PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by JCOT. & ICOT, 1984

TWO-LEVEL FROLOG

Antonic Porto

Dapartamento de Informatica
Universidade Wova de Lisboa
2825 Monte da Caparica
Bortugal

ABSTRACT

Two-level Prolog is introduced as an
alternative to Prolog.

It features clauses with head, body and
conditions, that can be read at two levels =
at the cbject level, as an implication frem
the conjunction of conditions and bedy to the
head; at the meta-level, as an implication
from the conditions te the meta-predicate
"execution step”, whose arguments are head and
body. Both implications may have two forms,
normal and exclusive. Exclusive implications
achieve the effect of Prolog's cut in a more
rastrained and principled way.

Two—level Prolog is easily implemented on
top of Prolog, as each of its clayuses can be
translated into two Prolog clauses. A summary
of the different types of clauses is presented
along with their translations.

It is argued that <Two-level FProlog
promotes a more reliable programming style
than Prolog, and is better suited for writing
interpreters. Some supporting examples are
givan.

1 INTRODUCTION

This paper is about an attempt at the
design of a basic logic programming language
for replacing Prolog. Scme ideas trace back
to (Pereira and Porto 80) and could later be
found in (Porto 82); wviews put forward in
(Pereira 82) were alse inflgential. A&
fyll-scale presentation and discussion of the
language can be found in the author's
doctorate thesis (Porto 84).

With regard to Prolog, two main coRcerns
can be found in Two-lewvel FProlog: a more
restricted use of the effects of cuts, aimed
at program reliability, and a less restricted
notion of execution step, aimed at simpler and
more expressive writing of interpreters in the
language.

2 THE TWO LEVELS

The writing of Prolog interpreters in
Prolog can be achieved through a system

predicate that accesses the program clauses
{"elause” in Edinburgh Proleog}. In the famoos
three-line interpreter’ for Prolog,

i{ true }.
i{ (Gl,Gn)) := i(G1L), i{ Gn).
i{ G) = clausa{ G, B)}, i(B). -

"glause" becomas assoclated with the notion of
execytion step, in this case the unification
of a goal with 2 clause head causing the goal
to be replaced by the clause body.

Thus clavses themselves can be seen as
defining execution steps. But the choice of a
symbol like “clause” to denaote the
meta-predicate corresponding to the execution
Step is not the best. Huch better is simply
using the symbol that stands for the
implication in the clauses.

The idea is that a clause ¢an be read at
two lavels. Given a clause written in the
form

H < B.

the reading at the object level is that the
literal H is implied by B. At tha mata-level,
the clause is read as an assertion E£for the
meta=-predicate “<-", with arquments H and B,
and a svitable intecpretaticn is that an
execution step on a goal H results in B.

Thus each program statement can be
understood to denote in fact two clauses for
different predicates - a particular predicate
in the head, and the general “execution step"
meta-predicate. Por the sake of tradition in
logic programming, a program statement will
continua to be called a clause.

Given the double reading, "=-" can be
used instead of “clause", and the pravious
interpreter will now look like

if{ true).

if (Gl,6n) } <- 4{ GL), i{ @Gn).

i{Gg) < {(G=<-B), i{ B).

3 THE DOUBLE IMPLICATION

If a clause H<-B can be read as a unit
clause for the meta-predicate "<-", one
wonders why conldn't there be non-unit clanszas
for it. They can be introduced by the use of
another implication symbol between a meta=head
of the form H<-B and a conjunction of
mata-literals.

It is preferable to ufe an implication
symbol that 15 different from "<-", so "<="
will be used. The more general form of clause
will then be

H<=B == [,

where E will be called the head, B tha body,
and C the conditions. "<-" binds tighter than
"<=", so that the clause is equivalent to { H
€= B) <= C,

The peta-level interpretation is that an
execution step on a goal matching the head
will result in the body if the conditions are
truea. This reading is eguivalent to the
Prolog clause

{ H==DB) :=-C.

for the predicate "<=". Thus the notion of an
execution step is extended to include both the
unification and the evaluation of the
conditions, which can then be viawed as an
extension of the unification, further
restraining the admissible patterns of
arguments in the goal.

