Technical Panel Discussion

Parallelism in
- New Generation
Computing

Pﬂ'lll:lpan' nants
Chairman:
H. AISO Keio Univ., Tokyo
Panelists:

M. AMAMIYA NTT Musashino ECL, Japan

K. FURUKAWA ICOT, Japan

D. MAY Inmos, UK.

E. SHAPIRO Weizmann Institute of Science, lsrael
S. J. STOLFO Columbia Univ., U.S.A,

Chairman: Good afternoon ladies and
gentlemen. Welcome to the final session.
This is the panel discussion entitled *‘Par-
allelism®, in future generation computing.
My name is Hideo Aiso. T am associated
with the Department of Electrical Engi-
neering of Keio University, Yokohama,
Japan, It is an honor indeed to chair this
session, and also to serve as the program
chairman for this conference.

The session has been organized to discuss
one of the most important and probably
most interesting topics, that is, parallelism,
From various points of view, il seems to
invelve innovative polentialities for future
generation computer systems.

Everyone agrees that parallelism using
advanced technologies such as VLS, in-
novative architectures, or novel program-
ming languages should be the way to get
gver increasing processing capability,
However, we have recognized thal some
very important but serious problems have
to be resolved to achieve that goal. There-
fore, the main objective of this session is
to review the important technological issues
on parallelisms with emphasis on those
encountered in logic programmings and
innovative computer architectures.

We will endeavour to explore potential
approaches to solutions. I'm very happy
to introduce to you five distinguished
panelists who have been very active in re-
search on parallel processing, and in new
research areas such as logic programming
languages and innovative computer archi-
tectures.

From the left, the first speaker will be
Dr. Makoto Amamiya, He received the
Ph.D. degree in electrical engineering from
the University of Kyushu and is now as-
sociated with the Musashino Electrical
Communication Laboratory of Nippon

Telephone and Telegram Public Corpora-
tion. He will approach the issue from the
standpoint of data flow architecture.

The second speaker will be Mr. David
May. He graduated from the University of
Cambridge and he now works for Inmoss,
of the United Kingdom. He will present
his position from the standpoint of the
architecture of VLSI systems and paraliel
processing languages,

The third speaker will be Dr, Ehud
Shapiro. He was awarded the Ph.DD. degree
in Computer Science from Yale University
and is now working at the Wiseman Insti-
tute ol Science, Israel, He will give us the
outlook from the viewpoint of the relation-
ship between sequential and paraliel pro-
Cessing.

The forth speaker will be Dr. Koichi
Furukawa. He received the Ph.D. degree
in Information Science from the University
of Tokvo, D, Furukawa has worked for
the Electro-technical Laboratory, Now he
is a researcher at ICOT. He will give his
position from the viewpoint of novel pro-
gramming languages.

The last speaker will be Prof. Salvatore
Stolfo. He received the Ph.D. degree in
Computer Science from the Courant
Institute of New York University. He is
Associate Professor at Columbia Univer-
sity, and he will approach the issue from
the viewpoint of large scale parallelism for
Expert Systems.

Before moving on to the panel discus-
sion, let me explain briefly how this ses-
sion will proceed. Each panelist will speak
on the issue of paralielism from the stand
point of his expertise and his research field
for 15 minutes. After that, the panelists will
respond to guestions from the floor All
questions and comments will be welcomed
after the presentation of the positions,

These may be followed by 30 to 40 minutes
of general discussion. Now 1'd like to start
this session with Dr. Amamiva.

Dr. Amarmiyva: Thak you. First, I want to
talk about parallelism and parallel machine
architectures from the viewpoint of the
data flow concept. But, I will discuss the
issue from a rather abstract position than
that of concrete machine architecture.
There are two types of approach to parallel
machine architecture. One is the task-
oriented or algorithm-oriented approach
and the other is the generic approach, The
task-oriented approach is used in for ex-
ample, image processing or partial differ-
encial equation calculation. This has an
array strueture, or mesh structure algo-
rithm. This may be an implementation
engineering dependent aspect. Here, I'li
speak the second type of approach. That is
the generic approach, derived on computer
science. This characteristic type of problem
has a non-fixed or flexible, dynamic strue-
ture to its algorithm. Examples are Al
programs or simulation of artificial phe-
nomenon like our social activities.

A difficult but important problem in this
second type of approach is how to map the
structure of the program domain to the
structure of the machine. This is the prin-
cipal issue in our work on parallel machine
architectures.

When we think of the structure of the
program domain, there exists various kinds
of parallelism. The characteristics of paral-
leism in the program domain are classified
two types. The programs are mixtures of
the two types. When we think of informa-
tion processing or problem solving, we
think in terms of the concept of functional
and logic programming. The first type is
parallel computation based on the divide

65

and conquer algorithm. For example, the
familiar algorithms are quick sort and
merge sort algorithms, We can exploit the
linear time execution of the program by
using linear list data structures. And, in the
Logic, or inference, program domains,
OR-parallelism is one type of this kind of
parallelism. The second kind is concurrent
computation, L.c., stream-or pipe-line pro-
cessing. This type of parallelism is achieved
through linear recursion with data con-
struction. The typical examples are set-
operations or prime number generation by
the seive method. In the logic program
paradigm, AND-parallelism is this type.
The third kind of parallelism is a mixture
of these tow types.

Now let us consider the three main char-
acteristics of information processing, The
first is operation on data. That is, mapping
from input data to output data. This is
straight forward functional program wing,.
The data flow, is pre-determind. The
second type is a data retrieval, such as in
relational data bases. This is specified by
the relations among data. Here, data flow
is not predetermind. That is, data flow is bi-
directional. This is also a feature of logic
programing. The third is time dependent
processes. Both functional and logic pro-
grams can't nicely deal with time depen-
dent processes. However, sensitivity to
history is the important issues in the prac-
tical information processing.

The concepts of status and sequential
operation are necessary in practical infor-
mation processing. The concurrent pro-
gramming feature is required to deal with
time dependent processes in execution.
Modularization is a very important con-
cept. In summary, the machine and pro-
gramming language must incorporate all of
three these features of information proces-

&b

sing, That is, functional programming and
logic programming should be amalgamated
using the modularization concept.

Further, Coordinative processing or the
message flow system is also a very impor-
tant coneept.

An other important point concerning
parallelism is the concept of set. In Al
programs, the basic concept is generate-
and-test. At [irs{, a set of data is generated
by some predicate or gathering process
which satisfies a given predicate. Then, the
following procedure 15 used to test the
generaied data which satisfies given predi-
cates. In this process, those predicates are
specified as relations among data. The next
important concepts are coordinated pro-
blem solving, and modular and hierarchical
construction of programs. This is the ab-
struction technigque. This brings in the
message flow concept, which is the same
concept as intermodule concurrent exe-
cution. It is, in other word, the object-
oriented approach.

Generaty and Test
{Sﬂ-ﬂwtrucmr | Gameerator , Filters }

Procucar
s Consumer Producer
Consusmar

. ¥
Fig. 1 \MPORTANCE OF SET CONCEPT

This is a very simple example showing
the importance of set concepts, There is a
test procedure which is a set expression.
At first the generator produces some data
set and then the filters, filter out the gen-
erated data. Fianlly, the set constructer,
the data constructs set. This processing
feature is a steram-oriented calculation
technigue. A quite simple example is the
concept of a student of X, where X is a
teacher. The student of X is such that X
teaches some curiculum 2 and siudent Y
takes the curriculum 7.

