PROCEEDINGS OF THE INTERNATION AL CONFERENCE

(OM FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. € ICOT, 1984

275

FINDING TEMPORARY TERME IN PROLOG PROGHRAMS

Pentti Vataja, Esko Ukkonen

Department of Computer Science
Univeraity of Helsinki
Tukholmankaty 2, SF-00250 Helsinki 25
Finland

ABSTRACT

We conaider the memory management in
backtrack-based Prolog implementations
where the Prolog terms are represented
ag linked data structures that may
have shared substructures. In any
Eixed activation of a clause P, <--

,Pz,...;P r we call a kterm t ﬂE the
& LI temporary L1f its
epreae%tag1on al the end of the
activation has no shared data
structures with the terms of the
clause which called P,. Temporary
terms ocan be utilized™ in garbage
collection. Suppose, namely, that a
temporary term t does not sShare data
structures with the terms of the
backtrack points in the search tree
rooted at P Then the memory Space
for t can be Eeclaimed immediately at
the end of the activation of P, <-=-

rreasP . Two methods for

ﬂ}sc ver1ng temporary terms are
proposed. The dynamic method is
applied together with the program
execution. The static method is
applied before the program is actually
executed, but the outputs can be
utilized in organizing garbage
collection of every subsedquent
execution of the program, as long as
the program does not change.

bad
r

1 INTRODUCTION

A standard technigue in Prolog

implementations is to represent the-

Prolog terms as linked data structures
that can have shared substructures
(e.q. Warren 1977). When a data
structure becomes unreachable during
program execution the storage space
reserved Ffor it can be reclaimed and
used for storing new data structures.
Finding the unreachable storage areas
iz the well-known garbage collection
problem Eor linked structures.

The garbage collection is normally
done in an indirect way: the collector
knows the terms which are still needed
in program execution ("the live
variables") and marks all data
structures representing them. The
storage areas which remain unmarked
are known to be unreachable. The whele
storage is Efinally traversed and the
unmarked areas are reclaimed. The use
of this method in Prolog
implementations has been considered
e.g. by Bruynooghe (1984).

To complement this approach we
examine in this paper an opposite idea
which could be called direct garcbage
collection in Prolog. Our goal is to
develop methods £or locating at any
moment of the Proleog program execution
the terms which are not needed any
more and which do nok share
substructures with terms that are
still needed. Obviously, the storage
space reserved f[or such terms can be
reclaimed immediately. Opposite to the
indirect method, the reclaming can be
done without traversing through the
whole storage reserved for terms.

In the next section we define
temporary Eterms. This is the
key-concept Efor the rest of the paper.
The remaining sections give two
methods for £inding such terms. A
direct garbage collection can be based
on the results supplied by these
methods.

Our methods will be developed in
the gensral framework of
backtrack-based Prolog implementations
{e.q. Warren 1977, wvan Emden 1984)
whose main principles the reader is
supposed to be familiar with. Of
course, we also assume basic knowledge
on logic programming and Proleg (e.g.
Kowalski (19874), Clocksin & Mellish
(1984}}).

276

2. TEMPORARY TERMS
Let
(1) pﬂ o Pl,PE,...,Fn

be a clause of a Prolog program, with
head P, and body P.,P.,...,P_. Each
preﬂlcgte P., 0<=j2=n{ is of"the form
P.(f puca,r?) where the ., ;Copeeasl
ade lthe tlms of bp.. E&chzteru'ig
either a variable or an expression of
the form £ig ,....qk} where £ is a
function name &nd 9yeeeesg, are again
terms.

This means, in particular, that
each occourrence of a variable in (1)
is a subterm of some term of some
predicate P,. We call these subterms
(i.e., subtérms that consist of only a
variable name)} the variable terms of
il}. For example, the variable terms=
of clause

split(H,c(A,X) ,c{A,¥),2) <=
order (A,H), Eplit{ﬂf:{r!f 3)

are, from left to right, H,A,¥,A,Y,2
in the head and A,H,H,%,¥,% in the
body. Intuitively, we use variable
terms as pointers to the places in the
program text that in unifications can
be substituted by terms represented as
linked data structures, Suppose,
therefore, that it is dynamically or
statically possible to distinguish
whether a wariable refers to a linked
structure or to a data element stored
outside the storage area for linked
structures. {Statically this can be
achieved in Prolog dialects with
explicit type declarations; @.g.
Wilsson (1983), Mycroft & O'Eeefe
(1983).) Whenever this separation is
possible, we do not include into
variable terms the variables referring
to data. In the above example, if H
and A are known to refer to data, the
variable terms by our definition are
X/¥,2 in the head and X,Y,Z in the
body.

