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ABSTRACT

Currently there I8 a wide interest in the com-
bination of fwoctiooal programs with logic pro-
grams. The advantage is that both the compos-
tion of fanctions and pop-determinism of relations
can be obiained, The langunge RF-Maple is an
attempt to combine logic programming style with
functional programming style. "RF" stands for
‘“Relational apd Funetiopal”. It & 3 troe union of
a relational programming language R-Maple and a
functional programmiog language F-Maple.

R-Maple is a concarrent relationzl logic pro-
gramming language which tries to strike a balance
between control and meaning. Sequential and
parallel axecution of programs can be specified in
finer details than in Comcurrent Prolog. R-Maple
uses explicil quantifiers and bas negation. As a
result, the declarative reading of R-Maple pro-
grams is never compromised by the cuts and com-
mits of both Prologs.

F-Maple s a very simple typed functional
programming language (it has only four constructs
) which was designed ns an operating system at the
same bime. [t is o syntactically extensible language
where the syotax of types and funetions is entirely
under ihe programmer’s control.

In combining the two concepts of H-Maple
and F-Maple producing RP-Maple, the readability
of programs and the speed of execution are
improved, The latter is due to the fact that many
relations are functional and therefore, do oot
require backiracking, We believe its power as well
a5 ils expressiveness and ease of wse go o little
beyond the possibilities of the currently available

languages.

1. Intreductlion

Applicative programming lasgoages are langmages
without side effects. They are either based on fumctions or
predicates, The former are funetional laoguages and the
latter, logic programming lapgoages. Sinee functions yield
only one resuli, the expressive power and readability of fune-
tiomal programming languages come from the possibility of
composition of functions. Composition of relations is not as
readily available, Fupelional relations, euch as P {z .y )
where there is exactly one y for each z, can be composed

using the descriptions of Russell & (tpP (2,y ) [ef. Shoe].
Iz the case of proper relations, P (r,p) need not be
sakisfied at all or it can be satisfied by many values of y.
One can technically wse the indeterminate descriptions of
Hilbert & {eyP (z,y )] which can be read as " B g ) is
satigied by 3 y such that P (z,y ) provided there is a such
a p". Deseriptions are, however, quite uoreadable and one
should introduce a Manetion instead of a definite description
and resort to an auxiliary variable 3y (R (3 J& P (2.3 ))
instead of indeterminate descriptions. Note that the existen-
tial quantifier is only implicit in antecedents of clauses of
Frolog | Kowa, Clar |.

Relations, Yecause of their nondeterminism, are often
preferrable over functions, Yel many relations are functional
and they should be replaced by fanctions in order to improve
both the readability of programs and the speed of execution.
The latter is possible because there i5 no overhead associated
wilth backtracking. Due to the or =nondelerminism of rela-
tions, relation based programming languages can exhibit a
wider scale of control behaviour than the funetiomal
languages. For these reasons there hos been quile a few
atlempts recently to combine logic programming style with
functional programming style [cf. Symp |,

We believe that the programming language RF-Maple
(RF is for Relational and Functional) blends nicely these two
styles of programming. Ji is a wnion of two separately
designed programming languages: R-Maple | Voda 1 | and F-
Maple | Voda 2.

R-Maple is a cooeurrent relational logic programming
language which tries to strike 2 balance between control and
meuning, Sequential and parallel executlon of programs can
be specified in fner details than i Concurrent Prolog | Shap
|. R-Maple uses explicit quantifiers and has pegation. As a
result, the declarative reading of R-Maple programs is never
compromised by the culs and commits of both Pralogs,

F-Maple is a very simple typed functional programming
language (it bas only four construets ) which was designed ss
an operating system at the same time, [t is a syntactically
extensible language where the syntax of types and functions
is entirely under the programmer's control,

In combining the two copcepts of R-Maple and F-
Maple producing RF-Maple, we believe ils power as well as
its expressivencss and ease of wse go a little beyond the pessi-
bilities of the currently available langunges.

