PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMFUTER SYSTEMS 1984,
edited by ICOT. © 1COT, 1984

283

DELTA-FROLOG : A DISTRIBUTED LOGIC FROGRAMMING LANGUAGE

Luls Moniz Pereira
Departamento de Informdtica
Universidade Hova de Lisboa
2825 Monte da Caparica, Portugal

"The river spread into a mesh of

Roger Nase

Artificial Intelligence Technology Group
Digital Equipment Corporaticn
Hudson, MA 01749, USA

criss-crossing rivulets to form a delrta,

distributing the flow of water concurrently inte the sea”

ABSTRACT

Delta-Prolog, a distributad logie
programming language based on Monteiro's
Distributed Logic (DL}, &5 presented and
contrasted to Shapiro's Concurrent “Prolog®
(CP). Delta-Proleg is an extension te Prolog,
presently implemented owver C-Proleg under
VAX/VMS, but easily ported to other Prologs
and operating systems. It relies on the

single neotion of event for both process
compunication and synchronization, and
multiple processes can be Llaunched,

interactively or from within another one, and
run on several processors spread across a
nekwork, or as oultiple jobs on the same
machine. Consequently, parallelism can be
obtained for the Cforward direction, though
parent and child processes are serialized on
backtracking. ‘The motivation for this work
was to develop an immediate efficient working
prototype approximation to DL which also
provides an alternative to CP (without its
overheads and complexity of ilmplementation)
subsuming Proleg, which CP does not. We begin
with an introduction to DL, and then go oo to
show how Dalta-Prolog approximates Lt and
axhibit some examples. Next, implementation
issues are addressed. A comparison to CP
follows, and finally some remarks are made
ragarding future work.

1 DISTRIBUTED LOGIC

Unlike most concurtent logle programming
languages Delta-Prolog has a strong foundation
in legic, which is briefly reviewsd in this
sectlion. Delta-Prolog is founded om
Distributed Logic (DL) (Monteiro L1S8L1-34),
which extends Horn Clause Logic (HCL) in Ewo
ways 3 (1) first, by distinguishing between
sequential and parallel compogition of goals,
denoted *," and S ; {2) second, by
introducing the tima related notion of avent,
which provides both for process communication
and synchronizatien, in the programming
language interpratation of the logic.

There ls not much to say about the £irst
point: instead of the single and-connective

of HCL; DL has two connectives with distinct
operational meanings, as explained below.
Operationally, the next goal selected for
reduction in a goal statement is arbitracy,
except for the sequentiality constraint. For
example, in the goal expressicn (a/b), (c/d}
gou;: a and b may both be selected, bot not &
ar d.

The introduction of events is
accopplished by wusing "event goals". These
are goals of the particular forms G ! E or
G?E , whera ! and ? are binary predicate
symbols (the avent “"modes”, said to be
“complementary® - thae assymmetry is requiced
cnly becanse of implementational constraints)
i G is any term {the event “pattern”) ; and
E 18 an aram (the avent "nama" ; it ecan
conceivably be generalized to any term to
account for communication hierarchies).

A selectable goal G | E may be reduced
iff a complementary goal G 7 E may be
selected such that G and G' are onifiable ;
if this is the case, both goals are reduced ko
“trua"”.

We thus see how tha ideas of
synchronization and communication are embodied
in event goals. Synchronization relies on the
Eact that an event goal must be reduced
simultanecusly with a cosplementary event goal
| communication is the outcome of the
unification of the event patterns. Hotice
that, since G and G' are acbitrary terms
{which may include variables) communication in
DL is wvery general.

Daclaratively, an event goal is a formula
which is true only at the moment of occurrance
of tha event Lt describes. In BL it cannot be
proved that an event goal is true, but some
logical consequences may be derived from the
assumption that given seguences of events
{"event histories™) are true. Thus, the basic
samantle statement of DL is w|=g , asserting
that the truth of {ground} goal statement g is
a logical consegquence of the truth of (ground)
history w. The semantic implication |=
satisfies the following axioms and rules

284

{1} el=e for every ground event goal e

(2} |=efe' for any two complementary
ground event goals e and e', where
the null history has been omitted
from the assumpticons

(3} Lf wi=g and w'|=g’' then w,w'|=g,g'
and z|=gfg', where =z is an
arbitrary interleaving of w and w'
where complementary events may be -
connected by /'

{4y if w|=w' and #'|=g then w[=g

{5) if a<-g is a ground clause and
wl=g then w|=a

A faw comments are in order. (1) states that
the ftruth of e at any given moment may be
deduced from the truth of ¢ at that momant.
The meaning of (2) is that the communication
spacified by tha two cocmplementary events may
occur at any moment. (3) gives the logical
meaning of ', and */". (4 is s=imply the
transitivity of |= . And finally (5} giwves
the meaning of a clause.

