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Abstract

An effickent Prolog interpreter written in Lisp is presented.
The interpreter is then specialized to run different Prolog pred-
icates. These speclalizations are generated antomatically by a
pariinl evafuator for Lisp programa called “Partial Lisp™. It
transforms Lisp programs to other Lisp programs and koows
nothing about Prolog, It i3 arpued that the partial evalua-
tion of interpreters can be a substitute for compilation, The
results of partial evaluating the Prolog interpreter for simple
FProlog predicates are presented. The speed of the specialized
interpreters has been found to be about ten times faster than
ordinary interpretation. These speeds compare favorably with
an optimizing compiler for the same Prolog dialect and com-
piter aystem. The advantages of using partial evaluation upon
an interpreter include a much smaller and easily modifiable
implementation. The major difficulty in generating thousands
of small specialized interpreters is that it corrently takes about
two orders of magnitude more time than compilation. Different
approaches to reducing partial evaluation time are pressnted.
The possibilities of specializing the interpreter for different uses
of the same Prolog predicate are diseussed.

1 Motivation

The research presented here is based upon the hope that
computer languages can be implemented by simple interpreters.
The advantages of implementing systems as interpreters are
many. The size and complexity of the implementation is deas-
tically reduced compared to the traditionsl approach of im-
plementing languages as compilors. Additionally, many mod-
ero programming languages are implemented as dual systems
coptalning both an interpreter and compiler. laterpreters are
preferred for development and debngging, while compilation is
usually necessary for production. The maintenance and modifl-
cation of dual systems is difficult since the subsystems must be
kept compatible. Too many bags are of the sort “my program
worked interpretively but not compiled [or visa versa)™.

This paper argues that a system consisting of a very large
collection of specialized interpreters is an atteactive alternative
to the traditional interpreter/compiler systems. Some of these
interpreters are very specific, while others are rather peneral.
Idezlly, these interpreters should be small and share 28 much
eode as possible, As a rile, the more apecific an interpreter i,
the more efficient it is. The system is arranged so that programs
get rm by the most specific appropriate interpreter. One of the
interpreters is distinguished by being the most general one. Tt

is only this interpreter that is written hy a programmer. The
specialized interpreters are gepcrated antomatically from the
geweral interpreter by & partial evaluator,

Partial evaluation provides a means of implementing a lan-
guage solely as an interpreter without sacrificing efficiency. In
the experiment presented in this paper, a Prolog interpreter, &
Lisp partial evaluator, and a Lisp compiler together generate
efficient speclalized Prolog interpreters that are of about the
same size and specd as compiled Prolog programs. A major
advantage of partial evalnation is that the partial evaluator re-
mains fxed as one changes the interpreter. The introduction of
a new language feature is accomplished by modifving just the
interpreter. The partial evaluator can play the role of a com-
piler for any language in which an interpreter exists written
in the language of the partial evaluator. Ope can view & tradi-
thonal compiler as a partiel evaluator specinlized for a partieular
language. In practice, however, compilers are not as exible as
partial evaluators. Prolog compilers, for example, speciahize the
interpreter to ron diferent Prolog predicates. The only extent
to which they can specialize the interpreter for particular uoes
& predicate is limited to mode declarations [Warren 1977].

Lisp was chosen as the implementation lnnpuage both be-
canse it is well-suited for partial evaluation and because of the
availability of Lisp Machines [Greenblatt 1974 for doing this
research, We regard Lisp as an excellent machine language,
Prolog was chosen because it is 2o interesting high-level lan-
guage and because existing Proleg compilers can be gsed for
comparison. LM-Prolog was chosen because it is a serious Pro-
log implementation oo Lisp Mackines. In principle, one can
write a partial evaluator for any language apd it can be mn
upon any interpreter.

2 Partial Evaluation

Partial evaluation is a relatively new program manipula-
tion technique that is being used to optimize programs, gen-
erate programs automatically, open-code functions, efciently
extend languages, generate compilers, and compile programs.
it is this latter eapability that is the focus of this paper,

A partial evalurtor Is an interpreter that, with only partial
information about & program's lnputs, produces a specialized
version of the program which exploits the partial information.
For example, even a simple partial evaluator for Lisp can partial
evalaate the form (2ppend x y) to (cons 1 ¥) when x is known
to be (list f]. This process begins by opening the form with the
definition of append.