At the object level, wa can read the
clause as a double implication

{H=<-B)}) < €

that is loglcally egquivalent to
B == C™B

and so the reading is that a literal H Lis
implied by the conjuncticn of literals C and
B. The equivalent Proleg clause is

H:=C, B,
for the predicate of H.

Motice that literals in the conditions
can be gSesen both as meta-lavel and cbject
level literals. There is in fact a collapsing
of the two levels, for a program is still seen
to correspond to a single set of axioms with
respect to which all predicates are to be
avaleated. Accordingly, there ls no
distinction betwean meta-level and object
level variables. The two—level distinction is
just a good way to interpret the relation
batween tha twoe readings of a clause, that can
be used for control purposes.

357

Going back to the interpreter, we can
rawrita its third clause as

i({G)=-3i(B) <= G = B.

This form is rather nice, for it defines the
execution step for the interpreter "i" as
being squivalent to the execution step for the

underlying interpreter.
4 THE EECLUSIVE IMPLICATION

The main limitation of Horn clause logic
as a practical programming language is the
lack of an IF-THEN-ELSE construcet, for
providing both concise and efficient
definitions. It was introduced in the Prolog
language under the disguised form of the cut
operator, which is in fact more powerful in a
dangercus way.

It is proposed here to replace the use of
cuts by the wuse of a more restrained
construct, meant just to provide IF-THEN-ELSE
dafinitions for predicates. This construet is
the exclusive implication, represented at the
object level by “<=>" (binding tightar than
“<=") and at the mata-level by "<=>" (binding
lpaser than “=="),

An exclusive clause like
H<=>B8 <= (,

corresponds, on a first approximation, te an
if-and-only-if definition for the predicate of
H, justifying the choice of symbol for the
implication, The exact meaning 18 more
complex and can only ba formulated In the
context of the sequence of clauses for the
predicate: At the object level, IF a literal
matches H and C Ls true, THEN the literal is
equivalent to the resulting instance of B,
ELSE its wvalue i85 defined cnly hy the
following clauses for the predicate; at the
mata-level, IF a goal matchaes H and C is true,
THEN an execution step on that goal results in
B, ELSE it is defined by the £following
clauses. The two readings of an exclusive
clausa correspand to Ewd IP-THEN-ELSE
definitions with the same IF part.

A legical declarative interpretaticon of
the IP-THEN-ELSE exists, and corresponds to a
disjunction between a conjunction of the IF
part with the THEN part and a conjunction of
the ELSE part with the negation of the IF
part. Implementation of thls interpretation
would be ideal, but thera are obwious
difficulties in dealing with negation. The
simplest appromimation is tha cut-lika
appreach ©f evaluating the first solution of
the IF part and then committing either to tha
THEN o©or the ELSE part; according to whether
there is such a zolution or not. This will be
the approach we assume here. It 1s sound only
in those cases whers the IF part is just a

358

tast in which no wariables are bound, its
evaluation resulting then in either TRUE or
FALSE.

In case the exclusive implication is the
meta-lavel one we have a clause
H <= B <=» C.
whose definitiong' IF part is just the

unification of a goal with the head H.

semantics of
in

A formal definition of the
Two-levael Prolog clauses can be Ffouand
{Forto 84).

5 THE LANGUAGE AND ITS IMPLEMENTATION

can be easily
Prolog system, by

Two=-laval Prolog

implemented on top of a

writing a translator from each statement into
the two Prolog clauses that correspond to its
two readings.

For syntactic sugaring we define
symbols "!" and "?" as standing for an
exclusive implication when the body is,
respectively, equivalent to TRUE or FALSE.

the

A summary will now be presented of all
possible forms of clapses accepted in the
languaga, along with their two translatlions
into Prolog. For appropriate translation of
exclusive clauses at the meta-level, the
unification of the second argument of a goal
for the pradicate "<-" with the body of the

clause must be performed only after the
commitment. MNotice also that the execution
step for clauses with "3 always fails,

instead of succeding with "fail".