The relation [= allows the declaration of
a Set of clauses of DL in a manner analogous
to the semantics of HCL. The completeness
thecrem states that for a given set of clauses
we have |=g iff the goal statement <-g can ba
rafuted.

Let us now santion some extensions to the
basic formalism, Event goals may be written
GIE :C or GTE :C, where C i5 a predicative
condition (goal statement) on the vaciables of
G ; the interpretation of the construct is
that the event only takes place if <-C is
rafuted.

The events modelled by ! and 7 may be
called binary, s$ince two cooplementary event
goals must ba reduced simultaneously. More
generally, n-ary event goals may be
considerad, with only a slight modification of
tha theory of binary BVents. Further
additions such as termination conditions lie
cutside the scope of this paper.

2., DELTA-FROLOG

Delta-Prolog aims to implement DL to some
axtent, by enlarging Prolog te accomodate the
DL notions of event and process distributicn.
Presently, it's implemented as an extension to
C-Frolog under VAX/VMS, and can run & program
as several processes spread across a network,
or as multiple jobs on the same processor.
Each procezs is under the control of a
C-Prolog interpreter instanca, Porting
Delta~Proleg to other Prologs and cperating
systems should not be difficult {(cf. section
5).

The motivation £for this work was to
develop an immediate efficient working
prototype that approximates DL and provides an
altarnative to Concucrent “Prolog” (CP)
(Shapiro 1983) (without its overheads =and
complexity of implementation) that subsumes
Prolog, which CP doés not., A more extensive
comparison to CP is provided in the sequal,

Full DL reguires binary and multipla
evants; multi-process access to shared memory,
process creation, distriboted backtracking
{Bruynooghe and Pereira 1984) or OR
paralellism, and the ability to express
terminating conditlons. Let's examine how
Delta-Prolog tackles these lssues ¢

3. BINARY EVENTS

Binary event occurrence is expressed by
goals of the form T!E:C or TTE:C, occurring
anywhere in a clause body, whers T is any
term, 2 is a binary event name (a Prolog
atom), and C a predicative condition. ‘:' has
a higher precedence than '!' or "?'. C can ba
omitted, the two forms becoming TIE and TPE.
Tha ‘cut’ is not allowsd in event conditlions.

A goal SIE:S5C sclves only when some
complementary goal RYE:RC is also reached in
soma other process, 5 unifies with R, and then
SC and RC evaluate both to true. The sama
holds for R7E:RC with respect to S!EiSC.
Agide from the synchronization feature, it's
as if each of the two event goals was replaced

by (5=R,RC,5C) whare the clauses for BC and SC
are delined in different processes.

While a complementary goal has not been
reached; alther type of event goal hangs.
Whan both complementary goals are reached, but
§ does not match R or one of SC or RC falls,
then RIZ:RC fails and S!E:5C hangs waiting for
a complementary goal to be reached again.
However, if 5 and R match but the special goal
'raject’ 15 activated within BC or SC, then
both event goals fail.

QOf course, SI1E:5C should not hang
eternally if thers are mo possible alternative
complementary events. As a stopgap solution,
the 'reject' predicate has been introduced for
usar controlled failure {at his risk because
completeness may be impaired).