Now, I want to talk about how to im-
plement this kind of parallelism. From my
point of view, it is clear that data flow
architecture is a basic concept for the con-
trol of such parallel computations. Second,
by structure data manipulation is also an
important problem. For example, list
sturcture data is very convenient for repre-
senting very complex data structures. On
the othr hand, structure data manipulation
consumes a lot of time, since complicated
memory operations are necessary. There-
fore, high level memory operations, such
as pattern matching, should be supported
by hardware. As the data flow architecture
is based on packet communication, the
pipeline operation is possible between ex-
ecution control on processing units and
Memory operations on memory units,
Thus, data flow architeciure resolves the
memory latency problem by using a pipe-
line control technique. There is also the
problem of communications between pro-
cessors. In parallel processing machines a
large number of computing modules are
connected by a network. As the communi-
cation overhead is serious, high-speed
packet switching networking is the inevita-
ble technique. Packet switching network
and packet switching communication tech-

niques can resolve the communciations
overhead. The pipeling operation between
execution and communication control is
neatly effected by the packet communica-
tion technique. The data flow architecture
resolves the gaps between inter-processor
communication and intra-processor ex-
ecution.

As pointed out ahove, the data flow
architecture has the excellent features of
the parallel machine architectures. But at
the moment, there do not exist any practical
data flow machines. What are the problems
to be solved here? Research problems con-
cerning parallel machine architectures
are listed here. One is an appropriate
granularity needs to be set in the data flow
that which is the best: fine grain, medium
grain or coarse grain? Well, it depends
on the application area. However, in
general, programming language features
should support the most suitable granu-
larity levels for the data flow architecture.
For example, the data flow concepl com-
bined with a reduction concept and semi-
‘dynamic scheduling of the execution
secuence will be one of the solutions, and
then program transformation technigue
would be suggested. Next, there’s the pro-
blem of the task schedule for load balanc-
ing. The load should be evenly distributed
between many processors in the system.
The third problem is finding the right
hardware implementation technique. How
to implement the data flow processor
cheaply, how to implement a structure
memory to support higher level operations,
and how to realize a packet switching
newtworlk.

The problem of huge wires arising
in the network implementation has to be
solved. The VLSI technique can provide
some solutions to the hardware implemen-

&7

tation problem. The fourth difficulty is,
implementation of the parallel inference
mechanism, which supports such a gen-
erate-and-test scheme in Al programs. A
specific kind of high-level data flow control
is necessary to support parallel inference
mechanisms. The last problem iz imple-
mentation of a coordinated problem-solv-
ing system. That is, the realization of the

“module concept on the basis of the func-

tional and logic programming paradigm.In
conclusion, what I have been trving to
show is that we have to move on from the
data flow concept to the message flow
concept. This is my standpoint. Thank
you, '

Chairman: Next, Dr. May, please.

Dr. May: Thank vou. I shall talk first
about languages and second about the
architecture of highlv concurrent systems,
I belive that to express many of the real
world problems that we are dealing with,
we need a language which contains the
following:, sequence and states, concur-
rency and communication, hierarchy and
locality. These are all things that you can
observe in the real world. They are needed
for applications and they are also needed
for deseribing the structure and behavior
of implementation. In other words, a lan-
guage which contains such features allows
one to map real world problems directly
onto VLSI implementations.

I believe these ideas should be repre-
sented quite explicitly in the language and
should in some sense directly correspond
to constructs in the language, I'll give you
an example which is of course a language
I’'m very familiar with OCCAM. Sequence
and state translate into seguential con-
structs and assignments to variables, Con-

currency is represented directly by a paral-
lel construct, communication by input and
output operations. Hierarchy is repre-
sented by block structure, a technique
that’s been known for many years, locality
by declarations, also krnown for many
vears. Once we have a language like this a
programmer has the tools to explicitly
describe the structure and behavior either
of collections of programmable computers
or of special purpose VLSI hard-ware.
One of the impertant features of a lan-
guage for concurrent systems is whether it
has Tormal porperties. We will want to be
able to verify and prove properties of con-
current programs because it will be very
difficult to establish their correctness by
simulation and testing. We also want to be
able 1o use program transformations on
such programs because we will often want
to be able to move between the sequential
version of a program and the parallel ver-
sion of a program. We want to be able to
make these transformations in the know-
ledge, that were not introducing errors and
that the two programs both have the same
behavior, We can do this by regarding a
program as a predicate which describes all
observations of a machine executing the
program. This allows a logic to be con-
structed which can be used to reason about
the program. 5o we can have logical pro-
gramming without logic programming!
While on the subject of logic program-
ming and declartive languages, much has
been said about the implicit parallelism
of declarative languages, It seems to me
that this either gives rise to too little paral-
lelism, and doesn’t use all the capability
available, or gives rise to too much paral-
lelism and causes problems of allocating
processors to tasks. 'm not sure that
we're yet in the position to give these de-

clarative languages a good implementation.

['ve already raised the issue of locality
which seems to me to be important. If we
want concurrency of processing and com-
munication we have to try (o make the
processing operations as local as possible.

That is presumably best done by com-
bining the processor with some local
memory to which it has very rapid access.
This can be achieved ideally by putling
them both on the same silicon chip.

Secondly, we need locality of communi-
cation and the best way to achieve that is
to communicate between only pairs of
processes, :

This way we can avoid sharing things, in
particular, sharing processors, memories,
Or communication systems,

Locality is nothing new in computer
architecture; indeed many advances in the
past have resulted from exploiting it. Ex-
amples are base registers, stack pointers,
caches, and so on. These all use locality to
mmprove the performance of computer
systems,

This kind of architecture using essential-
Iy local operations with no global buses,
or global clocks, or global synchronizing
agents and gives rise to some interesting
problems. I'd just like to make a plea to
language designers. It's terribly easy to
introduce into languages convenient pro-
gramming features which are nearly im-
possible to implement in a distributed sys-
tem because they implicitly require global
coordination or synchronizaiton. [re-
commend from my own bitter experience
that languages should be designed first to
make sure that the concurrent implemen-
tation is as efficient as possible. It will then
be very easy to provide an implementation
on 4 sequential processor,

A sequential processor can implement

almost anything by simulation!

Ome very open guestion at the moment
is what is a good ratio in a system between
processing, memory and communications.
In our current state of VLSI technology
we can implement a processor of, say, ten
million instructions per second on about
the same amount of area as two kilobytes
of memory, or a communication system to
connect it to the rest of the system,

This means we have a rather interesting
choice, in that we can either use own silicon
for building a ten MIPS processor with
four megabytes of memory-—this would be
a conventional type of computer, or we
can have a computer have which will do
10,000 miilion instructions per second and
only two megabytes of memaory. These two
computers are approximately the same size.
They both take about a thousand VILSI
devices. So they are both quite small com-
puters, The problem, of course, is how we
would actually - construct a sysiem con-
taining many many processing elements,
with small amounts of memory dispersed
through the system, in such a way that
we can apply it Lo practical problems.

How can we construct such a system?
Obviously, such systems will have to be

extremely regular. If it's going to have

thousands of processors, we can hardly
connect them in a tangle, There are a
number of possible choices. There aren’t
really many of them. We can make struc-
turgs like pipelines, one, two, three
dimentional arrays, possibly more, but
after about the sixth dimension, wiring
would become so difficult to just make it
completely impossible.

There are some slightly more exotic
structures-computing surfaces—where, for
example, we take a two dimensional array
and fold it to make a torus.

hary identcsl deuces, connected in mgular network

o pipelng —E]_E]__| —
may 11D, 20,30 ...

ioroldel goeface

shufile

spacdal prrpose

ahility o exlend

post of non-local comanunication
Fig, 2 sYSTEM STRUCTURE

Then there are various kinds of shuffle
exchanges. There are a large number of
them, all of which have slightly different
connection structures, They will extend of
course through many many more stages
than I’ve shown here.