(defun append [front back)
{cond anull front) back)
Et [cons (first front) (append (rest frent) back)))))

The cond is escountered, causing the form (null front) to
be partial evalnated. Since front is bound to x which is koown
te e [ist F] shis evaluates tonil. This conclusion is based upon
the definition of null and list as

[defiun null {x) (eq x mil})
{defun fist (x) (cons x nil})

The system can decide that [eq {cons fnil) nil} must return
nil since its arguments are of diferent types. This reduces the
orizinal problem to

(cons (first (Hst £)) '
append (rest (list £} y))
which becomes (cons [ y) since (first (cons f nfl)} reduces
to f and
(2ppend {rest (list f}) v} reduces to [append nil y) which reduces
Lo y.

The basic operation of our partial evaluator, “Pastial
Lisp", mirrors that of an ordinary Lisp evaloator. Variables
partial evaluate to their values if bound, otherwise to them-
selves, Special forms such as cond have special handlers, Or-
dinary forms are partial evaluated by applying the function to
the evaluated arguments. Lambda application works by bind-
ing the variables and then partial evaluating the body, Unlike
ordinary lambda application, it then performs lambda abstrac-
tion to pull out aoy expressions which otherwise might be re-
computed redundantly. For example,

((lambda (x y) (st x x ¥})
If x)
£ 1))

partial evaluates to
{(lambda (=) (st 2" x" (g x]})
fx)}

Mest of the power of the system comes from the eapabili-
ties of the handlers for the basic Lisp primitives cond, car, cdr,
cons, &q, typep, rplaca, and rplacd when given only partial infor-
mation. Cooditicnals, for example, work by partial evaluating
the test. If the test is decidable, then the result is the result
of partial evaluating the appropriate braneh. If the test i3 not
decidable, them the true hraoch i3 partial evaluated with the
added information that the test and its consequences age trie
and the false branch with the information that the test is false.

Partial Lisp is able to deal very efectively with a small et
of Lisp primitives. Except for these primitives, all functions
are known to the system ooly by their Lisp deflnition. The
major disadvantage with this design is that commonly used Lisp
functions such zs equal, atom, and ath could be slow to partial
evaluate since the system must reason about the definition of
these functions. Atem for example is deflned as (lambda (x)
[eq [cq (ypep x) 'list) nil)). Reasoniog in terms of a small sct
of primitives takes too much time. This problem is one of the
most serions obstacles for practical use of partial evaluation.

One solution which was taken by the developers of the
Redfun partial evaluator |[Beckman ef ol 1976 is to band-
code handlere for the moat common Lisp functions, Equal,
for example, has the same status as eq in their system. Not
only does this require a much larger implementation effort but
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the problem reappears in handling commonly wsed application
functions. Martial evaluating, say LM-Prolop's unify fanction,
would either be very slow or require a special bandler., Writing
special handlers for the basic units of an interpreter wonld de-
feat most of the advantages of partial evaluation, since it is oot
very different from writing & compiler.

Another solution to this problem was proposed in |Futa-
mura 1871]. The ides is to apply the partial evaluator to itself,
producing specializations for running equal or unify or whatever.
This solution puta very stringent requirements upon the par-
tial evaluator, It must be both very powerful and very cleanly
implemented in order to specializa itsell We began working
on partial evaloation with this goal i miod [[Kabn 1982] and
[Kahn 1934]) and have come to appreciate how difffealt it is.
We believe it continues to be a good area for ressarch,

The approach to this problem taken in the partial evalu-
ation of the LM-Prolog interpreter is based upon a powerful
generalizafion mechanism built into Partial Lisp. The fdea is
that ome can “train” the partial evaluator npon typical exam-
ples, ITn traloing moede the system maktaine 8 tecord of the
partial information that if uses to partial evaluate an example.
It then abstracts the original problem and the result based upon
what aspects of the problem were used and which ones were ig-
wored. The abstracted problem and solution are then added to
a data base. By this means cpe can build up the squivalent of a
handler for the most common uses of a function. For example,
partial evalnating the problem [unify nil nfl) in training mode
generates a clanse which says that if both arguments to unify
are fully specifled and are eq theo it partial evaluates to t.

