectures or textbooks., Moreover, the new
methods are more cfficient in terms of student
time and level of learning than the standard
classroom methods.

2.4 Applications

I have already mentioned some of the main
areas of application of cognitive science today.
Most of them we bundle together under the head-
ing of "expert systems," but that label covers a
vast and growing collection of different kinds
of programs, as the recent book by Feigenbaum,
McCorduck, and Nil demonstrates,

Other real-world applications are barely
on stage, or remzin in the wings. Robotics has
had much visibility, but mest robots workinmg im
factories today have their basis in classical
eontrol theory rather than artificial intelli-
genca, Developing robots that incorporate
genuine AT techniques will depend om our pro-

gress in making sensory and motor devices, a
topic that was mentioned earlier.

We now understand how humans manipulate
natural language and extract meaning from it
{at put meaning into it]. Ag a result of that
understanding, we now know what the REAL prob-
lem is of achieving effective and practical
lznguage understanding and language translatiom
by computer. The real problem is that a lan-
guage translator must itself have a great deal
of semantic knowledge about the subjectz it is
translating. Applicaticons im this domain will
be paced by progress in building large semantcic
memories that are organized so that relevant
information cam readily be found and accessed
as needad.

Clearly, these potential fields of applica-
tion of cognitive sclence depend for their
realization on progress in basic research. It
is time for me to turn now to a discussion of
the frontiers and prospects of such research.

3 RESEARCH FRONTIERS

My discussion of where we are today in
cognitive science provides the basis for my
forward view from the frontiers, and enszbles me
to be relacively brief in deseribing the pros-
pects that [ see from there. I will look
succesgively at some of the areas that I have
already identified as eritical; then I will =zay
something about our needs for software and hard-
ware supporting systems, and our prospects for
meeting these needs.

3.1 Task Domains

The topics on which I wish to comment are
robotics, language, expert systems, learning,
and representation. All but the last of these
has already been discussed briefly.

3.1.1 Roboties

Earlier, I identified the development of
sensors and effectors as the key to progress in
robotics. These hard problems are attracting
wuch research attention today, and there is not
much I can say about them that cannmot be said
better by the researchers. Progress is slow,
but there is definite movement. We should
expect it to continue and to accelerate, but we
should net look for a sedden “breakthrough™ that
will dissolve all of our diffieulties. My
erystal ball shows no breakthrough on the hori-
Z0MNa

Clearly, the sensory domain - wvisual and
auditory pattern recognition - iz the area
where connectionist ideas could make Lheir
earliest and most important comtribution. The
evidence iz very strong that most of the human
"higher" mental functions are carried ocut in a
serial, one-at-s-time fashion, all passing
through the narrow bottleneck of attentiom,



The difficultiess we experlence in carrying om &
gericus conversation while driving a car in
heavy traffic is just one of the evidences that,
while we may have some time-sharing capabili-
ties, we are not, at this level, parallel pro— -
cegsors.

The evidence is equally clear that the eye
and the ear, and to a lesser extent the motor
system, are parallel devices. It is here where
rthe main commectionist research effort needs to
be  focused, Gome connectionlsts are more san—
guine. They think the whole of cognitive
gelence can be handled with their models, with-
out the need for a separate symbolic level,
Time will tell (obwiously I dom't agree with
them) . ‘

Finally, there is more to robotics than
sensory and motor systems. There must be a
thinking and planning system to connect them.
Much of the basic eguipment and crganizacicn
for it is in place (as witness systems like
STRIPS), derived from the research on problem
solving. But the problem that needs more
gttention, and is just beglnning to receive ik,
is how a planning system, using a very gross
and inexact model of the real world outside,
guides & robot that has to survive and operate
in that real world., This need presents prob-
lems of correction and feedback of planming
models, problems that are surely selvable, but
that need to be addressed. :

3.1.2 Language

The long shadow that predicts the main
direction of language research is, as I have
already explained, the shadow of semantics.
Already, Lenat and his celleagues in Texas are
engaged in building an information base of
encyelopedic dimensions that can be used Co test
the use of semantic koowledge in informing and
guiding language understanding and translation
gystems. I would expeéct to see more enter—
prises of this kind, gulded by what we already
know about large expert systems, production
systems, and data base architectures.