Then there are many possible special
purpose structures which are of course
tailored to specific applications.

These structures all vary in their ability
to extend. Obvipusly a pipeline can be
extended indefinitely. A shuffle becomes
progressively more difficult to extend as it
grows, because of this wiring crossover
here which gets worse and worse the more
stages are added, But, up to a thousand or
two thousand or so processors, it's quite
feasible.

The structures also vary in another pro-
perty—the cost of non-local communica-
tion, by which I mean a processor commu-

70

nicating with another processor which is
not an immediate neighbour. Of course the
pipeline is particulary bad because it may
involve communication thourgh a very
large number of intermediate points. The
shuffle is the best. In that it in general re-
_quires only a logrithmic number of steps to
communicate through the network. So one
might hypothesise that a shuffle would be
guite a good structure to use as a fairly
general purpose engine where the mapping
problem is fairly difficult to solve, because
it essentially allows one to ignore many of
the mapping problems.

I don't really think there are any solu-
tions as to exactly which one of these
structures one should choose vet. [ts atopic
for futures research. Where are we with
concurrent algorithms for these kinds of
machines? Well, some already exist, par-
ticularly in the signal processing, numeric
processing, and simulation areas. These
are regular problems which are very easily
mapped onto regular processor arrays.
The optimal results in such cases are usually
achieved by combining sequential and

parallel algorithms, This is one of the-

reasons why I feel it’s particularly impor-
tant to have programming languages con-
taining both sequential and parallel pro-
eramming facilities. It’s particularly im-
portant of course to choose the appropriate
ratio between processing and communica-
tion. That is, how much internal operation
is done by a proccesor each time it receives
a message, At one end of the spectrum one
has effectively a data flow architecture in
which one inputs a message, performs one
single operation and then outputs a result.
At the other end of the spectrum one has
sequential programming where one inputs
a large amount of data, performs a lot of
processing sequentially and then outputs

the result. In practice, however, it seems
to me possible to adjust the algorithm to
make this ratio such that the communica-
tion overheads disappear in relationship to
the processing cost. So [suppose my over-
all conclusion is that concurrent pro-
gramming is different, not difficult! Thank
you.

Chairmarn: Thank vou,

Dr. Shapiro: Well it seems that without
much coordination my talk begins exactly
where Dr. May's talk ends. The first slide
reads that the development of parallel
computers will not be easier than the de-
velopment of sequential computers. But it
also means that it shouldn’t be much more
difficult than the development of sequen-
tial computer. I'd like to offer a few simple
statements which some of you may find
obvious, and some of you may find absurd,
and we'll see how this results in the dis-
cussion.

That is a main thrust of my statement.
I don't mean it'll take us another forty
years to reach stage with parallel computers
that we are at with sequential computers,
but I mean that at least we should go
through all the transitions which sequential
computers have gone through,

So, in the same way that there is a theory
that a child, before he's born is going very
rapidly through all the stages of evolution
of the human race from the beginning of
history. I believe that the new born child
of parallel computers will go through the
same stages of evolution as the sequential
computer, although perhaps in a much
shorter time scale. More concretely, first
we'll have our computers and they will
have some machine language. Some ma-
chine language that perhaps only a few ex-

peris will know how to use, like in the old
days when computers come around. After
we gain some experience, using these new
computers with this new machine language,
perhaps we will understand better how to
design high level languages for these com-
puters.

After we have a lot more extensive ex-
perience with these machine languages,
we'll then know how to compile high level
languages into the machine language.
Remember that it took us a long time to
understand how to compile high level
languages into machine language, for
sequential compulers to get a lot of ex-
perience in programming in machine lan-
guage belore we knew how to construct
programs that actually generate good
machine language code. There is no reason
to believe that something different will
happen wilh the paraliel computers.
Another point of similarity is algorithms.
The number of algorithms started to grow
very rapidly (and I think that’s the point,
that will be made by Koichi Furukawa as
well.} Only after we had working sequen-
tial computers that we could actually get
our hands on. I think that the same thing
will happen with parallel computers. Even
though work on paraliel algorithms has al-
ready been progressing for quite a long
time, the development will be much much
more rapid as soon as we have a working
paralle] computer.

30, what do we need in this phase of
development? I think these are three com-
ponents which are essential as the starting
point. We need a good abstract machine.
I think we can’t ignore the fact that we
are going to program a parallel computer.
We can’t close our eyes and write porgrams
as we wish and hope that they will quickly
on a parallel computer. We must have a

71

maodel of the parallel computer in our
minds, but it shouldn't be too low level
and shouldn’t be too complex. It should
be abstract enough, so we can have a clear
concept of it in our mind. But it should be
close enough to the concrete architecture
so there won't be a big gap between our
concepts and the actual running program.

The next thing we need is a good machine
language. As I said, I believe we will have
to program parallel computers in machine
language for a while, perhaps for two, three
or, four vears to get a lot of experience
with them before we are able to compile a
higher level of language on them. So it's
very important that the machine language
be very good, be close enough to the com-
puter so it can still be executed Fast, but
still managable by human beings, perhaps
only by expert programmers who do the re-
search For a while, but still managable. And
the third thing we need is good algorithms
dand 1 mentioned what 1 think about them
before.

What we cannot afford to ignore, at
least in the very first steps in this develop-
ment, is explicit control of locality of com-
munication in the abstract machine, 1
think David May made a very strong point
for the locality and regularity of the system
design of concrete machines and we can-
not ignore this aspect in the abstract ma-
chine that we want to progam as well.
Otherwise, the gap between the concrete
machine and the abstract machine will be
large and we will lose a lot of efficiency
when actually trying to simulate the ab-
stract machine, So we cannot ignore the
locality in the abstract machine definition.

We cannot ignore explicit parallelism in
a machine language. As David May said
before, [do not believe that today we know
enough to start programming as iff we

72

don’t know anything about the machine
and rely on someone else, a smart compiler,
the runtime system, or whatever, to dis-
cover the parallelism for us. We're still in
an embryonic stage in parallel processing,
and we-cannot afford to ignore this—the
main aspect of parallel processing. The
last and most important thing, I think we
cannot ignore both locality and parallelism
in algorithm design, which I think is very
obvious. : :

The implication of these points is that
the machine language that we use to control
and program the abstract machine should
have explicit control both of locality of
communication and parallelism. David
May said it in other words. So [agree with
that, but he concluded that the declarative
languages don’t have this ability, and here
I disagree. Just to make a more concrete
point, for example, I believe that concur-
rent Prolog augmented with an explicit
mapping notation does have explicit con-
trol both of locality and of parallelism. So
I agree with David's assumption and with
the argument, But I don’t agree with his
conclusion that he made about declarative
languages.

I think it's premature at this stage,
where this stage may last one, two, three,
or five years, to try to exploit parallelism
automatically, because we don’t know
enpugh right now. And [think it's also
premature for the same reasons to compile
high level languages into the machine
language. Perhaps here, my notions of a
high level language and a machine language
are quite different from the conventional
ideas. I think that a certain restricted subset
or certain restricted classes of logic of pro-
gramming languages can be viewed as a
machine language. When 1 say high level
languages, | mean even higher than that. I

think the key distinction between a machine
language for a parallel computer and a
high level language for a parallel computer
is the ability to explicitly control parailelism
and locality. The machine language should
be characterized not by syntax not even by
type such as functional, logic, CSP, or
whatever. It should be characterized by its
ability to control locality of communica-
tion explicitly and to control parallelism
explicitly. As long as it can control these
iwo things explicitly, it should be viewed
from this standpoint as a machine lan-
guage, a usable machine language. '

Now the gquestions are more fine tuned.
Iz it toc high level to exploit the actual
power of the machine? Is it too low level
for systems programmers 1o use? That's
really the question right now in terms of
tuning the machine language. But as long
as the machine has explicit control of
locality and explicit control of parallelism,
then under thizs framework, it should be
viewed as machine language. I think that’s
where we should start. After we know a lot
about how to program in an assembly,
language or machine language for parallel
computers, where an implementation of
concurrent Prolog or some subset of it is
an example, then mavbe it’ll be time o go
to higher level languages without explicit
control of these aspects.