In addition to bandlers for & dozen or so Lisp primitives
and the ability to generate bandlers for the common uses of
Lisp functions, Partial Lisp consists of a simple transformation
module. The few transformations that the system performs pre-
serve equivalence aod do pot affect the ron-time performance
of programs. Their purpose 15 to facilitate farther partial eval-
uatiog. For example, a function of a copditional is transformed
into a conditional where the function is applied on cach branch.
This gives the fonetion involved more useful partial information
ahout its arguments than the original conditional.

The remaining part of Partial Lisp is & recursion handler,
When a program might possibly recurse, then the system

1. generalizes the problem by replacing forms which it con-
siders uninteresting by variables,

2. makes up & oame, ¢, for a function,

3. adds a clanse to the database which states that if a problem

similar to the current one cccurs replace it by a call to ¢
and note that a recursive call was generated,

4, partial evaluates the problem as generalized in step 1 to £,

5. if a recarsive call was generated, fills in the body of ¢ with
£ and returns a call to &, otherwise returns £.

Partial Lisp has no understending of iteration primitives
such a8 prog and do. This geeatly simplifies the system. Itera-
tion is assumed to be programmed as tail recursion. A separate
module is applied after partial evaluation to convert tail recur-
sion into & more efficient program usicg prog and go.

3 The LM-Prolog Interpreter

Initially, the plan for this project was to write a very pow-
arful partial evaluator for Pure Lisp and to write & Prolog inter-
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preser in Pare Lisp. The advantages of this approach ase many.
‘The mtesprotes is very simple. Side-offects, especially non-local
oney, can cause partial evaluators to lose what partial informa-
tion they have, preventing them from making further optimiza-
tions. An interpreter in pure Lisp which was considered can be
found in [Kabn 1983/1984],

This approack was abandoned for several reasons. The
primary difficulty is that snch an interpreser spends most of its
time searching for the current bindings of variables. The one we
considered used alists and spent most of its time inside of assoc.
An interpreter using alists for variable bindings continues to do
so0 gven after being partial evaluated.

Tustead of starting with a toy interpreter, a production
quality interpreter was used. We chose the LM-Prolog inter-
preter we had developed for other purposses. This was consid-
ered to be a more sarions test of the practicality of the partial
evaluation of interpreters.

LM-Frolog represents its run-time terms as Lisp s
expressions. Variables are represented by a special FetaLisp
pointer called a locative. Variables are bound fo variables via
Eetalisp's dinvisible pointers. Invisible pointers are also used
within terms so that dereferencing is done automatically by
EetaLisp's first (= car) and restd (= cdr}.

LM-Prolog is based upon leay strecfors copying Clauses
at define time are transformed into a femplate structure, The
four types of templates are “ground term®, “frst occurrence
of & variable”, “repeated occurrence of & variable”, and “non-
ground compound term”. The templates for variables coptain
indices into a serateh pad vector.

This template representation can be viewed as a very sim-
ple, yet effective, compilation of unification. It is particularly
amennble to microcoded implementations using dispateh hard-
ware, Templates can be viewed as a erude abstract instruction
st which is interpreted by the function (or instruction) unify-
term-with-template which is presented below. This interpreta-
tion process can also be compiled by partial evaluation. Our
represcntation s analogous to the unifleation imstructions of
D.H.D. Warrew's “New Eagios” [Warren 1983], although in his
scheme the head compiles to a saquenee of instructions whereas
in ours it compiles to an s-expression and a single funetion eall
{or machine instruction].

The control structure of LM-Prolog is based apon success
continuations. A success continuation is passed downward and
invoked upon the saceessful execution of & gonl. This control
structure tepds to make heavy wse of Lisp’s control stack, Two
impertant optimizations which alleviate this problem are pee-
formed when either the goal is known to be deterministic or it
i the last ome in the body of & clanse,

The basic cycle of the interpreter is as follows:
1. Find the clauses for the current goal.