If there are any fundamentally new ideas
that have to be invented before progress can be
made, they are not visible to we. Undoubtedly,
new ideas will emerge as the work progrésses -
intelligent empirical work always produces them
- but what is needed right mow and in the mear
future is large-scale experimentation with data
bases.

3.1.3 Expert Systems

Development work on expert systems hardly
needs encouragement or guidance. The demonstra-
tions of commerical value are sufficlently
numerous and convincing to suwpport vigorous con-
tinuing work. The expansion of expert systems
to new domaips will depend, however, primarily
on the progress that is made in the other
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dimensions of research I have been discussing:
especizlly sensory systems, cobotics, language,
learning, and {a topic not yet discussed)
reprasentation.

3.1.4 Learning

There ave two or three main foel of learn=
ing Tesearch today. 1 have already mentloned
the two that seem to me most promising. One is
connectionist research for the learning of
visual and awditory patterns. The other i=s
research on adaptive production systems that
learn from examples. I am fairly sure that
these two do not cover the whole range of
mechanisms the human brain uwses to lmprove its
performance, but they seem to be among the most
important, and we understand enough about them
g0 that research can progress rapldly.

An intriguing question, on which one can
find many opinions but little evidence, 1s when
cne should choose learning and when ome should
choose programming as the preferred method for
giving new knowledge to an expert system. Homan
experts gain all thedir knowledge by learnding,
but that is perhaps because we don't know how
to open the box and stuff the program in.

Would we program people, instead of teaching
them, if we could? This is & question that is
bound to attract attention as we gain increas-
ing ability to build learning systems, then
seek to incorporate these learning capabilities
in expert systems.

3.1.5 Representation

Information has to be taken out of Flate's
ahstract world of ideas and provided with some
concrete form of representation before it can
be processed by computers or braims. The typi-
cal representations we use in cognitive science
today imclude list structures, and schemas con-
atructed from them (alias deseriprions, scripts,
frames), productions, and declarative state-—
ments. All of these are good for stating prop-
pslicions, or can be made to look as though they
wera,

There 18 a great deal of evidence, however,
that people use pictures and diagram-like struc-
tures as preferred representations in much of
thelr thinking. Einstein was always adamant in
insisting that he did not think in words, and
many other scientists and mathematicians have
endorsed his view., We are just beginning to
ask whet these non-propositional representa-
tions might be, and how they can be implemented
in computer systems, and simulated for cognitive
research.

Hovak's ISAAC program, which understeod
physics problems stated in words, then wrote
the equations &nd solved them, is an important
landmark in our understanding of pictorial
representations. For ISAAC understood the words
by transforming them inte a picture (actually,
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i list-structure schema) in computer memory. Tt
was easier to form equatioms from the pilcture
than from the verbal statement of the problem.

It is sometimes said that "a problem well
represented is a problem half solved.”" Certain-
ly, we know problems that are almost impossible
to solve as presented, but which become gquite
easy when a good representation is found. The
mutilated checkerboard problem, imtroduced into
AL by John McCarthy, is an example, What we
are now learning about disgrammatic representa—
tions provides a foundation for substantial
prograss during the next decade, both in
widening the range of representations we can
employ, and in building svstems that have some
capability for finding good representations for
the problems that confront them.

4 SUPPORTIKG SYSTEMS

Having described a number of directions for
the future of cognitive science, scmething needs
to be sald about the hardware and software
supporting systems that will permit the research
to go forward = or better yet, that will faecil-
itate 1t. I will arrange my discussion around
four important issues, that have already been
raised dn our examination of the present state
of affairs: serial and parallel architecture,
connectionism, logic proaranming, and non-verbal
representations,

4.1 Scrial wversus Parallel

The brain iz a vast network of neuroms,
whose number has wariously been estimated 109 or
L1o+(12}. The dendrites are themgelves branching
gCtructures, so that the total number of conpec—
tions in the brain may be of the crder of
10+(15). 1In the face of this architecture, it
is quite natural te think that intelligence must
require parallel computation. Why else would
the procezses of evolution have ereated this
vast potential for simultaneous activicy?