Two-level Prolog Prolcg

Ohject lewvel HMeta-level
H. H. H =~ true.
H =- B. H - B. H =- B.
H = C. H - C. H <= trus ;- C.
H<-B <= (. H :- C; B. H=<-B :-C,
H <-> B. H :- !, B. H<-X :-1!, X=B.
H=<->B <= C(C, H:=-C; !; Ba H==X :=C; !, X=B.
. H =1, H<= KX := !, Ketrua.
H?. H := !, Fail. He<- =1, fail,
HY! = C. H:=C, I|. H==X :=C, !, X=true.
H? =2= C. Ht=-C, !, fall. H=< _ =&, !, Eail.
H <=> (. H -1, C. H<-X :- 1!, X=true, C.
H=<-B <= (. H =1, ¢ B. H=<=-X :-1!, ¥=B8, C.

& PROGRAMMING METHODOLOGY

Typically, Prolog programmers will use
soma cuts as add-ons that are placed in
certain locations in the program after a first
version has been written without them, so that
backtracking into certain parts can be
avoided; a common practice is to add as few
cuts as possible. This usually leads to cuts
being placed in positions that should be
considered wrong, in the sense that some
definitions of predicates only work properly
because they are uvsed in certain contexts, and
should they be lifted from there they wouldn't
anymore. A typical case is putting a cut at
the end of each body of a clause for a certain

predicate, in order to make it deterministic.
This relieves the programmer f£rom wWorrying
about making deterministic every definition of
a predicate wused in thossa bodies, as they
should, thus making them incorrect and not
reusable in other contexts. In instances
where cne would really like to produce just
the first solution to a non—deterministic
goal, this should he made explicit by wrapping
the goal with a meta-predicate for doing so,
instead of relying on a conjoined cut that has
a broader effect.

Two-level Prolog is meant to encourage a
better- logic programming methedology, mainly
by wirtum of its more restricted use of

commi tment . In writing a clause one should
decide whether it is defining a deterministic
step or not. In case it is, an exclusive
clause should always be used, checking whether
the corresponding IF just amounts to a
unification pattern of needs the esprassing of
conditions.

quicksore{L,8) :- qga(L,5,[]3, !.

339

Since there 15 at most one commitment per
clause, programs become more readabla. In the
definition of a predicate, exclusive clauses
define an IP-THEN-ELSE chain, and the other
clauses define non-deterwminism.

- Ai::z example, take this Prolog wversion
of "quicksort" :

qs(Xl1.Xn,S5,5n) :- partition{¥n,X1,L,R), qs{L,5,51), gs{R,5i,5n).

qs([1,5,5).

partition{Xl.¥n,X,X1.L,R) :- X1 =< X, partition(¥n,X,L,R).

partition{Xl.Xn,X,L,X1.R} := partiticn{¥n,®,L,R).

partition([],_, [1.[D.

Although it works, ‘“partition” is
ill-defined and should net be used ocutside

quicksort{L,5) <-> qs{L,5,[]).

"quicksort". The correct Two-level Prolog
version should look like this:

9s(X1.xn,S,Sn) <-> partition(Xn,X1,L,R), gs(L,5,51), gs(R,Si,Sn).

qs{[],5,5) 1 .

partll:i_.nnt!l.m,x.ll.!.,n} <-> partition(Xn,X,L,R) <= Kl m< X.

partition(®l.¥n,¥,L,X1.R} <-» partition(Xn, X, L,R).

partition({[], ,[1.[1) ! .

One can see at a glance that all
exacution sSteps defined by the clauses are
deterministic.

The definition for “partition™ i now
declaratively correct in terms of logical
IF-THEN-ELSE samantics. With a cut-like
implementation of exclusive clauses it is only
oparationally correct when used with its first
two arguments ground, as it is expected to be;
this is not, howaver, expressed in the
language, and with a correct ipplesentation of
the alluded semantics the program would bshave
correctly.

The arithmetic test in "partition” is now
in a more pleasing situaticon as a2 condition
for a particular type of recursion step.