2. Ooe by one try each clause, by unifying the goal [which
is & term) and the kead of the clanse {which is a template
structure]. If suecessful, then prove the conjunction of
the goals created by constructing the body of the clanse
[i.e. comverting the template straeture into a term thereby
repaming the variables in the clause which is necessary to
mvoid variable conflicts between simultancous uses of the
same ¢langs).

3. A conjupnction i proved by proving the fimst goal with a
continnation wlich proves the rest of the goals with the
original continmation.

This schome constructs a copy of the body of a clanse only
if the goal successfally unifies with the head. Additionzlly only
those parts of the head that contain variables and are unificd
with warlables are constructed. Since terms are represented by
Lisp s-expressions the system can use Lisp's primitives for cre-
ating, manipulating, and printing s-expressions. An important
proporty of the scheme is the fact that the eovironment is loeal
to step 2 of the interpreter cycle, and so only a global serateh
pad vector is meeded.

Other properties of the scheme are discussed in [Warren
1082| where it is labeled *Goal Stacking™.

More details about the implementation of LM-Prolog can
be found in [Kabn & Carlsson 19684], [Carlson & Kabn 1983],
and [Carlason fortheaming).

A few minor changes were made to the EM-Prolog inter-
preter for the convenience of the partial evaluator. The partial
evaluator cannot generalize results that make nse of special or
global variables. LM-Frolog's global scratch pad wector is re-
placed by a vector which is created on each predicate call. The
construction of these veetors are partial evaluated away so there
oo run-time cost, The production version of LM-Prolog uses
a global trail of changes to implement backéracking. This was
lefe for this experiment since there are few optimizations that
can be performed upon trailing,

In some versions of LM-Prolog, the functions unify, unfy-
term-with-template, construct, reference and dereference are im-
plemented in microcods, I such cases, the partial evaluator
can be told to leave calls to these functions alone. The inter-
preter which we present below, nalike the production versionm,
for simplicity's sake does pot support some of LM-Prolog’s more
exotie features such as the optional oeear cheek, cireularity han-
dling, and lazy valoes, Both interpreters exploit ZetaLisp's
oree mechanizm for storage alloeation. The partial evaluator
can deal with this, however, in this paper we have edited away
references to areas,

As an interface to compiled predicates, each predicate has
a Lisp fumction associsted with it, These functions, called
provers, return nll npon failure and invoke the contineation if
successful.

Compiled predicates are translated to provers. Provers of
interpreted predicates typleally just call try-each, which tries
each clause of the definition: [Predicates containing Prolog's
el are handled by alightly mere complicated provers.)

[defun p-prover (continuation &rest arguments)

(try-each clauses-for-p continuation arguments
*trall® ;ihe current frail poinfer
{make-list p-number-ef-argumentz}})

Clauses are represented as ZotaLisp Aaver nstances [Il-'lm
et al. 1883] which contain a cons of a template for the head
and a template for the body. This is for the convenience of the
database procedures and slows down the interpreter jost a few
percent. The specicl form deffun is like TetaLisp's defun except
that it transforms tail recursion into iteration.



(deffun try-each [clauses continuation arguments mark vectar)
pithie triew cach clause by wnifping e head with
FARGUMENTS. VEOTOR fr the local environment.
MARK ir the trafl marker.

[cond Inul clauzes) nil) ;mo clagser left so fad
let |‘!Lemp!at:= send [first clouses) “:templates)))
{and {unify-Lerm-with-template
arguments (first templales) vector]
srenification of kead and goal rucceeded
;710 conslruel ke body and execuied
{prave-conjunction
[construct [restd ! implates) vector)
continuation) }}]

(t ;cremelking failed, ro zndo any Bindings mads

untrafl mark)

try-each

(restl clauses)

continuation arguments mark vector]}})

The praduction verion of try-cach compiles open and is not
invoked at all if thers are no clawses. Tt calls prove-conjunction
tail-recussively in the last clanse. Prove-conjunction proves a
conjunction and, if successful, invokes a continnation.