In this paper, we will Arst present the design principles
of R-Maple in sections 2 to 3, and then in sections 4 to 5,
we will present the features of F-Maple, and finally in section
6, we will present the combination of the concepts of R-
Maple with F-Maple to form RF-Maple. We have decided to
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discuss R-Maple and F-Maple separately because both of
them bhave their own characteristics which are best explained
independently. In combinieg the two languages we do oot
risk any collusion of concepis because RF-Maple &5 2 true
union of both languages.

2. Deseription of R-Maple.

Imperative programming languages are concerned
mostly with contrel and complicated meaning functions are
required to give meaning to programs. On the other hand,
logic programs | Kowa |, at least in theory, being fomulas of
predicate caleulus, direcly express the meaning, but like Pro-
lng and Comcarrent Prolog (hereafter roferred to as C-
Prolog), has limited control over the execution sequence [
Shap 1, Clar |. R-Maple strikes a balance between these two
ends of the scale by allowing sequential and parallel execu-
tion of predicates but still maintains that a program is
closely related by a meaning function to formulas of predi-
eabe caleulus, Like C-Prolog, R-Maple synchronizes parallel
processes by distinguishing between the input and output
variables. This turns out to be essential for the synchroniza-
tion of concurrent processes as confirmed by C-Prolog.
Thus the symmetry of some of the relations of Prolog is
sacrificed. However, unlike Frolog, R-Maple has quantifiers
and logical connectives. Quantifiers eliminate the necd for
cuts and commits, while connectives allow negation. A sim-
ple example is Genm {{st | z ) which gemerates all elements
z of the list Isd. A predicate such as Genm with output
variables is called a peneralor whereas 3 predicate without
output variables is called a lesi . We use the vertical bar to
geparate the output arguments from the input arguments.

Genm (I |z )8
case {3l of
nit | F

| Ad tail | | z = hd or Genm [tadl | 2]

When ol is nil, then the generator fails (returns false], Oth-
erwise, the head of the fof [Le. bd) is 'assigned' to the out-
put variable . Thiz assignment will be propagated by com-
putation rules as explained below. Should the valoe hd be
rejected, the execution will backtrack into the exccution of
Genm(lodl | 2) to generate suceessive values, This will
become elearer in later seetions, The declarative reading of
this predicate is
Genm ({sl ,z ) == Tbd teil (| bd toil |=Id &
(g=hd V Genm (sl z)])

Note that the declarative reading of the assignment s just
the logical identity r=#&d and the declarative readiog of the
sequential disjunction or is the logical disjunction V' . R-
Maple also provides for parallel disjunction orp with the
same declarative reading. Similarly, both sequential and
parallel conjunctions, ; and ||, have the declarative (logi-
cal) reading & . Although the parallel and sequential com-
pectives have the same logical meaning, their behaviour is
different since the operational rules of R-Maple are given by
different trapsformation rules. Another example of generator
is Add (2.0 |2) which has the declarative reading
8+ =z,

3. Computations In R-Maple.

Before we describe how the comtrol directs the execu-
tion of a R-Maple program, we first introdece a postfix
operator !, When a program € is to be computed, it &
placed into the scope of the operator | which is called a pro-
cess. O | will then indicate a process that is ready to be exe-

cuted. Computation is performed by applications of rewrit-
ing rules of the form A => B where both sides contain the
operater !, For example, some of the transformation rules
for kagical connectives are :

[Ad or B )!=> Alor B

[Aorp B}l =>Alorp B!

Flor B => B!

T!or B => T

BorpF!=> 8

BorpT!=>T!

Fi; B =>F!

T!; B =8!
The first rewrite rale specifics that, for a sequential or , con-
trol ks first passed to A. If A is reduced to false, the control
will then pass on to B becawse of the third rule
Flor B => B . In the second rewrite rule, during a paral-
lel or, orp , control is passed to both A and B. That is, two
processes are created to execute A and B simultaneowsly.
The behaviour of orp is explained in the filth and sixth
rules. When one of the arguments is reduced to F 1, it is
deleted. (Mote that there must be at least one process joside
of B beeanse of the second rule) If one of the argaments
reduces to T !, then the other argument is simply discarded,
thus killing all the processes inside. The same principles

- apply to conjunctions. The mles of R-Maple are designed in

aieh a way that there i al most one rule applicable for each
process in the computed formula.