I take a rather optimistic stand on these
issues and believe that programming styles,
higher level languages, and algorithms will
emerge as soon as such a good machine
model is available, 1 also believe that during
this course of development all or most of
the important concepts of conventional
computer science will have to be redis-
covered. It's not that the new computers
will have to be completely different. We
suddenly will not need algorithms or struc-

tured programming, or other major im-
portant concepts of conventional com-
puter science. It's not that logic program-
ming will put computer science in the waste
basket. T don’t believe this will be the
course of development. [think the course
of development will be that almost all im-
portant machine independent concepts of
computer science should remain from this
generation to the next one, but perhaps
rediscovered within a different framework.
One such example, which 1 came across
through my experience in concurrent pro-
gramming, i3 the duality ol data structures
and process structures. Data sfructures
play an essential role in the design and
implementation of sequential algorithms,
and 1 think there is a similar concept in
concurrent programming: that is process
strugtures. Process structure is a new
concept, but it’s very similar, almost
isomorophic to the concept of data struc-
ture in sequential programming. Here's an
example of an old concept rediscovered
within a new context. Thank you.

Dyr. Furukawa: 1'd like to talk about part
of more application side and parallelism in
knowledge information processing - in
general. 1 think it’s a very difficult research
subject. There’s no promising way to
achieve this goal vet, and to attack this
problem, we need clear up four basic issues
right away.

Omne is to find key problems to be ai-
tacked. We need proper tools for this re-
search, we need a systematic approach,
and we need lots of people to join in the
research,

These four problems are interconnected
as follows: that is, ““Key problems will be
found through systematic research activi-
ties using adeguate tools by many re-

73

searchers.” What I claim or what I used (o
claim, is that logic programming plays a
very important role as a kind of glue for
integration. 1 will come back this later
again.

We view logic programming as a good
approach to building a bridge between
knowledge information processing and
highly parallel computer architecture. And
between logic programming and highly
parallel architecture, I think the computa-
tion model is very important.

The next thing for the systematic ap-
proach is overall research covering from
hardware to application. We need a com-
plete set of all activities. In some cases, it
1s possible to achieve parallel computation
just looking for only lower level or only
higher level parallelism. But to cover the
entire system is very difficult. You have to
have a good way to extract many paraliel-
isms from an application, you need an ef-
ficient language o express such algorithms
and a parallel computer which can execute
them very efficiently.

I think we are now ready to go on to the
research of this very difficult problem. We
have now a set of good tools to deal with it.

In hardware, we have VLSIs and even
if we don’t have vet parallel inference ma-
chines they are certainly possible. In soft-
ware, we have parallel languages, for
symbolic computation. In the applications
field, we have several knowledge program-
ming languages for distributed problem
solving. These are examples of some avail-
able tools, In software, as parallel lan-
guages, we have Concurrent Prolog and
we are designing KL-1. In applications,
Actor and Contract Met have been pro-
posed and we are proposing a language
called Mandala. Actually I think we need
lots of researchers to work on problem.

74

We should compare our work with the re-
search effort devoteed to developing the
sequential computer culture up until now.
We have to notice the rapid growth of re-
search on algorithm, 1 mean sequential
algorithms right after the emergence of
the sequential computer. So [wani to con-
clude my talk by saying that if we are
prepared with proper tools and a correct
attitude, [think we can rapidly develop a
culture of parallel computing. Thank you.

Dir. Stolfo: This has been preity TAME so
far. So "Il help to liven things up a bit, I
hope. First let me start by giving a context
I'll be coming rom. T'll be plaving devil’s
advocate for the most part. Everything I
say is on the philosophical level in this litile
minitalk, I don’t neceszarily it all believe
entirely, but in any event maybe we can get
somie discussion.

1 should iell vou a little bit about my ac-
tivities over the past three vears or so. |
have implemented, along with a members
of the technical staff of AT & T Bell
Laboratories an expert system that has be-
come a commercial product and is current-
ly being marketed and sold. By AT & A,
brought it from the initial stages of study
and investigation up to product develop-
ment, but I do not work for the AT & T.
I'm also a principal architect of a parallel
compuier designed (o run expert systems at
high speed and at low cost. We have had
a working prototype of this machine since
April, 1983, and we are very close, rela-
tively speaking, to completing a larger pro-
totype of the machine.

I certainly do believe that panels should
be controversial. The first slight bit of con-
troversy is that I come from the world that
believes the existing Al technology of LISP
and production system technology still

has a long way to go, and has just barely
been applied. It's a bit premature in my
view to jump into Prolog, without first
appiying the existing technology to its
fullest extent. So I’ll talk about production
system languages embedded within LISP.
The ACE expert systems referred to earlier
is an example of such a program. What |
wish to do with many other people in the
United States who use these programming
formalisms is to gpeed them up,

There’s good reason to speed them up, 1
don’t know of a reason to speed up a fifth
generaiton computer vet, but I do know
why we should speed up production sys-
temns. What is a production system, for
those who may not familiar with this
terminology, You may have heard of rule-
hased svstemns. The kind of a formalism
I have in mind is the OPS formalism.

A production system has three major
components, a working memory of facis,
a production memory which is essentially
a large collection of if-then rules, and
an interpreter which has a very simple pro-
cess for recognizing all the rules whose
left-hand sides match the state of the work-
ing memory, select one of those rules, and
then applies its right-hand side which
typically is additions and deletions of the
working memory. It's a very simple pro-
blem solving formalism. It goes a long
way, however. In this formalism, one per-
form a very limited form of unification
pattern matching against data structures.
There are many examples of this kind of
formalism, OPS from CMN, Emycin from
Stanford, and the list goes on. There are
now several Al companies in the United

States selling programming formalisms

similar to these as products for people to
develop experts programs. So one issue
we have been considering, and I'11 tell you

why in just a few minutes, is how can we
speed up production system programs?
Well, I"l give vou just a little bit of tech-
nical discussion about this and then I want
to quickly switch to more philosophical
i1ssues.

Let® first consider the three phases of the
interpreter where the work is done, recogni-
lion, selection, and action. Recognize the
rules, which match, select one rule and act
on the right-hand side of that rule, What is
the parallelism in the recognition phase?

If vou take two seconds to look at the
formalism, the first idea that comes to
mindis to match the rules in parallel, rather
than as on a serial machine, sequentially,
So, each rule will be assigned a distinct
processor which will match it independent-
Iy of other rules assigned to their own pro-
cessors. But there are other sources of
parallelism in the recognition phase, The
left-hand side of each rule is a collection of
pattern elements.

We may wish to match a signle pattern
element against working memory where
we distribute the working memory to a
series of processors as well,

Yet, when you have a large number of
rules, a large number of patterns, and large
amounts of working memory, you nead a
large number of processors, quile right.
Thus if you need a large number of pro-
cessors, you need a very efficient imple-
mentation. What is the importance of
parallelism in the recognition phase? Study
of one class of production system’s, the
OPS formalism has shown that 90 percent
of the time's spent in recognition. So if we
can speed that process up, we're doing
pretty good. The time in this process in
general depends upon the size of the work-
ing memory and the preduction memory.