Consider then instances of (1),
that is, clauses that are obtained
from (1} by some substitution for
variables. The variable terms of such
an instance are the subterms that
correspond to the variable terms of
(1}.

Temporary terms are a subset of
variable terms, to be defined as
follows. Let t be a variable term in

the body of clause (l). Consider some
fixed activation of (1) during the
execution of the program. The
activation starts with unifying the
head of (1) with the current subgoal
and creating the data structures that
represent the wunified forms of the
tecms of (1l). S0 alsoc the data
structure Eor t is initialized.
Initialization often just means
creating a link pointing te older
structures, which thus establishes a
cshared substructure. WVariable term ¢t
is called isolated at this moment if
the data structure representing t does
not have shared substructures with the
wvariable terms of P,. WNote here that
shar ed Program Eext ("structure
sharing™) or shared primary data is
not considered as a shared
substructure. If the data structure
for & is still isolated when the
activation of (1) becomes complete
after successfully solving the last
subgoal P_, then we call t© a temporary
term in tlis activation of (1) .

Obwviously, when the activation of
{1} is completed the data structures
for a temporary ¢t are disjoint from
the data structures for the wariable
terms of head P, (and hence dizjoint
from structures fgr the terms of P.).
A temporary term is needed only Eor
the "local" purposes of (l). &ince ¢t
can have shared substructures with the
termz of the eclause which ecalled (1)
only 4if it has shared substructures
with the terms of Bhe we actually
have :

Proposition 1. Let t be a temporary
term in an activation of {(l). Then ¢t
dges not share substructures with the
terms of the head P in this
activation or with the terms of
predicate activations that in the
backtrack search tree are cutside the
subtree rooted at PD'

Being a temporary term is a
dynamic property: It iz possible that
a variable term t is not temporary in
all activations of (l). If t is always
temporary then it iz called a
statically temporary term of (1).

Proposition 1 implies that after
accomplishing the activation of (1),
the storage sSpace reserved for a
temporary term t can be reclaimed,
provided that t does not share
substructures with some term of a
backtrack point ("nondeterministic
node”) which is in the subtres rooted

at P.. Hence for reclaming it suffices
to Know that there are no backtrack
points in the subtree. In Proleg
dialects with the “out" this

information iz often immediately
available. Also implementations of
Prolog without "cut" are easily
modified to supply the information but
in this case, unfortunately, the
reguirement that there cannot be any
backtrack points in the subtree rooted
at P. seems rather strong and prevents
Eind?ng terms that actually are
garbage. However ; a more careful
analysis is possible to find more
storage areas that can be reclaimed.

Let us say that a temporary term t
of an activation of (1} is strongly
temporary if £ does not share
substructures with any term of a
backtrack point in the subtree rooted
at P,. Clearly, the estorage space
:ese?ved for a strongly temporary t
can be freed after accomplishing the
activation of (1).

In this paper we mainly
concentrate on Einding temporary terms
and just comment on the often rather
obvious changes neadad to find
strongly temporary terms. Section 3
deals with the dynamic case and
gection 4 sharpens the analysis to the
static case.

3 DYNAMIC ANALYSIS

The dynamic analysis is performed
together with the program execution.
As a result the analysis announces the
temporary terms of all activations of
clauses. The method to be presented is
approximative: every term claimed
temporary by the method really is
temporary but some temporary terms may
remain undiscovered. The method can be
used provided that the underlying
Prolog implementation allows to
separate during the program execution
the data terms from terms represented
as linked data structures.

Consider again a fixed activation
of a clawse ([1). If the data
structures representing two variable
terms t and &' of (1) in this
activation have a shared substructure,
we write t D t'. Relation D is called
the dependency relation of the
activation. One now immediately
notices that a wariable term £t of the
body of (1) is temporary if and only
if there is no variable term t' in the
head such that &' D t.

27

0f course, D is a symmetric
relation: t D t' if and only if £' D
£. The relation is not transitive
since, obviously, t D t" and t' D "'
does not imply that €t D t''. However,
we will compute (an approximation of)
D as if it were transitive. This
means, as already mentioned, that the
method does not necessarily £ind all
temporary terms.

The computation of relation D can
be based on some basic dependencies
between the variable terms. Let £ and
t' be two variable terms of P €=
PyranagE such that at least Bne of
tiam beangs to the beody. Then we
write ¢t BD t' if the wvariable name in
t is the same as the wvariable name in
t'. Relation BD is easy to compute for
each clause statically from kLhe
program text.