(deffun prove-conjunction [predications continuation)
ivif the eomjunction of PREDICATIONS can be proved,
nnveke CONTINTATION
{cond [|null predications) [invoke mnthu:thm}]
t {let* ([predication (first predications)
delmition

current-definition (first predication))))
[tond [[definition-deterministic deﬁnludn,!
sigonl e detersiniviic ro prove the
sifirst goal and fry the remainder
{cond ((apply {definition-prover definition)
cons mﬁmwml!hl:‘n
restl predication)
{prove-conjunction
[restd predications)
. continuation) ] )}
rrgoal ie nondet. so prove the firsl goal
iiwith sontinuation fo prose the remainder
{apply (definition-prover definition)
cons
|continuation
| prove-conjunction
F::tl predications)
continuation

)
L ion) ))N))

The production version of prove-conjunction is not inveked
at all if the copjunction is empty. It also avoids constructing a
continuation for the last goal and calls try-each directly for sim-
ple interpreted predicates, instead of calling their provers. This
enables prové-conjunction to tail-recurse even for some nonde-
terministic predicates.

Unification berween terms aod templates essentially dis-
patches on the template code:
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(defMun unify-term-with-template (tesm template vector)
iwunifies TERM with & coded representation of e term
iin the environment of VEGTOR
(fet {{type (first template))

[cond [[eq type 0] ;;template is o ground ferm
unify term (restl template]))
(leg type 1) ;firat oevwrrence of varishle
cond [feq -1 (restd template])) :reoid eariable
t ;rpermaneal var—alore lerm in veclor
(stf [nth (rest! template] vector) term)
L

([eq type 2) ;irepeated cccurrence of varinble
siretriene velue and unify

(unify term
(dereference (nth (restd template) wector)}))
({eq type 3) ;seampies template
cond ([consp term) jruaify corresponding parts
and (unify-termewith-template
(first term) (second template) vector)
unify-term-with-template
{resti term] (rest2 template) vecter)))
{{value-cell-p term|
sieonsbruct and urify

(unify term (construet template vector)))))]))

Unification of terms Is steaightforward;

{deffun unify (x y);:uniffer of two ferms fo-ezpreasions)
{cond [{eq x y
and {consp x) [consp y)
jibolh are conses, vo unify correaponding paris
(2nd (unify {first x) [first ¥))
lunify [restd x] [restd y}}})
”nlun—:dl-p x‘ Ihlnd-can x yl sibind X fa un‘cﬂtﬂ

wvaly bind-cell y x| |::bind Yfrl rarialle,
equal x y) ]f smaey be EQUAL sivings or numbers

The production version of unify optionelly handles syelic
terms or optionally performs an aceur check.

Construction of terms esseotially dispatches on the tem-
plate code. Gronad terms are truly strecture shared,

(deffun construct {template vector)

ieenver! TEMPLATE info an ordinary ferm

jiin the environment of VECTOR

(1t ({type (first tem :te!l]

[cond [[eq type @ Tlr:st template)) ;iground fcrm
eq Wype 1) ;:first occnrrence of a variable
cand |Iaq ﬁ {restd template]);;only occurrence
cedl

[t ;oermanent sariabls
[tet {[cell {cell]))
E:Ieltf nth (restl template) vector) cell)

[(eq type 2)
svubrequent occurrence, to relrieee ity value
dereference [nth (restl template) vector)))
{{eq type 2)
srconsfruct compound ferm from parts
{prolog-cons [construct (second template) vect
construct (rest2 template) vector])]]})

Macro defloitions.

defsubst value-cell-p (] {eq [typep x) ‘locative))
defsubst prolog-cons (x ¥

(cons (reference x) (reference y)})
(defsubst bind-cell [cell valus)

set-contents cell freferance value))

trail cell))
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(defzubst inveke (x}

sCortinuations in LM-Prolog are currendly represented by
6 linl which ie invoked de follows.

;i The macre CONTINUATION produces such lista.