The above assymmetry in the hanging is
necegsary to guarantee completeness of search,
by having one process hang while backtracking
is used by the other to explore alternatives.
In theory, Lt need not be decided beforehand
which complementary event will hang and which
will fail. A thorough treatment of this
problem will rely on dependency information,
as in (Bruynooghe and Pereira 1984). When
that's done, then both complementary avents
may have tha same form. The assymmetcy in the

syntax comes from the way events are
implemented at present, by means of reads and
writes into mailboxes (cf. below), where one
complementary event takes attempts to read
Erom and the other takes the ilnitiative to
write into A mailbox. (Hote that an arbitrary
number of processas may be attempting to
participate in some binary ovent E ; however
this possibility should be principled within

the general case of multiple events ; el.
section &).
Corresponding to "!' and *7?', we have

additionally introduced the event complements
T**B:C and T?TEC, as well as tha
upconditional varieties, for those cases where
it is not required or desired for '!" to hang
in wait for "?'. Of course, '2?' must still
wait for "°°' The semantics for thease new
predicates 1s defined in a way comparable to
tha one for [/0 streams.

4. EXAMPLES OF PROCESS COMMUNICATION

4.1 Sguares Example

The first example shows how two processes
cooperate to compute the sguares according to
the Eormula

2 2

o= (K=-1) + (2K-1) for #=0
The process launched with ":-squares.' on one
terminal successively computes and writes the
next sguare, using the previous square plus
tha next odd numbar computed by the process
launched with ":-odds.’ on another terminal,
which also writes the odds on that terminal.
Communication takes place through a succession
of events called 'mail’.

sguares :— write{d}, nl, =g{0).

sg{Q) - I ? mall,
R ig Q+I, writa{R), nl,
sg(R).

odds 1= odd(l).

odd(I) := I | mail,
J is I+2, write{(I}, nl,
odd({J).

4.2 "Counter' Example

The next e=xample concerns a ‘counter®
object, cf. {(Shapirc and Takeuchi 1953},
expressed as a perpetual proceass that recelves
from a separate terminal process commands C
with tha form of "Command ! cmd" ewvents. The
counter is launched with ‘:-c(0).' .

285

terminal:- read(C), C, write(C), nl, terminal.

c(S)s- clear ? emd, c(0}.

e{S)i- up 7 cmd, ¥ is 5+1, <(U).
g{5):— down ? cmd, D is 5-1, (D).
a{8):= show{5} 7 emd, <(5).

c{%):— abolish 7 cmd.

c{S):= X ? cmd : reject.

When a command *show(5) ! cmd' is issued, the
counter process is hanging at event goal
‘elear 7 omd® in the 1lst clanse. Failure to
bind "show(s)" to ‘claar” provokes
backtracking to the naxt counter clause, and
s on until the 4th clause is reached. Then
the two event goals solve, and terminal
racaives the wvalua of 5. If some:
unprocessable command is issued the evant in
the last clause for counter will aceept it,
fail, and cause fallure of the terminal
process.

4.3 Two Sets Exampla

Another axample regards wo non-empty
disjoint sets of integers S50 and TO. The
objective is two determine two sets 5 and T
such that :

(1) SOUTO=SUT

(2) cardinality(5) = cardinalitv{(50) and
cardinality(T) = cardinality{T0} and

(3) every element of 5 is lass than every
elemant of T.

The problem is solved by creating £ 4
processes, ‘proc_t' and ‘proc_s", where
'proc_t" takes a set, starting with TO0, ard
computes Lits minimum element, whila ‘proc_s'
takes a set, starting with 50, and computes
its maximum element. Then the two elements
are exchanged between ‘proc_t' and ‘proc_s’.
If the minimum of one is less than the maximum
of the other, the axchange 1§ accepted and
they both recurse on thelr new sats ;
otherwise the exchange is unaccepted, and both
stop, having compited their final values T and
si

proc_t{?0,T) :- min{T0,¥,R),
exchange(X,¥) 7 mail,
cont_t{(X,¥,R,T}.

cont_t{XZ,¥,R,[¥|R]) :- x<¥, 1.
cont_t{X,¥,R, T) - proc_t([x[R],T).

min{{¥|5], X, [wlal} &= in{5.X,0), wWe¥, L.
min{[X|5].%;, S).

proc_s{50,5) - max(50,%,Q),
exchange(X,¥) | mail,
cont_s{X,¥,0,5).

286

EMt_S{K-‘Irﬂ'-[K!Q]J 1= K<Y, 1.
cont_s(X,¥,0, §) := proc_s([¥{Q].s).

m([ﬂﬁ]aﬂ.[ﬂlﬂ]) :- max(s,X.0), WX, !.
max{[X|5],X;, S).