The rewriting continues until the program is
trensformed into the form where no rewriting rules are appli-
cable, This can either fail to terminate, terminate oormally
{in the form T'!), or remain deadlocked. We should note
that the executing machine is oot a full theorem prover and
that if the program mever terminates, it does not mean that
the original program was not a theorem. (For instance:
P or 3==3 will never termimale if P does not terminate
although the declarative reading of the formula is true, But
since the sequential or is used, the executing machine will
try to compute P before stariing to compute 3=3 and there-
fore the whole program will never terminate.)

We saw earlier an example of the generator
Add (2,4 | 2 ). For example, an invocation Add (3,5] 2 ) !
will be rewritten as z:== B 1. Add is a functisnal genera-
tor, o general, a non-functional generator @ (| z }! will be
transformed into the form = = & ! ar & (| = ) where a is
the first value generated, and H (| z | is a generator for the
rest of the values in case backtracking is required [ i.e. when
a iz later refected ).

A typical setup for a generator is of the form
find z In {G(|z) T(=)}
This Program hes a declarative reading
Iz (G(z)&T(z)). & (| =)could be a lunctional gen-
erator, in which case, we obtatn
find r In {z ;=g |, T{z )}, and eventvally T(a}!
because of tautology 32 [+ =0 & Tz )+~ Tic). In
case & (| z) is & relational generator, we successively
obtain
find z In {[z:=slor H(|z)) T(z)}=>
findz In {{z:=2al; Tiz})or

(H{]=2) Tz }})} => (1)
find z in {z :=a I; T(z )} or

findzIn{H{|z); T{z )} == 2)

TloMorfind s In {H (| =2); T{z I} (3)

That is, backtracking is done using computational rules only.
These rewritings are justified by the distributivity of conjue-



tion applied in (1), and by the quantifier splitting tautalozy
dr AV B)=3Iz AV Iz B

applied in {2). Should the test T (s ) in (3) f=il, the control
will f2ll back into the baekirack search emplaying H (] = ).
This should be obvious from the transformation rules for dis-
junction explained above. On the other hand, il the test
T(a)! is satished the whole program is transformed to T
automatically erasing the backirack program. Another
example is the generator Append (is6 1,052 2| result ) which
appends list (o 1 to (=0 2 to form the output Kot in result.

Append [Int 1st 2 | result ) is

case i | of
nif | resull =[50 2
[ha ] |
find rerl In

Append (M 0512 res 1 ); veenlt o= | bd,real] [4)

R-Maple is more flexible in expressing paralle]l execution than
C-Prolog. To execute the generator and the test in
find z In {&' (] =) T(z )} in parallel, we can use the same
expression with  omly one minor change; e
find z In {G (] =) || T(z )}. Lazy evaluation esn also be
obtained with partially uninstantisted data structures, by
switching the assigonment and the recursive invocation of
Append around in (4).

Computations of R-Maple are invarisnl to the declara-
tive readiog of programs. This is because cach rewriting rale
is justified by o logical tautology. lo cose of tests, computa-
tion employs the truth tables of logieal connectives. [n case
of generators, an amigoment z :=# | reached by Lhe contral
is propelled backwards through its enclosing connectives and
quantifiers by relying oo the associativity and distelbutivity
of conjuncticns and disjonctions until it reaches its associ-
ated quantiier. Some of the corresponding rewrite rales are
as follows:

(f{z==a }!; A Jor B )or € )=
f[::lﬂn ].l;A Jor {E or )

((lz:=2 )!;A)orB) C)=>
(z:=a )!; (A; Cllor (B; C)

find y{(zima); A or B} =>
{(zv=a )l find ¥ In A} or find y In B.
The last is possible only if y does not occor in the term 2.
Should y oceur in &, the scope of the gquantifier binding the
variable y will be extended by pushing the quantifier back
beyond the quantifier binding the varlable x. The last is pos-
sible because of the tautologies:

Iy (= RAVB)EC
ﬂp E; md&“tﬂ}'ﬂr [ﬂkc]}

Ay (r=a EAV B)V C «
Iy {z=a&AV (BV C)).
provided y does oot cecur in ©. If y occurs in ©, it must
bt systematically changed to a diferent variable, There are
more rules like these catering to all the possible combinations
of scquential and parallel conjuntions and disjupctions.
When the asssignment reaches the quantifier, it is discharged
by the following rules:

find z in {z i=a L A (2]} => A (s ]!
find s In {2 i=a !|A (s } == A (a )

In the second case, the substitution of o for z will probably
awake a process blecked on the execution of the statament:

cose x 'of « -
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Mote that this blocking in ense plays the same role as the
wie of read-only variables in C-Prolog,

We should mention bere that there are no rewriting
rules for guiding an asignment through a megation. This
becanse there is no good declarative reading for such a
tranuformation. A program that attempts this will result in a
deadlock. Moreover, there is no peed for this in logic pro-
grams as the practice of Prolog confirms.

Thus R-Maple is a simple, purely declarative, logic pro-
gramming language with explicit control over sequencing and
parallelism. - By the employment of logical connectives, the
use of explicit quantifiers | find ) coupled with the use of case
statements, all the ents and commits of Prologs can be slim-
imated, Moreover, a wide seale of control behaviours is now
possible without eompromising the declarative reading of

programe.

4. Descriptlon of F-Maple.

F-Maple (F stands for Fuoctionol) is typed and pro-
vides, oot only for semantic extensibility (new types and
fumetions), but also for syntactic extensibility. The grammar
of data types and Moctions i= completely under the user’s
control, Schemes for dats types specified by grammars have
been proposed, among others, by [ Kand | acd [ Mala ). F-
Maple gemeralizes this approach by providing grammars for
the specification of fupctions as well, Moreover, only foor
constructs are all that is needed, making F-Maple a simple
but powerful functional programming language.

The basie types of F-Maple are Number and String .
From these basic types, s user can define new data Lypes by
means of productions. For example, we can define the dats
type Complez which defines all complex numbers as follows:

Complez — Number + Number i
Similarly, to define the type for = list of numbers Numiisf,
we can express this new data type by:

Numlist — mil

Numiist — head Number and fofl Numiisl

Sueh productions are called the genersting productions.
The non-terminals occuring in generaling productions are
F-Muple types, Sentences produced from a non-terminal are
values of the data type. For example:

head 2 and lail (| kead 4 and loil [ head 6 and il ) )

is & data value of type Numilis! denoting a nomber list con-
taiping elements 2, 4, and 6. To improve readability, we
allow the uee of parentheses in data values to indicate group-
ing. They do not play any role either in syatax or semantics.
Consequently, they should pot be used as terminals. The
septance:
42 435 ¢

is a data value of type Compler denoting a complex value
with the obvious meaning. Enumerated lypes can be defned

by productions which do not contain any non-terminals on
the right hand side. For example, the type Bool specified by,

Beol — true
Bool —+ [alse
defines a type with just two values.

We have scen that the use of gramrmars at omce
specifies the data type and permits the concrete syotax to
the type constructors. The wser has complete control over
the syntax. Ambiguovs grammars are permibted in F-Maple.
Rather than attempt to parse Lhe basic values or terms speci-
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fying bodies of fusctions, we use an  interactive
struelure editor to prompt the user for the value of the type
needed at any moment., This alzo climinates the need lor the
user to type in the long descriptive names as terminals
becanse he simply enters the oeeded value to the production
that he gelects from the menw, [k is apparent that the vse of
& grammar or preductions) gives the user a very powerful
syntactically and semantically extensible tool for construct-
ing types and their values.