(2pply (first x) [resti x}})

The partial evaloator is not given the definitions of refer-
ence, dereference, cell and sst-contents. These deal with loca-
tives and invisible pointers that are beyond the scope of the
partial evaluaters’s eurrent eapabilities. Also the defipitions of
trail and wntrail are not given to Partial Lisp because of their
g of arcays, Most of these functions are given definitions in
the partial evaluator as if they were primitive Lisp fupnctions.
These defimitions take up a page or two and would oot have
been necessary if Partial Lisp could handle these data types
better. The special handlers for trail and untrail exist only to
eliminate those calls to untrail that have nothing to uotrail.

4 The “Compilation™ Of =

Let us consider the compilation of the predicate = defined
by the LM-Prolog clause {[= ?x ?x]) [in Dec-10 Prolog that
would be X=X.). The following prover is generated:

(deflun =-prover |continuation &rest arguments)
{try-each clauses-for-=
continuation
arguments ;;the argements fo o call to =
*trail®
(make-Nist 1))} yehere is just one sarfable in =

If we declare that = has exactly two argoments x and y
{this could easily be done avtomatically) then the prover is
transformed to

(deffun =-praver (continuation x y)
(try-each clauses-for-=
continuation
Lll'sl (dereference x) [dereference y))
trail*
[make-list 1) )]

This transformation is justified by the semantics of Tetall-
isp's &rest argoments. It is not performed in the production
version of the interpreter since the reconstruction of the Hst of
arguments would be wasteful.

Let us mspect bow the partial evaluator specialized the

interpreter for rupning =. The following is & selection from the
trace of partial evaloating the body of =-prover.

i, Parbicl evaluate the head of the firsf clouee.

{unify-tero-with-teaplate

(list (derefersnce x) (darefersmce ¥}

3 (L. 03 (2. 00 ;template for (T2 Fz)
{list nril})

-pariial evaluales lo —
{cond ((unify (derefarence y) (derefersnce x}) t))

The abowe iz & comvequence of the following dhree pasfial eal
ualions;

(unify-term-with-tenplate
{dereferonce x)

{1 . 0} ;ifiret cccurrence of fz
(list nil))
-portiel evelugter to —
t ;pin addition it changes (list nil] fo (list (dereference x))

{unify-tarz-with-tezplate
(derefarence ¥)
3 . 0) ;eubsequent ocourrence of 7z
(list (dereference x)})}
-partial cvaluwater fo — -
(enify (deroferenca y) (dersefersnce x))

{onify-tera-with-tezplate

nil *{0) ;;femplafe for nil

{list (dereferance x)))

-partial evalwates fo — (unify nil ndl)
~partial evalusfer fo — &

8. Partial evaleate the femply) body of the first clanse.

{construct '(0) (list (dereference x))J)
~partial evalucies to — nil

{preve-conjmnction nil comtinuamtion)
-partial evaluates to — (invoke continvation)

8. Partial evaluate trying the (non-existing) remaining clayses,

{try-smch nil
continuaticn
(1ist (deroference x) (deroference ¥}
mark
{list (dereferenca x)})
~parfial evalugbes fo — nil

After partial evaluation the prover looks like

{deffun =-prover [continuation x y)
e, ff X and ¥ unifly then invoke the CONTINUATION
{Jcnnd [{usify (dereference v) (dereference x)}

invoke continuation]) )

The resulting version of the prover is equivalent to the
prover produced by LM-Prelog's compiler, With microcode
support, the predication (= 1 1) takes 78 microseconds with =
compiled versns 584 interpreted. Without microcode support,
it takes 179 microseconds comptled and 1395 interpreted. All
timings given are for a Cadr Lisp Machine.

5 The *Compilation™ Of member

The following is the LM-Prolog definition of the pfedicute.
meamber:

[define-predicate member [:options (:argument-list element list]}
member Tx (Tx . ?]]]
member Tx (7 . Tr)) (member Tx 7yv}})

In Dec-10 Prolog it wounld look like:

mt::ii[";i] member[X.Y).