The anticipated effects that should real-

75

ly be stated as a future long-term goalsi.e.,
to reduce that time to a constant. The time
to match the rules we hope will be also in
dependent of the size of the production
memory and the working memory. That’s
a goal.

Implementation: We have machine
called - the DADO machine that we are
building to realize algorithms to run these
programs. The essence is a large number
of moderate to small processing elements.
Moderate meaning 8-bit, perhaps 16,
parhaps 32-hit processors within the order
of a few thousand bvtes of memory and a
high speed interconnection network em-
bedded with in a binary tree.

Fuiure problems? The granularity pro-
blem, which can only be determined by
studying application programs. How big
should the processing clement be? We
don’t know. How about parallelism and
the select phase. That turns out to be not
asimportant as recognition. You can solve
it by logrithmic time operations especially
on a binary tree structures. But one doesn’t
really get substantial ipmrovement ol
speed. You really win in recognition and
vou win in the action phase.

There are two sources of parallelism in
the action phase. One is action on multiple
rules concurrently, That’s somewhat like
multipie selection. But again to select the
rules that you wouldn’t in fact execute a
simple operation. The hard part is il you
have a set of rules that vou would like to
apply them concurrently, that’s a tricky
problem. But it is a source of parallelism.
Another source of parallelism is getting
away from the traditional OPS-style of
temporally redundant production systems
and to allow massive changes to working
memory on the righthand side of a rule. If
one ¢an implement that in parallel, one

76

gets tremendous performance improve-
ments. So two sources are: firing multiple
rules, and massive changes to working
MEMory. :

Anticipated effects: Something interest-
ing that happened this past vear, we had
a visitor named Toru Ishida from NTT,
who worked with us to look as this very
issue for OPS-style production system pro-
grams and he found that by suitably relax-
ing the way one writes production system
rules, he achieved a factor of 6 to 10, It
means you can fire 6 to 10 rules on average
on each recycle, That's not bad.

The way we implement the DADO ma-
chine is to partition the rule set to minimize
synchronization. A prblem for future
research is how does one really adequately
restructure the rulebase to remove the
sequencialities imposed by the formalism.
I’'m going quickly because | have a lots of
slides. The last parallelism issues is how to
manipulate working memory in parallel,
In this case, if we treat the working mem-
ory as a large data base and permit massive
changes we can gel quite a hit of perfor-
mance improvement. There are many
examples of systems that could use such an
ability for large data base applications like
the ACE system. The anticipated effects?
ACE presently runs on a VAX 780. When
it runs nobody else can get near the task.

[t is a true Al program, Our projections
from our studies indicate i1l run in minutes
on a the DADO machine which is smaller
than the 780,

Implementation, on the DADO machine
requires distributin of working memory
and processing of working memory in
parallel. A problems is again the granula-
rity issue for the PE. Also how does one
distribute, I, partition, working memory.

That ends at the technical portion of this

presentation. We go on to philosophy. For
what we've learned from dealing with pro-
duction systems exclusively over the past
five years is that the present formalisms
that are available have, of course, been
invented within the serial programming
environment., Much serialization is im-
posed on programming, when you deal
with these formalisms. They do not en-
courage parallel thinking although, vou
would think a purely declarative formalism
like production systems has so much in-
herent parallelism. There's a lesson here.
When serial programmers who've been
programming serial machines for so many
years are given a formalism that you would
think is parallel, they still think serially
and program serially. Parallel processors
must be made available as guickiy as pos-
sible to experiment with more expressive
formalisms. 'l give vou a quick status
report.

We have an architecture called DADO.
DADC is a 15 processing element machine
that has been running since April of 1983,
DADO2 will soon exist with 1023 proces-
sors, and in fact we’ll be implementing
ACE and hopefully Digital Equipment
Corporation will let us use the program as
well. We are implementing a more expres-
sive productive system of formalism that
goes beyond OPS and of course we are
stil dealing with logic programming
through the LPS system that was talked
about earlier in the week. Eventually we
hope to have a machine which would have
many more PE’s than DADO 2 and would
have a VHSIC or VLSI implementation,

Question; why is this important to vou?
What I want to say now is more of a phi-
losophical warning, but certainly not an
indictment.

Question; how many people in this

room have implemented a real world ex-
pert system that meets the following con-
ditions? It performs an important or useful
task, makes someone’s job easier and thus
increases productivity, has been demon-
strated to produce cost savings in its im-
plementation identified the market, and
made a profit. '

If we can’t meet all those constraints let’s
try to meet two of them. To put it another
way, 15 the Ifth generation computer a
solution in search of a problem? What are
true problems? Why do you want fifth gen-
eration computers to run fast? Has anyone
demonsirated that the programs which run
50 slow that present machines are useless?
Has anyone demonsirated that an expert
system that is so slow is not practical? -1
don't know of any. To make an the inevi-
table grand leap to the fifth generation,
we must Tirst train, as is going on now, the
existing and upcoming generation of pro-
grammers and researchers.

But we must also train users, because
they're the ones who are going to buy it.
They are the ones who are going to have
1o live with it, not program it. The users
have no idea what Al is, how it works, what
it means. Now, we must start tapping and
defining the market, before we build fast
machines to execute something when we
don’t even know what it is. How?

You have to first build applications de-
fine the markets, before you begin building
hardware and looking at high-speed pro-
cessors for particular formalisms without
ever having built a substantial program in
that formalism. This has to be done to
produce first working expert systems which
can be sold at high volume, which can
become part of the mainstream of the
computer uses in this world, The main-
stream of computer use are in the data

7

processing industry, running big IBM
mainframes for data base programs.

How are they going to use an expert sys-
tem? What will an expert sysiem do for
them? Then how do you identify and define
the requirements to make those programs
better, better in speed and better in terms
of how you use them, then you can invent
a fifth generation computer.

Necessity is still the mother of invention.
I don’t know what the need is. So thus we
must define the necessity.
Thank you.

Chairman: Well, the presentation of the
positions has finished. So let’s proceed to
the question and answer period. Are there
any queslions or comments?

1f you have any, please come to the mi-
crophone nearest to you, and please tell us
your name and afiiliation first,

Prof. lann Barron, Inmos: | have been
listening to the conference and I have some
shghtly general comments to make. One
thing must impress evervone, | think, is
how difficult it is to implement Prolog in
a sequential environment. By comparison
with a straightforward programming lan-
guage, the implementation is extremely
complex and extremely difficult. If we then
add to those problems the question of
concurrency in systems, perhaps we are
multiplying the difficulties of the systems
we are {rying to explore. I'd like to suggest
that really there are two aspects of intellec-
tual endeavour which need to be addressed
to meet the fifth generation objectives.
The first of these is that, let me go back
slightly, I think we can characterize the
computing elements that we have used so
far as being first order computing, first
order sequential computing elements.

We're now asking the question of can we
make concurrent computing sytems, and
that is one aspect. The second aspect is
the guestion of can we make higher order
computing elements.

I take a first order computing element as
being program taking data values as its
arguments and a higher order computer as
a program taking other programs as its
arguments. [wonder whether we should
separate these two questions and investi-
gate them separately, rather than confusing
them as we are all tending to do at present.
If 1 just look it to the panelists and try
and see where they are on this hierarchy,
Dr. Amamiva is looking at data flow. He's
looking at it in higher order context. It
seems Lo me we haven't addressed the gues-
tion of whether data flow is a valid way of
exploiting concurrency in the first order
context. Indeed, I would have consideable
reservations for myself as has been pointed
out down the table in that data flow tends
to fail to exploit the locality in programs.