The corresponding relation between
the variable terms of the head P is
defined dynamically: Let t and £' be
two such terms. Assume moreover that
the wariable name in t eguals the name
in t'. At the beginning of the
activation of P, <-= Pi,...,P_ We are
considering, hedd P, i% unifillda with
the current subgoal., The unification
may <creakte a link between the
structures representing t and t'. In
this case (it is reascnable to assume
that the unifier is able to supply
this information) we write t UD £'.

The rest of the computation of D
simply propagates the transitive
effect of relation BD v UD to
all activations of clauses during the
execution of the Prolog progran.

 Pormulated inductively, the method for

computing D for a fixed activation of
a clause Py <= PivoawsPy proceeds as
follows:

pl., Ifn=0 {i.e., the clause has
empty body) » relation D is the
transitive closucre of the relation UD
for this activation of P L,
Moreover, D is defined o be the
propagated dependency relatiom of this
activation.

D2, Let n > 0. Assume that the
activation of P K== Py Papess ;P has
been successfullg complZte and Mthat
the subgoals P,sP.,.+.,P_ wWere solved
by unifying P, Rith a clBuze g L=
2,y 1 <=1 <% n, Also assume that the
ofopagated dependency relation of the
corresponding activation of each Q

=z is PDi' Wow propagate eac

278

ralation Pni to the activation of Pq
L P, P fq.-t;P bjl' setting t PD t
for ali vgriable“terns t and &' of P.
such that r PD, r' where r and r' aré
tha wvariable #erms of Q.. that
correspond to t and t'. gu we hava
three relations among the wvariable
terms of P == P.:P.ts.s,;P t the
relation PD gnﬂ the static relaEian BD
and the unification based relation UD.
Relation D is then computed as the
transitive closure of combined
relation PD U BD U UD. Moreover, the
propagated dependency relation of this
activation of PU == PoyPopesP_is D
restricted to “the v%ri ble tePms of
P ..
0

The detailed implementation of
this method should be gquite obvious:
to every activation of a clause one
must attach a data structure that
first represents relation BD U UD and
then collects during the execution of
the program the propagated relations
BD, . When the activation becomes
coﬁplatad, the transitive elosure of
the collected relation has to be
computed.

The relation between temporary
terms and the computed relation D can
be summarized as Ffollows:

Proposition 2. Variable term t is
temporary in an activation of clause
P L P rP FoEoa -'P if p haE. no
viriable terd €' Buch thdt & D t'
where D is the approximate dependenecy
relation of the activation, as
computed by the above method.

After minor modifications the
above method also finds strongly
temporary terms. A strongly temporary
term’ of Pn K== P Po,...:P_ i3 not
allowed to “share sﬁba%ructurgs with
the terms of the backtrack points in
the tree rooted at P,. It is natural
to transmit infurmat?on on such shared
structures together with the
propagated dependency relation. Let 0,
&= z; and PD,, Ll <= j <=n, be as if
step "D2. We'now assume that together
with PD, there follows a list of those
variablé terms of @, that share
substructures with som® term of a
backtrack point in the tree rooted at
Q,. The variable terms of P. that
cérrespnnd to the listed viriable
terms of Q. are marked. Then D as well
as the propagated dependency relatlon
of this activation of P €=
P 'sz""P iz computed as En step
D2. 2The 1iBt of variable terms to be

transmitted together with the
propagated relation contains all the
variable terms of P if P is a
backtrack point. otRerwize Phe list
contains all terms t such that £t D t°'
for some marked variable term t' of
the body Plfpzf""Pn*

Finally, it should be clear that a
variable term t is strongly temporary
in an activation of clause P Lo
Pl'Pz""'P if t' D t for no vagiahle
term™ t' i PQ and for no marked

variable term t* in Pl'PE""’Pn‘

4 S5TATIC AWALYSIS
4.1 The method

The purpose of the static analysis
iz to Ffind the statically temporary
terms o©of a given Prolog program.
Recall that a wvariable term of a
clause is statically temporary if it
iz temporary in all activations of the
clause which are possible during any
execution of the program, with a fixed
top goal but with varying data. While
the dynamic method is applied during
every program execution, it suffices
to apply the static method only once
but the results can be utilized in the
direct carbage collection of every
subseguent execution of the program,
as long as the program does not
change .