Although the original F-Maple does not  allow
paramelerized trpes, they can be casily added. We give one
example bere, The generic type comstructor Bintres (T}
which is the type for a binary tree whose nodes are of type
T, can be defined by the following productions:

Bintree (T) = emply
Bintree [T) —+
nede T left Bintree (T) and right Bintree (T')
T in the above productien acts as a variable ranging over
types. Dilfercal types can be sustituted for T. The type for
a hinary tree containing nombers, (eg. Bintree (Number) ),
will be avtomatically defined as follows :

Hinfree (Number ) — emply
Binlree (Number | —

node Number

lefi Bintree (Mumber )

and right Binfree [ Number ).

The value:
node 5
left [ node 2 left empiy and ripht emply ]
and righl! emply
can be derived from Bintree (Momber). Similarly, the value:
noede [ head 7 and faill nil ) left empty and right emply
cam be derived from Bintree [MNumlist).

B, Terms aver F-Maple Types.

Terms over the types of F-Maple are used to specily
fumctions operating on the data types. They are obtained by
adjoining o the generaling productions three new kinds of
productions. These are called fumelion, case, and variable
productions. To distinguish them from the gemerating pro-
ductions we will write them with => a8 the produces sym-
bol. Bach term in F-Maple has a iype. Terms stand for the
bagie walues. Basic values are constructed [rom generating
productions only aad terms are reduced by computations to
basiz values.

Examples of function productions may be the following
ongs.

Number s> Number 4+ Number
Numlisl =2 gppend Numilisl af ler Numilial

Mon-terminals on the right band side specily the types of for-
mal arguments while non-terminals on the left band side
specily the types of the function result. Thus the first fumc-
tion takes two values of type Number and yields 8 Number
again. Addition is a predefined F-Maple [unction. On the
other bapd, the two-argument funchion eppend operating
over the type Numlist must be defined at the same time as
its production is adjoined to the grammar of F-Maple,

The above fumction productions combined with gen-
erating prodoctions are used to produce the following term
from Numiisi .

append nil after | head 5+ 7 ond fad nd )

Simce this term is produced from the non-terminal Mumlist,
it denotes (stands for) a data value of type Mumlist. The
compulation of F-Maple reduces this term to the basic term
kead 12 and tail mil which is produced onoly by the generat-
ing productions. Computation of F-Maple transforms F-
Maple terms in such a way that the use of all but the gen-
erating productions are removed. A term produced by gen-
erating production eannot be farther reduced. The computa-
tion rule for append may be specified as follows,

nppend Lz afier LD =
case Lo 2 of
mil | Lsl
head H and tail T
head H and fail ( append Lol after T

In the body of append, we use variables Ls 1 and L#2
to denote the two arguments of append. The variables are
agtomatically declared by the addition of two new variable
productions;

Numlisl =2 Lol
MNumlist == [e?

Note that types and variables are capitalized for readability
purposes,

When append is invoked, Le2 will be bound to the
actual argument of type Numfis! . There are two gencrating
preductions for the type Numlis! thos there are two possible
forms for Le2. If Le2 is mil, the frst case is executed. The
result of this funchion is just the walue of Ls 1, otherwise,

Le2 must be a list consisting & head and a tail. In the latter
case, the head of the list Ls 2 is given the name H , and the

taif T. MNow these variables can be used in the body of the
production of this second ecase, This is because two new
variables are declared in the second cladse of case .

Number => H

Numlisl => T
The resalt of the funciion would be combining the head of
Ls 2 with the result of appending La 1 after the tail of Lz 2.

Generally, case productions are of the following form.
§=>caseTofa |Say|8---a, |8

where each o, is called s ense label . This ease production is
legal iff the case labels correspond exactly to all the generat-
ing productions for the type T. The user may adjoin & case
production for any combinations of types 8 and T using his
own varisble names in the case labels.

The scarching fanciion of an ordered binary tree is an
example of a generic Boolean function.

Bool == gearch Bintree (T)for T
Its body can be defined as ¢

search Tree for Value =
case Trec of
emply | [ alse
nede ¥V left LI and right RE |
case V< Vofue of
irue | search KU for Value
Julse |
case Volue <V of
true | zearch Lt for Velue
Jalse | true

The above definition presupposes the comparison functions,
<, for esch conerete type T used. For instancs, for Biotree
{MNumber), we need :

Bool => Number < Nomber



As mentioned above, the seale of posaible control
behaviours of functional programs is very limited. We did
pot attempl to inclede any explicit cootrol mechanism in F-
Maple. The compatation is by lazy evaluation.