But the matter is not quite this simple.
First, our computers also have vast memories
helding information in parallel. Of course,
these memories are pasaive structures, mot
active computing devices. But neurophysiolo-
gists have not yet discovered to what extent
the neurons are alse essentizlly passive memory
structures, and to what extent they carry on
active computation that goes beyond self-
maintenance.

decond, as pointed out earlier, the human
thinking process contains a narrow bottlensck,
the bottleneck of attention, which severely
limits the oumber of thoughts that can be enter—
tained at ome time. At least at the level of
conseious activity, the brain fs demonscrably a
gerial, ocne-at-a-time system, rather than a
parallel one. It iz also a very slow system
{by computer standards), for even a simple act

of recognition takes the better part of a second.

Its slowness and seriality have made it possible
to simulate such activities as problem solving
and language understanding in considevable detail
uging general purpose serial computers. Ewven
recognition processes, after features have been
extracted from the stimulus, are easily accom—
plished in real time by serial discrimination
nets like EPAM.

But we have already seen that, if consclous
thought is demongtrably serial, seeing and hear-
ing are demconstrably parallel. In terms of any
evidence we have today, the most prudent con-
jecture, perhaps, is that the brain has both
parallel and serial components, and that a
complete computational theory.of dntellipence
mst accommodate both. There i1z no need to take
an either=or attitude on the serial-parallel
debate, in fact the empirical evidemce argues
ageinst such an extreme resolution of the
issue in either direction.

I have already argued that the strongest
case for parallelism, especially in connection-
ist form, lies in the realm of visual and audi-
tory pattern recognition, and to a somewhat
lesger extent in the control of motor activity.
Since these have turned out to be some of the
most refractory aspects of intelligence, offer-
ing wvery stubborn resistance to our attempts to
mnderstand and simulate them, progress of
rescarch on sensory and motor functioms would be
greatly facllitated if we could provide the
researchers with the right kind of parallel
hardware. What "right kind" means is subject
to conglderable uncertainty.

Az anyone who has attempted it will testify,
dachieving massive parallelism in computation is
extremely difficult, except where hardware is
custom designed to handle certain special kinds
of precisely defined tasks (e.g., array pro-
cesgors). "General purpose™ parallel processors
like ILLIAC IV, and its ancestors and descen—
dantg, have proved very hard to program except
for tasks whose precedence requirements matched
closely the hardware desiga. A typical expect-
tation for an architecture, on tasks not closely
matehed to it, is to achieve a speedup by a
factor of three to five with the use af 30 pro-
CEE50TS.

There is no reason to believe that someone
will invent a clever idea that will suddenly
make general-purpose parallelisam feasible. The
difficulties are not superficial, but fundamen—
tal. Basically, parallelism is constrained by
the precedence requirements of the subtasks of
any complex task. When there is little connec-—
tion among tasks, a great deal of parallelism
is attainsble; when connections are dense and
rigid, a large part of the potential capacity of
the parallel machine goes unused while tasks
awalt the completion of their predecessors (and
while knowledge of that completion 18 commmndi-
cated}.



Hature itself is constrained from full
parallelism by the Infermetional complexity it
creates. The dominant architecture of natural
systems is hierarchical - with each component
at a given level interacting intensively with
only a few other components at that level = the
protons and neustrons in an atom, the atoms im a
molecule, the molecules In a cellular micro=
structure, and so on.

I have speculated elsewhere as to why
natural scructures should heve evolved mainly
into hierarchies. The evolutionary lesson is
one that designers of computer architectures
might examine closely and consider imicating.
Of course we have already had considerable
experience with the hierarchical organization
of memories, but much less with hierarchies of
active processors. Computer networks can also
teach uws something about hierarchization.

The conclusion I would draw 1s that we will
continue to mske progress toward the design of
effective parallel systems, but probably with-
out 8 sodden burst of illumination that will
make that progress speedy. Moreover, parallel
architectures designed with particular applica-
tione in mind are likely to advance more rapid-
ly and to reach more satisfactory levels than
attempts at general-purpose massive parallelism.
As we learn more about the brain, perhaps we
will gain useful ideas for parallel design from
that knowledge., Meanwhile, the design of hier-
archical systems deserves more attention than it
has received.