Basically, the statie method
involves a truncated simulation of all
unification patterns possible during
program execution. Because of
recursion, a finite and accurate
simulation of all patterns is
impossible, Therefore we use a
truncation technique called the depth
abstraction. This again leads to an
approximate solution: Some statically
temporary terms may remain
wndiscovered. To get reasonably
accurate results it is necessary that
= unlike in pure Prolog - a static
separation of data from structures is
possible (for example, explicit type
declarations are needed). The accuracy
still improves if the ground terms of
the predicates are known, see Warren
(1977} .

To trace the backtracking, we use
as technical tools the dotted "items”
widely applied in the theory of
context-free parsing (Aho and Ullman
1977). Similar technigues in analyzing
Prolog has been used earlier by Sato

and Tamaki (19B3).

Before giving the algorithm we
define some preliminary constructions.
To propagate information on shared
substructures we augment the program
with color wariables. Within every
clause, each variable as well as each
occurrence of a function name gets its
own ecolor wvariable. However, such
yariables are associated only with
function names and wvariables that
refer to linked data structures. Hence
a color wvariable is not associated
with a variable that refers to primary
data nor with a constant whose value
is represented by an empty link (e.q.
"nil"). For example, the clause

split(H,c(A,X),c(A¥),E) o
order (A,H) , split(H,X,¥,3),

where # and A are assumed not to refer
to structures, gets, with the color
variables shown as superscripts, the
form

R 4 RS
. R Ye2T) £==

}rcRE{ﬁ;H
R2 yR4, 2R,

split{H,an{h,x
order (A,H), split{H,X

The color variables are used to
indicate szhared substructures: If two
entitiez get the same color variable
their representations can have shared
substructures. It is assumed in tha
sequel that the color wvariables arce
assoclated with our Proleg program in
a proper way.

The depth of a term is defined as
the maximum number of nested function
names in the term. The level of a
subterm is the number of nested
funcktion names around it. Let & be a
term with color wvariables and k an
integer. Then the depth k abstraction
of £, denoted (t)k,is a term of depth
k, formed by replacing every level Kk
subterm with a new variable. A color
yvariable is associated with the new
variable only if the replaced subterm
contains at least one color wvariable.
If the color wvariables in the subterm
are Rere-.-sB_, then one of them, say
R4 s becomes to the color variable of
tﬁa new variable, and all occurrences
of wvariables BR.,;...yR_ outside the
gubterm are repliced b¥ R,. In an
obvious way, depth k ahat}action can
be applied on abstracted terms,
clauses, and also to items, to be
defined lakter on.

279

Consider as an example a term t =

Rl gR2 (yR3 R4 ,R3 [RS), _R6 RS,

of depth 3. Then

(t)2 = £BL(gR? (xR3 pR3) RS R3),

and ({£)2)1 = £8(r2R2), where TL and
T2 are the new variables.

B Horn <¢lause including a dot in
the body is called an item. An item is
allowed to contain color variables. An
item of the form P <— .2 18 an
initial item and an item of the form P
<== z, is a closed item. An item is
called a k-item if it contains only
terms of depth at most k.

If an expression E such as clause
or item is identical to another
expression F or differs from F only in
the wariable names, E and F are called
variants of each other, denoted as E =
F [modulo renaming}. This applies to
sets of expressions, too.

Let 5 be a program with initial
goal and with color variables, and let
k be an integer. The set I, of k-items
for 8 consists of all k-itﬁms that are
formed Erom some clause of 5 by
applying substitutions and depth
reductions.

Hext we define two binary
relations in I,, the relations DOWH
and MEXT. unffication in these
definitions is applied also to the
color wariables, such that the
substitutes £for these variables are
again appropiate color wvariables.

Let u = P <-= x.¥y be in I where
¥ denotes the first predicahe after
the dot. Then we write u DOWH v for
all v in I such that v is
((R<——.2)8)k. HEre R<--z iz a clause
of 5 such that R is unifiable with X
and @ is the corcresponding most
general unifier.

Similarly, if u = P <=-= x.Xy then
we write u MENT v for all items v in
Ik that satisfy (a) and (b):

{a)}) There are items Wy sWopauasW r 1 <=

r, such that u DOWN w; afid w, NEXT w.,
r=1 o ['s

item;

ib} From {a) it follows (the proof is
by inductien) that w_ must be of the
form R <—— z. where R is unifiable

280

with X. Let ©& be their most general
unifier. Then v = ((P<--x¥.y)0)k.