The axclusive implications used in the
last clauses for each predicate should not be
regarded as superflous, but rather as
constituting a daeclarative closing of the
daefinitions for the patterns of arguments that
wara wused. This is good practice in view of

possible later extensions of the definitions.

A= another example of the exclusive
implication methodology, the final version of
the three-line interpreter for Two=level
Prolog should be

i{ true) ! .
L{ (@E1,0n)) === 41 GL 3, L{ Gn).

i{G)y=<-L{B) ==> G < B.

7 THE WRITING OF INTERPRETERS

The importance has long been recognized
of the ability to write logic programming
interpretecs ln the logic programming language
itself. We will briefly try to show how
Two=level Prolog is more switable tham Prolog
for writing Ainterpreters. Two main reasons
stand out.

First. If we look back at the two

360

three-line interpreters Eor Proleg and
Two-level Proleg, we can see there is a
fundamental difference between them. Whereas
the Prolog interpretar only works for programs
without cuts, the Two—level Prolog interpreter
works for any program written in the language.
This is5 because exclusive definitions of
predicates translate into exclusive
definitions for the corresponding execution
Steps. In Prolog, cuts have to be dealt with
by a nen-trivial extensien of the interpreter.

Second. The Two-level Prolog clauses

H=<-B <= (,
and
H <- C, B.

are declaratively eguivalent at the object
lewal definitions for H, but differ
cperationally at the corresponding meta-level
definiticns £for an execution step on H. Thus
conditions provide control for defining the
amount of computation on particular exscution
staps, and this can ba put to use with wvery
simple interpreters.

An illustratimg case is that of
co-routining. In its simplest form it is an
alternation of steps betwsen co-routined
goals. Using the connective "/" as a
meta-predicate to join goals in co-routining,
the interpreter reduces to this:

Gl/Gn <- MG <=> { Gl <- NGl),
{ Gn <= HGn),
{ NGL/NGn >> NG).

{ true/G »>> g) !

{ Gftxue >>G } ! .

{ GG !

The interpreter defines a step on
coroutined goals as dotng a step on each ane,
and then jeoining the results in coroutining
under /", taking care of termination. As an
example of its use, take the [ollowing

definition of a program to find a path with no
loops between two points of a graph:

loop_free path(A,B,P) <-> path{A,B,P} /
ne_loop(P).

path{A,B,A.B.[]) <= link(A,B).

Fﬂth{ﬁ;ﬁphnxj i pﬂth{C.B;x} == lil'l.k(ﬁﬂ:).

no_loop([]) 1!

no_loop(Xl.Xn} <-> test(¥n,X1) / no_loop{Xn).

tesc({],_3 1 .
test(X. ,X) 7 .

test(_.Xn,X) <=> test(¥n,¥).

A recursive step on "path" produces one
node for the path, and a recursive step on
each of "nolocp™ and "test” consumes one such
node, o the system is well synchronized.

Another interesting application is an
interpreter with an explanation facility based
on the trace of execution steps. In programs
to ba interpreted, goals corresponding to
unwanted detail in the explanations can
usually be stated in conditions rather than
bodles of clauses, and so will not be traced.

ACFHOWLEDGEMENTS

Luis M. Pereira first suggested to me
that program statements be stored as clausas
for a meta-predicate corresponding te the
agecution step. I also thank him for all the
useful discussions that helped me shape the
ideas expressed in this paper.

REFERENCES

Pereira, L.M. Logic Control with Logie. in
Implementations of Prolog, ad. J. A,
Campbell, Ellis Horwood, Chicester, 1984

Pereira, L.M. and Porto, A. Intelligent
backtracking and sidetracking in Horn clause
programs - the theory. Internal report, Deap.
de Informatica, Universidade Wova de Lishoa,
1280

Pocto, &. Epilog: a language for extended
programming in logic. in Implementations of
Proleg, ed. J. A. Campbell, Ellis Horwood,

Chichester, 1984

Porto, A. Controlo sequencial de programas
logica. Doctorate thesis (in portugnese),
Dep. da Informatica, Universidade Mova de
Lisboa, 1984