8. Description of RF-Maplc.

In combiniog fuoctions and relations together, we have
a choize of introducing functions in & relational envircament,
or introducing relations in a functional covironment, In the
first ease we obtain the standard predicate logic with fome-
tions im terme. The second case leads to a logic without for-
mulas but only with terms. This kind of logic, alihough not
28 common a5 the frst ooe, is perfectly legal from the logical
point of view and is called term logle. Actually it is shightly
pimpler than the traditional presentation of predicate logie
becanse the sometimes superfluous distinction betweea for-
mitlas and terms dissappears.

In the design of HF-Maple we have opted for the lerm
logle. Helations are simply fanetions with Doclean values.
Functions in applicative langoages have ali arguments fspul
ocnly. Therefore relations in a functional programming
language are equivalent to tests of R-Maple. The power of
logic programming comes from geoerators, that is Boolean
functions with outpul arguments., Thus any extension of a
functional programming langusge to a relational ope should
permit Boolean fanctions with outpul arguments.

One has to be careful to limit Boolean funections as the
anly kind of functions that ean generate output, It is easy to
give the declarative reading 3= (@ (2 ) & Tz )) to the pro-
gram find = In G (2 ); T(z ) no matter bow many values
satisly G [z ) where @ {z ) i5 a generator. On the otber
hand, if we allow the integer fumetion f (2,4 ) with y
being the output argument, we could have difficulties deter-
mining what aumber does the term [ (6,3 ] + 3 stand for.

The compatation of RF-Maple is taken over from the
ecomponent languages without any changes. Funclions are
computed by the lazy evaluation of F-Maple, Generators are
computed by the rewriting rules of R-Maple, The latter
computation is pecessarily slower becauss it must cater to
the backiracking. Functions execute wilhout this overbead.

RF-Maple has, in addition to the four basic constructs
of F-Maple, four new ones. These are the paralle]l and, paral-
lel or, ssvignment , and find constructs.

We would like to extend F-Maple to include the control
structures of H-Maple, This includes both parallel and
gequential and and or, Sequential and and sequential or can
be predefined using the case construct as follows :

Bool =i> Bool ; Beol

A} B = cane A of frue | B [false | false
and
Bool = Baol or Beol

Aor = case A of true |irue falss | B
For parallel srd and parallel or , we introduce two pew pro-
ductions:

Bool = Bool || Bool

Bool = Bool orp Bool

Control will be passed on to the two bodies as is the case in
R-Maple.
Assignments ara of the form :
Bool mi> gq:=T
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where o is an ideatifer declared as T = & for any type T.

Boolean functions ean have output arguments. These
are colled pemerators. (lenerators con contain the jfind,
asnignment , the parallel end and parallel or comstructs as
well as ¢alls to another generators. Thus an example is:

Bool = generate Mumber from Numlist

genersle X from Lat =
enge Ll of
emply | falee;
kead I and tail T|
X ;= H or generote X from T

All find productions are of the form :
ool = find & T In Dol

where o is an identifier and T is a type. For each find pro-
duction, twe more productions are awtomatically added,
These are the variable production T =2> ¢ and the a=sign-
ment production Beol = oc=T. The productions may be
used in the body of find . For example:

find X : Number In
gererale X from
head 2 ond fofl head & and fofl fiead & and dofl mil;
T=X

is a correct term of type Besl because it uses the production
Rool => find X: Number In Bool. This term reduces to
true after one backtrack (o obtain the value 8, thus satisfy-
ing the test T <X, ,

By mixing all eight kinds of productions, we can creats
arhitrarily complicated terms over our types.