4.4 Buffer Example

Our next sxample shows a buffer process
that may accept 'get' reguasts, even though it
may be empty, according to a LIFO scheduling
discipline. This is achieved by having the

‘out' predicata call as a condition on the .

request avent, and by having the notion of
negative buffer contents. Thus, =3 ‘got"
reguest 1% only answered when the "out® call
is satisfled, which in turn only happens when
anough ‘put's' are performed from some other
processes to make the buffer positive again.
This example shows how the completion of some
event can be made to depend on another one.

bi{B)z= gat{X} ? io: out(X,B,C), B{C}.
b{B):= put(X} ? io, in(X.B).

1"'[?{, '[J'l]).
in{¥, B) 1- append(B,[X],C), B{C).

out (X, [X|B], B 3.
out{X;, [1 (1) 3= bB(-[x]).
out{X, -8 , =B) - b(-[X]).

4.5 Collection of Solutions Exampla

Our next example shows eager and lazy
processas for producing collections of
solutions (Kahn 1984). Some consumer process
can send regquests of the form

‘solutions{G,M)} ** eagerall' or
"golutions(G,M) " lazyall'

through mailboxes eagerall or lazyall, where G
is a goal and M L5 a mailbox through which the
soluticns for G will arrive as a successlon of
events, computed eagerly or lazily. The
consumer procaess can use M whenever it wants a
next soluticn. The semantics of this
mechanizm is the same as that £or streams,
where M is the stream name. By convention, []
terminates the sequence of available
solutions. Once the producer has complied
with a request it stands in wait for another
one. Mora elaborate collectors are easily
envisaged.

eager:— repeat,
solutions(G,M} ?7 eagerall,
(G, ¢ "~ M, £ail ; [] "~ M 3, fail.

lazy:- repeat,
solutions(G,M) 77 lazyall,
(G, G! M fall ; [1 ! ®), £ail,

4.6 Cbject Manager Exampla

Our £inal example concerns an object
manager for several object processes. One
simply adds to it all clauses for the objects.
The manager recelves reqguests of the form
'Massage ! ObNama' Ercm the event named
'‘ohogr' ; as a condition on this event, it
then finds, within the rasolvent ‘'Obs', an
outstanding recursive call for the object
receiving messages through ‘Obname’' ; next it
searches for a classe ¢for that object and
processes it up to the recursive object call ;
tha object recursive call is then retained in
the manager's recursive call resolvant ‘Obs‘,
which contains all the cutstanding cecursive
object calls. Only then i3 the 'obmgr' @vent
terminated and the original request answered.
The event may, of courze, fail. Hote that a
‘reject’ from an object causes the manager to
issue a ‘reject’. Thus, one can avoid having
onea PFrolog process for each object. For
example, to manage the buffer and counter
objects above, the manager is started with @

"t—obmgr{ { fo/b([1}.,emd/c(d)) }.'

obmgr{Obs} :-
(Messagme ! ObWama} 2 obmgr :
{ replace({0bs,0bName/Ob,NObs ,ObName,/H0b) ,
process{0b,Message ! Obname, NOb, RIC) ,
RIC 1},
ohmar (HObBS) .

replace{ (Ob,0bs) ,0b, (HOb,0bs) ,¥Ob) == I.

replace((0b,0bs), X,{0b,NObs),N0b} =-
replace(Obs , X, HObs ,MOb).

raplace(Ob ,0b, HOb LHHOD) .

process{Ob, M, ¥0b,RIC) 1=

functor{Ob,F,N),

functer (5kel, P, N},

clause(Ob,Body),

solvalBody,M,Skel , NOb,Cut ,RT),

{ nonvac{Cut}, !, fail ; true },

{ nonvar{RJ), RJC=reject ;
var{RI), RIC=true }.

NIUH({-ﬁrH}.—H-SfﬂﬂthHE,M} H IJ
EQ‘-I-V.{A'MJ 5,;N0b,Cut |RJ:|‘ r
{ nonvar{Cut) H
solve(E,M,5,80b,Cut ,RF)).

solvel! , ,_,_sCut,_} :- tru= ; Cut=monvar.
solva((A;B),M,5,80b,Cut BRI} - 1,
{ solve(A,M,S,H0b,Cut,RI) }
solve(B,M,5,H0b,Cut BT}).

mlva{xm:c,uma,_._,_.my i= I,
H=M, Md=MB, check reject{C,®I).

solve(XK?MX,M!MB, , , ,) =1,
E=M, MX=MB.