To David May, [would say he has ad-
dressed explicitly the problem of concur-
rency in first order systems. He has created
the system and in fact we have not obzerved
its capability, But then he has to address
the question of higher order programming,
To Ehud Shapiro: his position is that he's
adopting a relatively simple method of
exploiting concurrency in a higher order
computing system, and that is simplifying
the problem to some extent. I would be
concerned that his starting point,in terms
of a Prolog-like language, may consirain
his ability to explore those questions.
Indeed, [should have observed a bit earlier
on but I forgot I'm afraid, one of the char-
acteristics again of fifth generation systems
is the arbitrary starting peoint of Prolog.
Prolog has some very attractive properties

and it has the serendipity that some of the
implementations of Porlog can exploit con-
currency. But maybe it is just serendipity.

To Mr. Stolfo, my impression, and 1
don’t know his work, 1s that he has been
addressing the question of a higher order
machine and is puiting that into a simple
concurrent environment. It does seem to
me that there’s not been sufficient inves-
tigation of higher order machines to really
move on to the question of their concur-
rency.

And now I'll come back to Dr
Furukawa, and to ICOT and where is
[COT in all this? It's starting off with an
arbitrary language environment. It is trying
o put in concurrency in a form which
tends to be not well explored, and that
is the data flow type environment. it is
trying to explore the possibility of higher
order computation.

ICOT is addressing these three problems
together, and I would ask, is that too much
as a single step?

Chairman: Could you summarize vour
guestion?

Prof. Barron; 1 think that ICOT has taken
an arbitrary point to start investigaling
these problems. I think it is investigating
first the quesition of nature of higher order
computation and the question of concur-
rency together and taking both those in a
very difficult form. And I wonder whether
this is wise.

Chairman: 50 please respond to his ques-
tions, Dr. Shapiro first?

Dr. Shapiro: 1 thought 1 was presenting a
rather conservative view when I was stand-
ing there, trying to discourage all sorts of

high hopes and large steps. You seem to
be presenting probably an even more con-
servative position than mine.

So I guess at least we both agree on the
conservative side. That’s a starting point,
and then the second and the real question
is how conservative do yvou want to be?

The proof will be really in the actual im- -

plementations. You claim from the beginn-
ing, or your initial position is that languages
like OCCAM are implementable and can
exploit concurrency and [hope that we'll
see that in a Tew weeks, month’s. No, its
just a joke. [think the gap between im-
plementing OCCAM and implementing
Prolog-like languages is not as big as you
think. I think for Prolog, this has been
demonstrated to some extent, as there are
more implementations of Prolog in C than
[can count. It's more or less clear that
doing a mediocre Prolog system is very,
very gasy. Two or three years from now,
it’ll not be counted even as an honors thes-
is for the undergraduate. I have an under-
graduate who didn’t receive an honor for
that. So it's just a matter of development
of technology. IU’s true that doing a high
performance Prolog is still harder, and the
only real answer to your skepticism is just
in delivering the results. There isn’t that
much to talk about in assessing how casy
or hard it is, We just have to do it. See
whether it’s as hard as vou believe or less.

And another comment is conceruning
Prolog the so-called arbitrary strating point
of ICOT.

Ferhaps you Dr. Furukawa will respond?

D, Furakawa: Yes, to pursue these two
targets simultaneously is very difficult, I
know. But, what I think is important is
that we at least want to make a model of an
entire system. In order to get such a model

78

of information processing in parallel in a
computer architecture, we need to inves-
tigate many aspects simultaneously. And
once you succeed in making a model,
maybe very vague, then vou can stari to
polish that model. | think we need such a
model for this type of longterm research. s
that an answer (o vour question?

Dir. Amamiya: In very fine grain data flow
the one advantage of the data flow scheme
is that very high parallelism can be ex-
ploited by using the fine grain data flow
concept.

But on the other hand, the dataflow
scheme has an confining or exploiting lo-
cality. As 1 pointed out, the coarse grain,
or medium grain data flow level should be
set in the data flow architecture in order to
improve the communication overhead us-
ing locality. For example, one function or
one process should not be distributed to
geveral processors, but be allocated 1o one
porcessor.

Within a processor, the computation
will be done one at a time due to the con-
straints of the hardware structure. From
this point, the fine grain data-driven con-
trol is not appropriate. Therefore, as |
pointed out, semi-static scheduling based
on the data dependency analysis is neces-
sary and this coarse grain data flow control
feature shouled be adopted in the hardware
implementation. On the other hand the
software concept should keep the data flow
and functional semantics.

Prof. Edward Feigenbaum, Stanford
University, USA: I'd like to just make one
comment and then answer Professor
Stolfo’s gquestion. The comment is that 1
think all the people in this room are heroes

Lili]

in a sense in this struggle. T hope someone
is taperecording this panel for replaying in
1994, And we will find every, all of these
discussions very quaint and amusing after
all the dust settles and the real paradigms
emerge from this confusion. We'll be
amazed that we were so bewildered at the
time.

Now, to answer Professor Stolfo’s gques-
tion. Mavbe I'm one of the few people
who qualify on the list and I certainly be-
lieve that designs should be applications-
driven rather than the result of a combina-
tion of interesting gadgets, whether the
gadgets come from electrical engineers or
mathemaical logicians.

Mow, it's certainly true that there's
nothing the housewife needs that requires
the second stage of ICOT work or any-
body's work on parallel computation
because the time taken to do simple ad-
visory functions for the housewife is trivial
even on personal computers. But there are
important applications where we are orders
of magnitude off in the ordinary Al rou-
tines of generate and test and chaining of
various kinds,

For example, the earliest experts system
DENDRA which is used now by the chem-
ical industry, requires for interesting pro-
blems using LISP or BCPL anywhere
from, say, ten to twenty hours on a con-
ventional computer like DEC-2060. Ap-
plications to certain defence problems that
fall into a class which I call signai to symbol
transformations or signal understanding
require immense amounts of computing. 1
won't speak directly about the applica-
tions, but the understanding of massive
amounts of signal data has been proto-
typed in LISP machines and has been
measured to be between three or four or-
ders of magnitude off real time, and real

time is necessary. That's already existing
prototype systems that we can measure on
LISP machine. Incidentally, the base for
the measurement is the XEROX-1108.

Looking into the near future, we see an
application unfolding at Stanford involv-
ing collaboration between my laboratory's
heuristic programming project and the
chemistry department for analysis of the
structure of proteins in solution, not
crystals, from NMR data, and that is
another problem where we appear to be
several orders of magnitude off of the
ability to realize the current ideas. The
computational speeds are not fast enough
for significant applications to science and
engineering. The application that was
meniioned in the ICOT presentations was
the expert systems of Al applied to VLSI
CAD, Early work on that essentially failed
not for lack of ideas, but because we were
about ten to the third off usable human
speeds in these systems. Where will we get
this speed? The economic imperative drives
us to parallelism because improvements
in serial computation will be incremental,
We don’t need 15 percent more, or 50
percent more. We need three orders of
magnitude. The chipguys have given us a
new technology. It’s the difference between
printing and manuseript writing in the
middle ages. Building an ordinary com-
puter is like manuscript writing compared
to printing computers on silicon. So the
only hope for giving me my three of four
arders of magnitude is to investigate paral-
lel processing, which of course, i what
motivates you, myseif, all the ICOT peo-
ple, and everyone else to do this.