Let us give as an example for the RI--Maple implemen-
tation of parallel Quicksort. [tis a generator of type Bool,

Boel => port Numlisl infe Numiial

gorl Il inle O =
append already sorted [nil ) affer Il giving sorfed O

The body of serf calls another generator sppend. At this
point we wrge the reader to reflect on bkow the syntactic
extensibility of RF-Maple sell-describes the intended effect of
boih generators down io the level of indicating the cutput
variables. This can be contrasted with the quite eryplic Pro-
log counterpart (especially if diference lists are used).

The definition of the gemerator append is a recursive
oI

Bool =2
append slready sorfed Numdist
after Numifel giving sorfed Numlisi

append already sorted 81 ofter Ul giving soried O =
ease [ of
nid | Of:=3
head N and tail T
enne pariition T by N of
small Seal and large Lry |
find X: Numlist In
append olready sorled SI
after Lry piving sorled X ||
append already sorted [ head N ond lail X )
after Sl giving sorled O

Two partioned sublists Sml! and Lry are sorted in parallel,
We use the speeded up version of Quicksort where the con-
catenation of the two sorted sublists (s done on the Oy,
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Both predieates above are generators. However, thers is
oo need to program parfifion as a predicate, Partition is,
then, simply a function yielding two lists. The relevant
definitions are as lollows.

Pair — small Numlisf and large Numiist
Pair => partifion Numlist by Number

partifion N by Num =
case N of
ndl | small nil and large nil
head H and ddl T'|
case parfition T by Num of
amall § and large L |
case Num < H of
true |
small § and large | head N and fail 1L )
False |
small { head H and toil £ ) and large L

If the reader finds such a style of programming too
Cobol-like let us note that

a)  the syntax of constrocts is entirely under the control of
the programmer. I the user prefers the termse Prolog-
like etyle, he just has to define the types, predicates
and [uoclions accordingly,

b}  bodies of functions are not entered by a programmer,
A structured editor is used, The editor kmows from the
given context what type and what kind of productions
are available and the programmer meeds only (o select
from a menu listing all the productions available at the
moment,

As the second example of combining functions and gen-
orators we present the RF-Maple implementation of the eight
queens problem. Solutions are obtained by the invocation of
the generator

give a selulion 5 (o8 gueens

Should the correct solution 5 of the problem turn out to be
tnacceptable for some reasons laler, the generator will be
backtracked to produce the mnext solution by the standard
methods of R-Maple computations.

The solution 5 is enceded as a list of column positions
of queens. The i-th element of & is the column position of
the queen in the row .

We oeed two anxiliary functions
Bogl =

gueen in column Number
i compatible with selulion Numiist
Numlisi =>
altach new position Number
af the end of solution Numlist

The first one ie a test verifying the compatibility of the next
position of a gueen with a partial solution. Mote that
although it is a predicate, it behaves, and indeed is, an ordi-
nary F-Maple function which can be executed faster than a
generator. The second function yields an extended solution
from an accepted new position and a partial solution. We do
not give the bodies of functions here as they are quite
straight-forward.

The main generator is defined as follows,
boal == give o solulion Numiisl lo Number gueens

give o solubion 5 lo N queens =

case N =10 of
frue | §o=ml
S alse |

And X: Numlizl In
pive a aolution X bo N-1 quecns ;
find O: Number In

Cr=1er (:=20r C:=3or C:=4or

=5 0or ;=8 or U':=7 or 0 :=5;

ease fueen in columm O
i# compatible with selution X of
frue |

&= alloch new position C©
al the end of solulion X

Suolee | false

This generator is quite simple. After Gnding the partial

-eolution X the eight candidates ¢ are tried. In the case of

an scceptable candidate the partial solution X s extended to
the cequired length by generating the solution §. In the case
that all candidates are rejected the recursive invoeation of
the gemerator is reentered Lo generate a new partial sclution
X.

The next example illustrates cooperation of concurrent
processes using partially instantisted streams as deseribed in
| Shap 2 |. We shall present the RF-Maple version of the
quense MABAEer.

The streams by which processes communicate are
represented using lists, Messages are sent and kept in
quenes. Therefore, we redefine the type lis! as a type con-
structar as follows :

List [T) — nil
Lint [T) =+ head T and tail List (T)
Mote that the type Mumlist is the same as List [Nomber).