{/* detects cbiect recursive call : */
Wl'l"afﬁl_.rsrsr__a_,} =l

solwve(G,M,5,¥0b,Cut BRI i-
Clﬂﬂl‘{ﬂ':a}:
solve(B,M,5,N0b,Cut ,RT),

{ nonvar{Cut), !, fail ; true).

solve{G, ;, ;, , ,) 1=

\+ current_pred(_,G}, G.

check_reject{{A;B),R) :- |,
{ chack_reject(A,®) ;
check_reject(8,R}).
check reject{(A,B),R) =— |,
check_reject(A,R}, check_reject{B,R).
check_reject{!,_} 1=
write('forbiden ! in evant condition'),
abort.
check_reject{true, _) :— !,
chack_reject{C,nonvar) :- Ca=raject.
check reject{C, _)} - C.

4.7 Perpetual Ewvents

Hote that new facts can be consideread
as perpeteal events, that avoid the use of
‘agsert’ i

fact{T!B) - T!E, fact(T!E).

Event E is forever ready to offer pattern T to
wWhatever process cares to recelve it.

5. BIMARY EVENT IMFLEMENTATION

The twoe system predicates *!* and '2'
have been added to C-Prolog, making
transparent use of mailboxoes to achieve

interprocess communication. On execution, by
a process PR, of a goal of the form RTE:RC,
two mailboxes are created (if not already in
axistence), whose names are variants of E, say
sE and rE. Thae mailbox creation Ls done
through appropriata system servica calls.
Haxt, PE hangs until it can read some term 5
from rE. After 5 is read, the unification of
§ with R is attempted. It it fails s is
written back 4intc rE and the goal R?E:RC
falls., Should wniflcation succeed, then RC is
avaluated.

Heanwhile, the process P5 that wrote 5
inta rE, by means of goal S!E:SC, is hanging,
walting for confirmation that 5 was accepted
{i.e. S5 unified with R and RC evaluated to

287

true). This confirmation is accomplished by
having process PS5 read SE (the result of FR's
uniifying of 5 with R) from mallbox sE ; SR is
then unified by PS5 with 5, so that two-way
pattern-matching is achisved (modulo the
absence-of=-common-memory limitation, which
precludes uynification of twe uninstantiated
variables). Hext PS5 evaluates condition SC.
If it fails a message is sent ta FR,
raject{R), through mailbox rE, which makes
ER's R?E:RC goal fail, and PS5 writes 5 once
again into rE and hangs, waiting for a
complesentary event in some process to come
along and carry through (albeit in the same PR
process, after it backtracks to a next clause
cholece) § otherwise, success is reported to
PR through the same mailbox rE and both avents
solve, Of course, process PR is made to wait
for this confirmation of acceptance Erom PS,
by hanginhg on a read from rE, expecting a term
W which it binds to R, and succeeds, or is
raject(R), and f£fails. The binding of W to R
is necessary inasmuch SC may have further
instantiataed R.

Buring evaluation of RC, in the preceding
dascription, the *raject’' goal may arise. In
that case, both RPE:RC and 5!E:S5C are caused
to fail ; this is accomplished by having PR
write into sE 'reject(S)', instead of SR, 50
that PS5 can confirm that the rejection refears
to its event half (rather than to someée other
process's ewvent half rejection), and fall its
5/E:5C goal. ‘'reject’ may also be used in SC,
with the sane affact of making both
complementary event goals fail. Conditions
are evaluated wsing a mini-interpreter in
Prolog that disallows 'cut’s to occur within
them.

In the foregoing discussion, it is
inpdifferent whethar the two mailboxes for E
are first created by PR or PS5. The whols
communication protocosl is written in Prolos,
and can easily be ported and changed or
enhanced o accomodate for variations, or for
n~ary events. The only additions to C=Prolag
censist in extending see{_) and tell{_} to
recognize mailbox names of the form mbx(E),
and have them create two mailbox variants, sE
and rE, if they're not already in existence,
by means of appropriate systam service calls.
The interface code is in Proleg and carries
cut the above protocol simply by using the
C=Prolog I/0 predicates, with the mailboxes
spacified as the see and tell files. Also
nesded i3 a subrottine to kill a mailbox given
its name, S0 that cleaning up can take place
when appropriate.