The following is the interpreter’s prover:



[delfun member-prover {continuation element list)
(try-gach eloyses-Far-momber
continuation
1!:1 @ﬂﬂu‘m clement] (dereference list))
brafl

(make-list 2}})

The parilal evaluator transforms the above into the follow-
ing:

(deffun member-praver [continuation element list)
(ter [{mark *trail*}} ;;sove awey the traidl marker
(tet [[dlist [dereference list
delement [dereference clement)))
[cond [{consp dlist) ;;the second srgument ir @ cong
cond ([and [unify {first dlist) delement)

( inveke continuation]])
il

jibuckirack pefnf, resfore enm

{untrail mark)

jdail-reeurse

.tmt-mb-ﬂ'-pmm

continuation delement [restl dlist]))))
{!Hml]—p diist) ;ithe second argement i erbound

cond set-contents dlist
(fprogn | {prolog-cons delement
(celt)})
trail diist)
invake continration]])
4
{;;husbtr:el: point, reslore ene.
untrail mark)
([eell.16 (cell)))
{set-contents
diist {proleg-cons [cell) cell_16))
(trall diist)
sobadl-regurse
[member-prover
continuation delement cell.16]))))))))

One importast optimization B o the recursive call after
tither ynification or the contivwation failed. The "compilation™
of the next clause was aided significantly by noting that the
second argument has already been determioed to be a cops.
The unification of the goal with the kead of the second clause
is thereby compiled away completely. We are not aware of any
eompiler that performs such an optimization.

The interpreter specialized to run member is larger than
member compiled by LM-Prolog. The body of the second clause
is duplicated. This can be avoided by giving the appropriate
advice to the partial evaluator, bowever, this would interfere
with various optimizations performed. An important area for
further research is bow to handle this trade-off hetwaen the size
of the programs produced and their efectivity.

In the following table, the timings are given for deciding
that a constant is a member of a list of 1000 constants where it
is the last element. The timiags are repaated for those running
with and these rapuing without special microcode suppact {mib-
erocoded unify, untrail, cell, ete.). All times are in milliseconds.

Microcoded Without Microcode

Partial Evaluated T2 271
Compiled 103 a52
Ioterpreted 523 2250
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Dec-10 Prolog's compiler and LM-Prolog’s conpiles accept
mede declarations Indicating whether an argument to o pred-
icate s always unbonnd (indicated by & name beginning with
“"), alwsys bouad (indicated by a name beginning with "+,
or anything else. 1t was trivial to add this ability to the partial
evaluation of the LM-Prolog interpretor. All that was needed
was o simple procedure for econverting a mode decluration to
Lisp predicates. Suppose we declare that member's argument
list is (edesent +list). The partial evaluator runs as before, ex-
cept it mow knows that (not (value-cell-p +Hlist)) is true. This
decluration is sufficiest for determiniog that the entire cond
clause beginning with {value-cell-p diist) can be eliminated. In
this case the mode declaration simply makes the compiled code
more compact. As we shall see in the discussion of concatenate
sometimes mode declarations can signifieantly improve the run-
time pocformance of a specialized interpretor.,

This basdling of mode declarations as a list of Lisp predi-
cates leads naturally to 2 very general ability to deseribe how &
predicate is to be used. Here we see one of the real streg pihs of
partinl evaluation ever compilation. Consider the predication
(member {7key . Tvalue) ?alist) where either the system con-
eludes or the user declares that Tkey is a symbol, that Tvalue is
unboned, and that Talist is & ground list of conses. Pastial Lisp
cureently canmot wnderstand that something is a list of conses
or i ground. The system is being extended in a general fashion
to bandle such partial information. Given such a declaration
and the keowledge that the call is deterministic the system
should be able to generate a specialization of member-prover as
folbowa:

(deflun member-prover.33 | list)
{let [{dlist [dereference list))
deferent (dereference element}))
[cond [[consp diist
cond ([eq [first {Airst dlist)] (first delement))
iithe key in the reme ar lhe first of the pair
(set-contents (resti delement)
restd {fiest diist]))
jobind the value ond fradl &
(trail [restt element)))
(t (member-prover.33 delement
[restt anist)}])))))