One last comment. I’ve only talked
about today and tomorrow, but let’s look
at the real future, In the real future, there
are some of us in the room that want to

create remarkably intelligent machines,
not simply good problem solvers to help
chemists but intelligence of the highest
order in computers. That will require
certain kinds of learning techniques for
which the carly experiments like the
URISCO experiments of Lenat haveshown
enormous amounts of computing power
are necessary to combine knowledge stored
in a knowledge base into new knowledge
structures that are useful in building up
even further knowledge structures in the
machine,

Lenat himself for example uses net-
works of XEROX LISP machine at
AEROX park. He uses all available LISP
machines at night by stringing them to-
gether in big networks. So for the truly
intelligent, the very intelligent machines
of the far luture, we are going to have to
master those parallel computation mathods
or the machines will simply be too expen-
sive or unrealizable.

Chairman: Thank you for your interesting
nice comments, Would you like to make
additional comments, Dr. Stolfo?

Dr. Stolfo: Oh, yes. First of all, I'm
quite well aware of computation-intensive
tasks. That’s one of the reasons why I'm
building a parallel processor. There's
absolutely no disagreement. The issue is
though how do you get those three or four
orders of magnitude, how do you know
vou need them. You know yvou need them
not from studying a specific expressive
formalism. You find out by studying pro-
blems and trying to tackle those problems
and getting applications to work. Then vou
see what computation resources you really
need. In constructing programs it's not just
simple notions of search and bit patterns

a1

in a computer memory which people call
4 knowledge representation.

The real issue is: What is the knowledge
vou need to put into the program, and the
only way you can learn about those sorts
of issues is by getting your fingernails dirty
and implementing such programs. That
was the warning I was sending. Now, the
parallel processing in some senses is a suf-
fering from chicken and egg problem. I
think focussing on speeding up a particu-
lar formalism may be misguided without
application first,

Prof. Feigenbaurm: Just one last com-
ment. The fact that the housewife may
not need it is not totally relevant. The VLSI
CAD designer of 1992 may need it when
that person is designing 300 transistors

per chip.
Chairmarn: Next guestion?

Dr. Krutgr, U.S. Naval Research La-
boratory: I want to challenge Professor
Stoifo’s claim that necessity is still the
mother of invention. It maybe a mother
of invention, but if you look around at
most of the inventions on the market,
they’'re not necessary. They're there be-
cause they want them, not because they
need themn, And vou analyse the market in
terms of what people will buy, not in terms
of what they need. Any bartender knows
that.

I disagree with vou.

And relating to the experts systems for
the housewives, I think that one of the
largest markets we would have would be,
especially since I'm a proud father of a
very active three-year-old, well it would be
very nice to have an expert system for rais-
ing children. I'd like to know when we can

get one on the market with prices we can
afford, and I'd like to point out that there’s
all kinds of motherhood statemenis we
could make about a svstem like that.

Dy, Stolfo:
that?

It doesnt’ miuch matter whether it's a
difference of want and need. It still must
be done, The fifth generation is quite clear
whal it's saying about the next generation
of computers and what those computers
might be or might do. But sl 1 don't
know what they really will do. It's not just
the point of views of the masses buying it.
I just don’t think it’s quite clear for many
people working in this field: what am
expert systeinisin the first palee, and that’s
the real issue. This program must be con-
structed first on available hardware, and
then evaluated. I'm being repetitive. But
one of the things that occurs in computer
science, is that computer scientists in gen-
eral never reaily {ully explore what they
have already invented. They're aleady
looking for something that’s hetter than
what already is and 1s not sort to state-of-
the-art, But 1 say the opposite. I think what
exists today in computer technology and
the computer languages without paraliel
processeing are still fairly competent
devices. The VAX 780 and ACE is a single
example.

How does one respond to

Dr. May: Can I add the microelectronics
industry, however, is hardly ever applica-
tion-driven. The INTEL 4004 was designed
to control cash registers not to be used as a
general purpose microcomputer, Certainly
from our experience, I don’t think we had
much idea as to exactly what kind of ap-
plication areas people might have in mind,
for transputers when we started designing

them. It’s now very clear that there are a
large number of applications particularly
in areas of computer aided design. Which
we failed to anticipate, for which the device
appears highly suitable. These include
things like finite element analysis, molec-
plar simulation, fundamental physics
graphics animations currently used for
flight simulators, but that will be new year's
arcade game, Finally circuit simulation,
which we really have to have or else how
do we build the sixth generation com-
puters?

Dy, Shapiro: I'd like also to respond to
this issue, and let me starl by saying that
Prof, Stolfo’s criticism of the presentation
of ICOT is based on what perhaps can be
called the American f[allacy, and the
American follacy is that the fifth genera-
tion project is about building expert sys-
tems. Well it is not. T can’t really speak for
1COT, but I can try to present my view.
You may mont to call it the Israeli fallacy
about the fifth generation project. 1 think
the fifth generation project is about build-
ing a new computer technology., And why
do we need a new computer technology?
We need new computer technology because
existing computer technology has two very
rare problems. The first problem is that
computers are too slow. The second pro-
blem is that programmers are too slow.
These are the two problems of current
computer technology. In this case, these
are the problems that the new technology
attempts to solve. Perhaps the insight that
the fifth generation project offers, and this
could be also an answer to Iann Barron, is
that these two problems can't be solved
independently. You can’t solve one of
them without solving the other. That's
why vou need this overturn leap of solv-

ing the two of them together. Why can't
vou solve .each one of them separately?
You can’t stay with existing von Neumann
languages or low level von Neumann lan-
guages and offer more powerful computers
in an attempt to solve only the first pro-
blem that computers are too slow. This is
because as we know programming is pain-
ful as it is. If we try to add concurrency &
communication to low level conventional
programming languages, it will be really
a setback for programming. So if we try
to solve only the parallel processing pro-
blem or the slowness problem without ad-
dressing the programmer productivily
problem, we won't succeed. On the other
hand, we can’t solve the second problem
independently, We can't increase pro-
grammer productivity on . existing ma-
chines, Why? Because even with the best
minds and best tools, higher level languages
still run too siowly on conventional com-
puters, That’s why we must resest to low
level long vuges to selve computation-
intensive programs, which means a lot of
hard programming. That is why, in order
to produce this new technology which
solves both problems of slowness of com-
puters and slowness of progranumers, we
must advance in parallel, or together an
both problems. We must produce a parallel
machine that can execute a language which
15 not inferior to the best languages we have
today on sequential computers. And I
guess that’s the key insight of the fifth
generation project and the main thrust of
their approach as [see it.

Prof. van de Riet, Vrije Univ., The Nether-
lands: 1 have a more technical question.
I would leave the matter of philosophy
of housewives. As I understood, the fifth
‘generation is not only meant for expert

83

systems as has been said now, but in par-
ticular for solving problems in software
engineering. In the fifth generation, the
first language K1-0 is based on Prolog, on
sequential Prolog, and KL-1 is based on
concurrent Prolog, there’s always a pro-
blem of how much parallelism can really
be exploited. We have seen some studies
about the four queens problem, about the
six queens problem. Another problem 1
didn’t hear mentioned is the eight queens
problem, but maybe that's for the future.

There is a ife'r},r good example now avail-
able of a software engineering problem
that is the SIMPOS operating system
which, as I understand, consists of 30K of
Prolog lines of KL-O lines or SIMPOS
lings. I don’t know precisely. Now, I have
two technical guestions. The first is this:
Current Prolog is sequential, and for many
things in operating systems you need se-
quentiality. You gave to say first this and
then that. If you go to concurrent Prolog
to KL-I, you gave to change that. You
can’t use the sequentiality of Prolog, but
you have to add things in (gourds). Maybe
even flags. The flags are of the kind, this
statement first, then that statement.

My first question. Is that being looked
at? Is that studied with the SIMPOS
opérafing system at hand? Is someone
looking at this porblem? How much does
it cost to change the sequentiality into
non-sequentiality?