Useful for writing DL softwara and

operating systems Ain particular, but not
required for the above event implementaticn,
ars the two pradicates
‘contains_info(Mailbox)” and

'requasts_info{Mailbox)', which allow a
process Lo know, wWithout hanging, whether

288

Mailbox containsg information and whether some
process 1s hung waiting for information to be
pot into Mailpox. These, again, use "Device
Control Bleoek™ probing system fervice calls.,

The two system predicates """ and "77°
ara, implementation wise, specializations of
[! L aﬂd l? [.

6. MULTIFLE EVENTS

There is at present no special provision
to cater for multiple ewvents. There are still
choices to be made regarding the way the
'reject’ featiure {cf. below) and other izsies
will be dealt with in multiple events. One
scheme is to have a multiple event implemented
as a circular sequence of binary events.

T. COMMON MEMORY

Oelta-Prolog makes do wWithout common
memory. This pracludaes shared streams amongst
processes, and precludes the binding together
of uninstantiated variables in events.

8. PROCESS CREATION AND ITS IMPLEMENTATION

Processes may be individually created and
launched by the programmer, or spawned and
laynched from within another process. In this
case, 4inputfoutput to and from the child
process is agsigned by the parsnt to two
mailboxes, Goals to the child are sent by the
parent via the event mechanism {cf. below) to
a monitor clause which is added to the child
process. This clause is activated as scon as
the child is spawned. Thereafter it can
repeatedly accept goals from the parent,
process them and send solutions back or advise
that no more are availabla.

Thres basic system predicates arae
provided : for spawning a process, for
launching a goal in a spawned process, and for
gleaning solutions to goals launched in
spawned processes. A syntax more congenial to
DL can be built on top of these basic
predicates.

' spawn (Job,Node, Directory,Files) ' creates
and runs a C-Prolog job named Job at network
Hode, which consults the list PFiles in
Directory. I/0 from that job is assigned to
mailboxes named iJob and oJob. Two mailboxes
named rJob and sJob are also created to allow
for launching goals and receiving seoluticons
through the event mechaniszm (cf.below). Tha
implementation of 'spawn' draws on VAX/VMS and
DECHET-VMS system service calls.

The two follawing clanses are
automatically added to the Job program (though

they are hidden from the remaining program by
having them retract themselves, but we do not
show that here) :

Jobh i- [Files], repeat, go.

go:- launch(d) 7 Job,
{ G, solutian(G) ! Job,
option 7 Job,
{ Option==reset, !, fail ;
Option==halt, halt .
Option==backtrack, fail } ;

soletion(fail) ! Job, fail j

These clauses are responsible for
interfacing with the parent process, which to
do 30 uses the two sSystem predicates defined
by the clauses :

launch{G, Job) :-
launch{G) ! Job ;

solutien(S) ¥ Job,
{ 5==fail ; reset ! Job), !, fail,

solutions(G,Job) -
repeat,
solution(s) ? Job;
{8==fail,!, launch({G} ! Job, fail ;
Smi3 H
backtrack ! Job, fail }.

A typical program clapse that wuses them

‘locks like

fork{Gl,G2) =
spawn(job, node,directory, [£ile]),
launch(Gl, job),
G2,
solutions(GL, job) .

The beast way to really understand hew Lt
works is to imagine execution of this clause,
and to consider all the alternatives in
"launch® and 'solutions'. These clauses make
specific choices regarding the interaction of
procasses, and are made avallable to
facilitate the programmer's effort. Other
interface clauses can be provided by him
ralying on the same primitives.

The abowe code shows that spawned
processes and their parents can run forward in
parallel, but they ara autematically
serialized on backtracking, as in (Furukawa et
al. 1982). This is necessary becausa of
completanass. One process must wait f£or
another to explore its subspace of solutions
before it considers another solution in its
own subspace. An efficient solutien to this

problem is obtainable through distributed
backtracking, by using the theory in
{Bruynocogha and Pereira 19384). (However, in
Delta-Prolog, individual interactively
launched jobs can be explicitly made to
backtrack by the programmer in a ‘"ad hoco!
fashion by using the 'reject’' feature or by
writing different interface clauses. In this
case, the completeness of the solution set is
his responsability.)