This is quite close to ZetaLisp's definition of assq,

This manner of handling mode declarations and iheir gen-
eralizations a5 lsts of Lisp predicates bas the additional ad-
vantage that it is trivial to, whea desired, compile in rup-time
checks that the declaration Is correct, For example, to check
that the declaration (element +list) is correct the prover can be
trapsformed to

{cond [{not {value-cell-p +1ist)) (try-each .. ))
t <signal error>]}

6 Relation To Previous Work

Thhmmhwunﬂgibﬂhrhap&cdhyﬂewoﬂut
Emagvelsoz [Emanuelson 1980]. He applied a partial evale-
ator to compile calls to 2 pattern matcher where the pattern
was known and the target was unkoown, We view the ressarch
preseated in this paper 2s & natural next step in the partial
evaluation of interpreters.
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|Fatamura 1971| argues that partial evaloation could be-
come a means of compilation. Futamurs presents the basic idea
of viewing an interpreter ra 2 fonction which can be specialized.
He also proposes that the pariial evaluation process itself can
be applizd to itsell to produce a specialization of the pastial
evaloator which can only specialize a particular interpreter. He
argues that such a specialized partial evaluator can be viewed
as an ordinary compiler.

[Turchin 1982 and [Turchin 1984] present the concept of
a “supercompiler™ which closely rosembles a partial evaluator.
The supercompiler is also used to specialize interpreters, thongh
only toy interpreters for simple languages are presented.

[Kemorowski 1081] presents a simple partial evaluator for
Prolog. Given a powerful partial evaluator for Prolog and a
good Prolog compiler, Prolog ean replace the role of Lisp in
this paper. Languages could be implemented by writing inter-
preters in Prolog. [Gallagher 1884] has explored this idea as
a means of controlling logic programs. The idea is to write in
Prolog interpreters for Prolog-like languages with control anno-
tations. Programs exploiting these control annotations are then
compiled via partial evaluation into crdinary Prolog programs.
These programs are typically much faster and more difficult to
read or write,

As poted in the discussion of the compilation of member, it
should in principle be possible to partial evaluate Prolog pred-
icates at the level of their Lisp implementation. It wonld be
interesting to compare a partial evaluator for Prolog with Par-
tial Lisp applied to the LM-Prolog interpreter.

7 Conclusions, Problems, And Future Work

Much remains to be done to complete this research. Built-
in predicafes for the LM-Proleg Interpreter need to be written.
[Currently the LM-Prolog compiler takes care of them.) The
partial evaluator should be tested upon eontrol primitives and
the interface to Lisp. [n general, more testing needs to be per-
formed. Also, to demonstrate the generality of this approach,
Partial Lisp should be applied to another language; perhaps s
message passing system would be switable. At partial evalua-
tion thme one can often discover which method will be applied
to a message and thereby avoid a rup-time search.

More fundamental are the issues involved in contrelling
the amount of time needed to partial evaluate a predicate and
the zize of the resulting “compilatinn® [ie. the specialized in-
terpreter). Either the system needs to be able to make time
viersus code size trade-offs wisely or the user needs a good way
of advising the system,

Further work on specialiting particular uses of Prolog pred-
icates needs to be done. Examples fike the specialization of
member for ground alists needs to be worked vpon. Also the
generation of interpreters that can run a class of Prolog predi-
eates is worth exploring. Perkaps an interpreter that can deal
omly with predicates defined by unit clavses would be worth-
while, or an interpreter that runs only ground goals, or one that
can only deal with deterministic goals.

The resalts to date of partial evaluating the Prolog inter-
preter are very encouraging. Predicates such as member and
concatenate can be sped up by about ten times, the code pro-
duced is sufficiently compact, and time needed to perform o

specialization is sbout one or two minutes. More careful engi-
weering of Partial Lisp can probably win a factor of two or theee.
Mewer generation Lisp machines are purportedly two or three
times faster. Also, since Partial Lisp is written in LM-Prolog
it can be used upon itself to speed itsel np. A processing time
of 5 to 10 seconds per predicate is atill large but considering
that this compilation is done without the use of a compiler this
seems almost magical,
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