4.2 Connectiomlsm

I have stated my.reasons for thinking that
connectionlist systems may play a large role,
péthaps a decisive one, in modeling sensory and
motor systems. Some connectiondsts, in thedir
enthusiasm, believe that there is no longer any
need for serial symbolic systems = that they
will soon be replaced by comneetionist nets.
This seems to me exceedingly unlikely., Again,

I would appeal to the evidences of hierarchy

in nature as 4 reason for thinking that the =ind
is arranged in levels - chat there is a level of
neuronal organization, and that these neurcmal
systems, in turn, implement the primicive struc-
tures and operators of the symbolic systems at
the next level above.

The analogy to the relation between hard-
ware and languages, or between assembly lan—
guages and higher-level languages in computersa
seems quite plausible here. The argument can
be stated a little more quantitatiwvely. At the
neuronal level, we are concerned with events
with durations from one to ten milliseconds,
while at the symbolic level, we are concerned
with events enduring from hundredsef milli-
geconds to tens of seconds and longer.

As far a=s regearch programs are concerned,
& good philosophy iz to "let a hundred flewers
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bloom.™ Both connectionist and symbolic direc—
tions of research hold out great promise, and
there is no gredt urgency now to draw exact
boundaries between theilr respective spheres of
applicability. But in particular, connection-—
ists should be encouraged to give high priority
to the problems cof processing sensory stimuli.

4.3 Logie Programming

The analogy between computing and logieal
inference, ‘and the consequent notion of model-
ing programming languages om systems of logic
has a long and interesting history. Of course,
it started the other way around: Aristotle
modeled legic om human reasening, and Turing
modeled it on a computing machine. I will not
elaborate on this history, but take up the
question of logic programming as exemplified by
such languages as FROLOG, I am treading on
dangerous pround, for there are many persons
present here who know 2 great deal more about
PROLOG and legie programming than L do.

Simply put, the idea behind logiec pro-
gramming is that reasoning should be logical,
and that programming languages should incor—
porate from logie the principles and insights
that make logic & powerful and rigorous form of
reasoning. Underlying any inferential system
are principles, some of which are expressed in
declarative form, others in procedural form.
The former are called axioms, the latter,
inference rules. It is an ddeal of loglc that
both axioms and inference rules should be
independent of subject matter; that they should
give valid results for all possible worlds.
When the logic is applied to a parri:ular'dumain,
additional axioms (domain-specific axioms) are
supplied to Bpecify what is known about that
domain.

Because formal logie has histerically been
closely connected with questions of rigor in
reasoning, systems of logiec are wsually de-
signed te make verificacrion of proofs as clear
and transparent as possible. This is accom-
plished, first, by separating logical axioms
from domain-specific axioms, as already ex-
plained, and second, by severely restricting
the inference rules {(e.g.; in the system of
Whnitehead and Russell they include unly sub-
stitution and modus ponens.)

& heavy price is paid for adhering to
these principles: the reasoning proceeds by
tiny steps, huge numbers of which are needed
for even the simplest proofs. Whitehead and
Russell paid that price (as attested by the
thickness of the volumes of PRINCIPIA MATHE-
HATICA) because rigor was the name of the game
they were playing. But there are many other
games that intElligence plays and that we want
to play on computers. They do not all have
the same reguirements.

The slow, and to some of us, disappointimng,
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progress in computer theorem proving provides
evidence of the cost of adhering to the prinmei-
ples of logic at the expense of ‘alternative
possibilities. Only grudgingly did the authors
of early theorem proving programs admit infer-
ence procedures for equality, commutativity,
and trangitivity, instead of axiomatizing them.
Today, single rules of inference like resolu-
tion and its derivatives are still generally
preferted over systems with multiple rules. (I
would point to the work of Woody Bledsoe and
his asscciates in Austin, Texas, to illustrate
what can be accomplished when, departing from
this preference, heuristic principles are used
freely to supplement the limited procedures of
logic in building theorem proving programs.)