8.1 Sieve of Primes Example

The method known as ‘'the sieve of
Eratosthenas' will be used to generate the
primes greater than 1. It censists in sifting
from the 1list of positive integers greater
than 1 all the multiples of any of its
elements.

The Delta-program starts by launching a
procass to create the integers and send them
through events named 'i', and proceeds to sift
those integers. When ‘sift' receives an
intager through event "I' (initially °"I' is
‘i) a prime P’ has been found and Ls output
; next "sift' creates a filter process for
'P' that will receive subseguent integers from
'1' : when cne of these is a multiple of "PB',
'filtaer’ gimply ignores it otherwise,
"filter® sends it to 'sift' through an ewvent
named CR'. 'generate_unigue_nams’ is a
predicate that generates a unigue identifier
used for a job or an event name when neaded.

/* file primes */
primes := create_integers(2,i), sift(i).

S1LE(I) :=F T I,
write{P), nl,
create_tilter{I,P,R),
sift{R).

create_integers(N,I) :=
spawn(job, node,dir, [intagers]),
launch{integers(H, I}, joh).

create filtec(I,P,R} :-
generate_unidque_name(Job),
spawn{Job, node,dir, [filter]),
ganarate_unigqua_nama{R),
launchi{filtec{I,P,;R),Job).

/™ EFile integers */

integars(N,I) - ¥ ! I,
M is N+l, integersiM,1).

289

f* Eile filter =/

filter(I,P,R) 1= W 2 I
{0is Wmed P),
filter{I,?,R}.

filter(I,BF,R) = H 7 L

N YR,
filter(I,B,R).

9. TERMINATING CORDITIONS

Terminating conditions are not tackled at
all, though their use can be skirted through
Ceprogramning .

10. COMPARISON TO CONCURRENT ™PROLOG™

We consider Dalta-Prolog (DFY a superior
alternative to Concurrent "Frolog” (CP)., Many
reasons may be adduced

CPlL - Tha name is mizleading. Concurrent
“prolog” is not an extension to Prolog ; on
the contrary, it forks away from it: absancea
of backtracking means less freedom 4in the
writing of CP programs and deadlock problems
which have to be solved explicitly by the
programmer ; "read-only" variables destroy
program reversibility ; completeness is worse
than for Proleog.

DFl - Dalta-Prolog subsumes full Prolog, and
i5 a simple, natural and powerful extension to
it, that can solve the problems Concurrent
"Brolog” programs express {contrast our
‘counter' example above with the CP versiem in
(Shapiro and Takeuchi 1583)).

CP2 - Exhibits ad-hoc Aimprovised semantics,
and a never-ending pletora of constructs. Too
many operational semantics fine details must
be kept in mind. For example, axportation of
gquard evaluated bindings only takes place
after commitment ; but if those bindings are
incompatible with any new external bindings
the process fails, and other guards no longar
have tha opportunity to commit.

DP2 - Is hased on Distributed Logic, which
possesses rigorous semantics defined as an
extension to classical Horn Clause Logic
semantics.

CP3 - Communication amongst pProcesses is
through streams only. Because the number of
streams of & process 15 Eixed initially,
communication with a new process, or diversion
of input from one process to another, reguire
expensive and non-user transparent stream
merging, extra programming effort, and make
object-oriented programming difficult.

290

Concurrent "Prolog” streams demand shared
mamory, and the synchronization mechanism of
read only variables destroys two-way pattern
matching at the principal functor level. An
additional predicate, walt(), is required Cfor
synchronization.

DP3 - Communication and synchronization are
both simultaneously achieved threough the
single notion of ewvent, which retains two-way
matching., Common memory is not a requirement
{but where available it can enhance
communication to include streams, which may be
set wp wia an event). Multiple process
communication doesn't require axtra
facilities. ARy waiting for ccamunication is
taken care at a low-level, and so does not
have to be explicitly programmed.

CP4 - Has not been compared ta other
Concurrency-axpressing formalisms .

DP4 - Distributed Logic has been shown to be a
general theory of concurrency, enccmpassing
many lnown formalisms such as classical
automata (including Turing machines), Petri
nets, flow and path expressionsz, and Milner's
concurrent processes ; cf. ({(Monteirc 1983).