The quene manager accepts two kinds of messages.
They are:

Message (T') = emguene T
Meszage (T) — dequene T

for putling and retrieving elements of type T from the
quene. As in Shapito's program, the quese manager is com-
municating with iwoe users via a merge process, The relevant
types are
Bool = user | with stream List (Mesoage (T))
Bool =2 uger 2 with stream List (Message (T))
Bool =>
merge List [T} with
List (T) yielding List (T)
Boel ==
gueve with front List (T) end List (T)
and mespages Lisl (Message (T))

These are invoked by :
find 51, 52, 53 : List (Message {T))In

veer 1 with stream 51 ||
wrer 2 with stream $2 ||
merge 51 wilh 52 ylelding 53 ||
find @ : List {T) In
quene with fromt @ end @ and messages §3



We do pot give the predicate bodies for wveer 1 and userl,
Merpe must be a primitive in RF-Maple, The body for
quene s as follows :

quene wilth front H end T end messages M w=
casa M of
nil | true
beod Hm and taidl T |
case fim of
enguens ¥ |
find At In
Tie= kead V and feil NI ||
guene with frond H end NI ond memsoges Tm
dequene V|
Vie= head of H ||
quese with front (lail of H )
end T ond messages Tm

The first case lerminates the cooperalion of processes when
the list of messages is exbansted. Otherwise, the bead of the
list of messages containy the message ¢nguewe of dequene.
In the first ease, the end of the queus is partially instantiated
with the pair composed of the value Lo be enguened and the
rest as yei mol instantiated. The queue manager is then
recureively invoked with the rest of the messages, [n the
latter case, V should be instaptiated with the value.at the
head of the froat. The gueue manager then proceeds recur-
sively with the rest of the messages. Hesd and el are pro-
jeetion fonctions, Head is defined na follows :

T == head of Liat (T')
head of Lows
cane I of

nd |0

head A andtail B | A

Similarly for feif, We suppose that for each T" used there is
a production

=0

giving = distinguished constant O of typs T. MNote also that
il the queue is emply when a dequeue message comes, i,
and thus bead of &, will pot be instantiated. Thercfore, the
user procesa brying o use V will be delayed when trying to
determine the strocture of ¥V in a ease construct. It wilt be
allowed to proceed when anm enqueus message from the
second wsér arrives. Hence, it is mecessary Lo restart the

quewe manager in parallel.

7. Conclusion,

In the process of combining the power of a relational
logic programming language with s typed extessible lame-
Honal programming language, we find that RF-Maple offers a
golution to a wide variety of applications, We have a synlac-
tically extensible programming language with a fine scale of
contrel bebaviour. Moreover, the declarative reading is not
compromised by any operational aspects. The declarative
reading of RF-Maple programs specifies only the partial
correctness. Programs may still fail to terminate. But if they
terminate, the declarative reading has been achisved. Cots of
Prolog are not invariact to the declarative reading.

Finally we should say a few words on the eurrent state
of the langunges. We have a running pilot implementation
of R-Maple done by the second author. There i3 an almost
runniog implementation of F-Maple done by the frst author.
Almost running is because there is a lot more than 3 mere
interpreter to F-Maple, F-Maple has beon designed as its own
operating system with o strocture editor and a virtoal file
system. A fumclion is nol aware whether the arguments
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come from ancther funpetion, from a fle, or from the inpat.
In the lzst case we resoter the structure editor and the user
copsiructs the valae of the reguested type via meous of
applicable geserating productions. Thus Lhere is never a peed
for a program Lo parse the input from the characters,

RF-Maple it 2 true superset of FaMaple. One necds a
separate interpreter for the execution of generators in addi-
tion to the changes im the strocture editor. This interpreter
will be added to the F-Maple system 28 soom as F-Maple
becomes operational. With the capability to sequénce the
execution of a program sequentially or in parallel, and the
power of both lanetional and relational programming, RF-
Maple goes a little beyond the possibilities of the currently
available languages without compromising the declarative
remling of programe by cuts and commits.
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