When we examine human reasoning, especially
as it is applied to substantive affairs, it
proceeds in quite a different way. There are
not just a fey inference procedures but many;
and these are not all logical rules, but gen—
erally incorporate important domain-specific
knowledge, If we watch a good student solving
a problem in kinematics, we find the law of
uniform acceleration is being used not as an
axiom but as a computational procedure for
inferring, say, distance from time and accelera-
tion. The human processes in sitwations like
these are readily modeled by production systems
with relatively licecle use of declarative knowl-
edge.

Human reasoning is a mixed bag which servas
many purposes, Lt 15 used to & much greater
extent to discover than to verdify, and we know
that discovery often requires heuristic search,
taking long jumps at the expense of guarantees
either of completeness or validity. The lack
of these guarantees is not a wvirtue - it is the
price we pay for livimg in a world where com-
pleteness and guaranteed correctness of search
ara computationally infeasible, Better to find
an answer sométimes than to be assured that you
will éventually find it (in eons?), and that 1f
you do, it will not be & mirage. Better to
check AFTER you have found a candidate than to
rafuse to hazard possibly false steps.

The principle=z I have just announced are
not laws of logie, but empirical generaliza-
tions from human experience. In most real=life
situations, human reagoning is, and must be,
heuristic search. If powerful inference rules,
even vulnerable ones, can be incorporated in
the search, it will be more likely to reach its
goal in a tolerable time.

How there iz no reason why logic programm-
ing cannot be carried on in the spirit of these
principles, just as there 1s no reaseom why a
language like PROLOG canmot be extended to
equivalance with a Turing machine. But if the
principles are followed, then logic programming
loses its special rationale and claim to pref-
erence. Contrary to the underlying justifica-
tion for logic programming, procedures will

then be substituted for declarative statements,
and flexible best-first search control will
replace depth-first backtrack sesrch.

My problem is not with & programming lan=-
guage, My problem is with what seems to me a
misconception of the central principles that
underlie intelligence, and that should guide
the design of intelligent programs for AL and
cognitive science. Among those central princi-
ples is the idea that problem solving is
heuristic search.

One of the oldest issues in cognitive

gclence, along with the competition between
seriality and parallelism, is the issue of
whether knowledge should be represented declar—
atively or procedurally. I suspect that here,
a8 in the serial/parallel issue, the answer 1s
"both," There is probably good reasom to be-
lieve that much of ocur knowledge of the world
is storaed in declarative form, but that muech of
our capability for using that kaowledpge is
stored procedurally, as sets of productions.
We need to be suspleious of proposials to place
the whole of imtelligence, or nearly the whole,
in one or the other of these forms of represen-
tacion.

4.4 Nonverbal Bepresentation

In my plea for a balance between declara-
tive and procedural knowledge, I have defined
the latter im terms of productions, but haven't
said exactly what I mean by the former.
"Declarative" should not be equated with
"propositional." One important form of declar-
ative representation, widely used in AL, con-
sists of list structures and description lists
{property list} structures — often called
schemas, scripts, or framas.

Of courseé, such structures can be inter-—
preted as sets of interrelated propositioms.
But though list structures and propositions may
be logically equivalent, they are not computa-
tionally equivalent. In propesitional repre-
sentations, variables play the role that is
played by common linked nodes im list struc—
tures. List structures can be uwsed to build
representations -that are computationally
equivalent te diagrames (see Novak, and Larkin
and Simon}, sllowing in many cases far more
efficient computation than can be achieved with
sets of propositions.

List structeres are not the only form of
storage of picture-like informarion. One
important alternative is the raster of pixel
arrays. The computational convenience and
power of such rasters of course depends heavily
on the hardware and software processes that are
available for manipulating them and reading
informacion from them. The same is crue of
other representations, which deseribe figures
in terms of the equations of their boundarias,
or the like.



If it is true, as seems probable, that mmch
human reasoning uses picture=like and diagram-
like mental and external representations, them
research on computer hardware snd software for
lmplementing such representaticons will be of
great value. There has been substantial research
activity of this kind in connection with CAD,
but to the bast of my knowledge, it has not been
closely linked with research in artificial
intelligence ox cognitive science. A closer
linkage could lead to very dinteresting and vse-
ful ideas about how to represent knowledge that

ia declarative, but not explicitly propositional.
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