CP5 - Heeds OR processing.

DP5S - Does not need OR processing, though At
can be used to implement it.

CP6 - At present, it is only simulated by an
interpreter written in Proleog, and has no real
concurrency ; processes do busy-waits for
each other.

It poses a nomber of @ Simdltanecusly
difficult implementation problems: fairness
of "guard" evaluation ; fast process creation
; deadlock handling ; correct “otherwise"
feature ; invisibility of bindings befom
commitment H "parly write" wvariables ;
difficult debugger.

DFE - Already runs simyltanecus processes, on
geveral processors spread accross a natwork
{including local area networks), or processas
can alse run in oultiple jobs on a single
Processor. Synchronization obtains through
mailbox I/0 that hangs without busy-waiting.
Multiple processes can be used for user
controlled OR-processing.

11. FURTHER DEVELOFMENTS AND FUTURE WORK

Further developments will concentrate on
improving and creating user transparent
library interfaces to the basic communication
and process distribution mechanisms, and
building software utilities ; in particular,
multiple events and alternative communication
schemes, as wall as object-oriented

programming software, and distributed database
access. This will become incorporated into a
usable extensicen to C-Prolog. We are
presently exploring the applications, in
particular natural language processing and
knowledge-based systems.

Future work will be concarned with an
angoing project to make Delta-Prolog evolve
toward the full general modal of Distributed
Logic {(including some new featuras) engineered
into an amenable programming environment. The
implementation will include distributed
hacktracking in the spirit of (Bruyneoghe and
Pereira 1984), distributed debugging as an
enhancesent to (Pereira 1984), and will rely
both on an abstract machine definition and on
a multi-processor shared memory architecture.
An option to shared memory is shared
references.

ACKNOWLEDGEMENTS

This work was accomplished mainly during Luis
Moniz Pereira's stay at DEC's Artificial
Intelligence Technology Group, Hudson MA, USA.
Roger MNasr was responsible for most of the
newly required C-Prolog access to the VAX/VMS
system. Spacial thanks are due to Michael Poa
and Digital's Worma Abel, Mahendra Patel and
Robert Boers f£or their valuable support and
encouragement. Thanks are alsc due to JHICT
(Jonta MHacional de Investigagao Cientifica a
Tecnoldgica, Portugal) for their financial
support, to Luls Monteire for his comments and
pistributed Logic work, and to José& Cardoso e
Cunha, Pedro Medeires and Joaquim Wunes for
subsequent improvements to the implementation.

REFERENCES

Bruynooghe,M., Pereira,L.M.

Deduction revision by intelligent
backtracking, in “Implementations of Prolog”
J.Campbell ed., Ellis Horwood 1984.

E'urukaHn..F..; Hitt.r“tr Hll.il.l-rlﬂtll;‘fr

Prolog interpreter based on concurcent
Programming, Proc. lst Int. Logic
Programmifng Conf., Marseille 1982,

Kahn,K.M. A primitive for the control of
logic programs, Int. Symp . on Logic
Frogramming, Atlantic City 1984.

Monteiro,L. A proposal for distributed
programming in legle, in "Implementations of
Prolog"” J.Campbell ed., Ellis Horwood 1984,

Monteiro,L. Uma légica para processos
distribuidos, Bh.D. thesis, Dept .
Informatica, Universidade Nowva de Lisboa,
1983,

Monteiro,L. An extension to Horn clause logic
allowing the definitien of concurrent
processes. in "Formalization of programming
concepts", Lecture Hotes in Computer Science
no.l107, 1981.

Monteiro,L. A Horn=clause like logle for
specifying congurrency, Proc. lst Int. Legic
Programming Conf., Marseille 1982.

Monteiro,L. A& small interpreter for
distributed logic, Logic Programming
Hewsletter 3, 1982.

Monteiro,L. A new proposal for concurrent
programming in logie, Logie Programming
Hewsletter 1, 1981.

Pereira,L.M. Rational debugging of logic
programs, Submitted for publication, 1984.

Shapire,E. A subset of concurrent Proleg and
its interpreter, ICOT Technical report TR-003,
1983,

Shapiro,E., Takeuchi,i.

Object-ocriented programming in Concurrant
Prolog, Hew Generaticn Computing wol.l, no.2,
1983,

291