The second question is: If you look at
the SIMPOS program, and you fook at
parallelism, you really can see now how
much and-parallelism is possible, the same
for all parallelism. Is that already being
undertaken? If so, what are the results?

Dy, Furnkawa: 1 have to make your ques-
tion clear. Is vour first question, do we

have any idea how to convert sequential
into paralle! control?

. y
Prof. van de Riet: Yes, how much of the
sequentiality of Current Prolog, are you
using in this software engineering program
which is called SIMPOS?

Dy, Furukawa: And the second question?
How much do you expect to exploit

from the inheretit parallelism which is-

available within that SIMPOS operating
system?

Dy, Furnkawa: 1 think we need to rethink,
rebuild in concurrent languages, There's
lots of common features if we think of the
specification. If we extract the specifica-
tion part of SIMPOS, then it is possible
to convert that part into a concurrent logic
programming language. It might be dif-
ficult ot achieve the direct translation.
Howewer, still 1 think it’s much ¢asier than
the case in convention languages. And is
the next guestion about how {0 extract
parallelism in the SIMPOS system?

Dr. Shapire: Have you ever tried to evail-
uate how much parallelism is involved in
SIMPOS?

Dr. Furukawa: No. SIMPOS is a very new
operating system and vou know, at ICOT,
we have had only two and half years. There
has not been enough time.

But I think Dr. Shapiro will comment
on this.

Dr. Shapiro: 1said before I don’t believe
in discovering parallelism en passant. You
have to plan for it and you have to pro-
gram it explicitly, at least today and for the
next few months or vears. So that’s why 1

don’t believe in taking SIMPOS and con-
verting it directly into concurrent Prolog.
A lot of the complexities of ‘SIMPOS. re-
sult from the lack of concurrency in Prolog.
So the designers of SIMPOS were forced
to include constructs to Prolog to support
message passing and object-oriented pro-
gramiming, because it was not in the basic
mechanism of sequential Prolog. It is my
hope, my belief, that if an operating sys-
tem is written directly in Concurrent Pro-
log, vou would need fewer ¢xtensions or
even no extensions whatsoever to the lan-
guage to implement an entire operating
system in it and hopelully the result would
be much smaller and much cleaner, What
you do have to provide is some siream like
interface to the different 1/0 devices. But
it seems, at this point of our research, that
this is all you need in order to write an entire
operating system in Concurrent Prolog. |
believe, that an operating system written in
Concurrent Porlog in the right way. It will
be completely different than SIMPOS.
Prof. Arvind, MIT, USA: | have some
comments, gquestions actually. One point
that was macde by both Mr. May and Dr,
Shapiro is that it’s premature to exploit
paralielism automatically, I think I disagree
with that, because, first of all, we know
how to code algorithms so that all the par-
allelism in the algorithm can be made
obvious, all the inherent parallelism in the
algorithm. So 1 consider the problem to be
already solved.

We also have fairly good models for
machines. The only question in what Dr.
Furukawa was saving, we need some tools
to actually evaluate and tune, you know,
s0 that we can obgerve what happens when
we take a realistic application, write it in
the these languages, and run if on these
new machines to figure out whether the

parallelism is expioited on the machine or
not. That’s a very hard problem, because
the amount of effort that is involved in
building a machine on which you can run
a large program is really massive, because
if we could simulate that sort of thing on
conventional machines we won’t have to
do these Mickeymouse..,

I guess I'm making _'ll.ISt two points. One
is that we know how to code algorithms so
that the parallelism that was present in the
application code is obvious.

We have representations, data flow
graphs are a very gcrncl representation for
that. _

The second point is that we du have very
good abstract models for machines which
can exploit parallelism. What we do not
have yet is, I mean we haven’t taken a large
applications coded it in one of these lan-
guages, generated data flow graphs, and
run it on one of the these architectures
to find out if we actually exploited the
parallelism. In order to do that, we have
to build Jots of tools. We have to build
very good compilers which are fairly ro-
bust. We have to build machines which
will stay up, you know, for a week or two
and don’t go down every ten miinutes.
These machines can’t be small machines
because if they are very small machines
we could have perhaps simulated the idea
on conventional machines, And that’s
where the state-of-the-art is in this game.

We are in the period of experimentation,
and that’s the only way we're going to find
out whether we're on the right track or not.
That's the only point I wanted to take.

Dr. May: 1 don’t think I disagree with
that? 1 don’t think 1 actually said it was
necessarilly premature to look for auto-
matic ways of deing parallelistn. 1 just

think that there are not automatic ways of
doing parallelism. T just think that this
stage a large number of applications that
can be tackled directly without automatic
ways of using parallelism. [certainly agree
that it’s worth while to be able to try doing
some experiments with automatic parallel-
ism and that large scale.simulation will
probably be necessary.

Presumably one would want to design
large scale simulator in a rather more
straightforward rotation which doesn’t
itself make use of large scale parallelism.

<.Sorry, which doesn’t make use of any
automatic analysis of parallelism. Which
brings me to another point I've been want-
ing to make for half an hour or so. One of
the things which puzzled me about the use
of Prolog and Prolog-like languages is why
one should feelit’s necessary to use Prolog-

~ like languages at the all levels of the imple-

mentation, It seems to me that at the
micro-code level, I'm not convinced that
a Prolog-like language is the best thing to
use. At the level immediately above the
micro-code level the languages of the level
of C or OCCAM are fine. At the level
above that maybe one could use these lan-
guages to implement Prolog. This kind of
layering has been common for many vears,
It’s a highly effective technique.
Certainly one presumably wouldn’t use
Prolog for going even through the micro-
code level down to the transistors. So the
thing that puzzles me particularly about
the idea of using Prolog-like languages
all the way through is, why? We already
hve some good tools at the botiom levels.

Dr. Stolfo: Can 1 just make one last quick
comment that I wanted to make less than
20 minutes ago, which s a response to
Ehud Shapiro.

What is the term, American fallacy 3,
that the fifth generation computer is not
an-expert system machine? Is that a good
parphrase of what vou said, yes?

Dr. Shapiro: You said the American fallacy
is- that the fifth generation project is
abont building expert system machines.

Dr. Stolfo: Fine, then, correct everything
I said over the past two hours and replace
every occurente of expert system by fifth
generation program. Who has written a
fifth generation ' program what is fifth
generation porgram? In my estimation,
the best example that exists today, is an
expért system program.

That's the point 1 want to make. And
also how does one develop new technol-
ogy? You said the fifth generation com-
puter project is trying to-develop new
computer technology? That’s great. How
does one develop technology? That’s not
science, that's technology., You develop
a technology by good science, And what
is good science? One develops a theory to
explain phenomena, construct expenme:nts
to test the theories out?

Perform the experiments and evaluate

| the results. What are' the theories? How

can one ever develop a theory. You can't
develop a theory without the phenomena.
So what are the phenomena? Fifth gen-
eration programs. That’s my point, thank
you.

Dr. Furukawa: 1 want to say someting
about the invention of LISP. LISP used
to be a not very well-known language. The
purpose of LISP at the start was not to
develop an expert system, I think. But now
it's a main tool used to develop expert sys-
tems, and what I'd like to say is, it is a nice
language in itself. It has greal expressive
power and a new culture will grow up to
top of such a nice base. That is, 1 think,
included in this project. '

Chairman: Well, I understand that we still
have many questions and comments on
parallelism, but it’s almost time to close
this session. I believe we've had a very in-
formative panel discussion and I'd like to
express my thanks to all the panelists for
their valuable presentations and discussion,
and also to all of you for your cooperation.
Thank you very much indeed. '