The item set construction for
program S can nhow be completed. Let
€=- .2 be the initial goal of 5. The
k=item {(<-- .zJk is called the initial
k-item for 5. The k=item set for
program & and goal =z is the finite
sekt Ik{S.zJ =

{y € I, | (<-- .2}k (DOWN U NEXT)* y}

where (DOWH U MEXT)* denotes the
transitive closure of relation NEXT U
DOWH .

The construction of set I, (5,z) is
almost aquivalent ko a similar
construction by Sato and Tamaki
(1983) . The main difference is that we
have color variables in items and the
substitutions © are assumed to have
been applied on a proper way on the
color variables, too.

We skip a description of the {more
ur less obvious) relationship between
{S,2) and the program execution to
sﬁlwe the goal <-- z. We turn to the
problem of finding the statically
temporary terms with the help of set
I {5,2). For each closed item in
(8,2) we first define temporary
sﬁbte:ms for items. This is analogous
to the use of relation D in section 3.
Here the relation is encoded in the
color variables of entitiezs and
therefore no explicit transitive
closure ¢alculations are needed after
forming IR(E;ZI-

. Let u = P <== x. be a closed item
in I {S,z], and let t be a subterm in
the bady X. Term ¢t 1is c<called a
temporary subterm of u if no color
variable has an occurrence both in &
and in the head P of u.

The temporary subterms of an item
have the following connection to the
temporaryness of subterms in actual
clause activations during program
execution:

Proposition 3. Let the execution of §
successfully activate a clause R <-—-
¥, with solution substitutinn &, and
let u be a clased item {5,z) such
that u o= Re==y. ¥G}k {modulo
renaming). IE t 15 a temporary subterm
of item u, then the subterm of
(R<~-¥}& that corresponds to t, is
temporary in the program execution.

Propogsition 3 simply says that
temporary subterms of an item u
indicate temporary subterms in all
activations whose unified clause
[(R<==¥10 can be abstracted to u. Since
any unified c¢lause can be abstracted
to some item in I, (5,z), statically
temporary terms of clause R <-- y in 8
can be foupd by considering
simultaneously all the closed items
that are instances of R <-- ¥. In this
way we obtain @

Proposition 4. Let + be a variable
term in the body of a clause R <~= ¥y
of 8. Term t is statically temporary
if in all eclosed items in I,_(S,2) that
are instances of R <-- ¥, the subterms
corresponding to t are temporacy
subterms.

A dguestion remains: What is a
suitable k? Obviously, the larger is
k, the larger is the set of statically
temporary terms that can be found
using the method of Proposition 4. On
the other hand, the size of set

(3,2) increases rapidly with k. It
aﬁems reasonable to use k which is
at least as large as the largest depth
of a term in 3, but further research
is needed with the problem.

4.2 Example

Let us apply the static method on
the Quicksort program of Clocksin and
Mellish (1981):

l. split(H,nil,nil,nil) <--

RZ R5

), a, R, 2R

<--order (A, H) ,split (H,x%%,¢v*, z73)

R2, yR3 oRé(, 2R3y,

<--nrdar[H,L],split{H,le,YR3 2R3,

2, ﬂplitiurﬁm (AR
3. split(H,cP(a,x

4. appenﬂ[nil;LRl,LRz} S

5. append (e®" (x, L%, u®3, B (x, 5By

<—- append (LR2 uR3, \B5

6. gsort{nil,nil) <=--

7. qsu:t{cnl{H,TRz};SR3l

R2 _Rd¢

<== spLit(H, T ,A ,BR5

br

qsarttnad;ﬂlﬂﬁi,qsorttBRi,HIR?}}

appenﬂ[AlRG RB{H BlRT} R31

Assume that (by a type declaration
not given here) variables appearing as
the first argument of functors “"split"
and "c" are known not ko refer to a
data structure whila all other
variables refer +to such strucktures.
Then the variable terms of clause 7
are tl =T, t2 = S, t3 = 7, t4 = A, t5
= B, t6 = A, £7 = Al, ¢B = B, t9 = Bl,
tl0 =Aal, tll = Bl, tl2 = 5. When
I i5;,gs0ct{¥,X)) is formed £for this
pﬁogram with kK = 1, we obtain, among
others, a closed item

gsort (™ (1,0%%) ,e®3 (8, <--

spig,c® (a,8%%) ,ePL(a,s72) P2 (v, 789y

2 2

qscrttcpl{h,sP J*cﬁltB.UG P

qsarticPJ{Y,TP4i-cRﬂiﬂr?Riila

2y %3 (n,x™) B m, ™).

ap[cGl[B,u
This is an instance of clause 7 where
Q,W.R,5,T,U,V,H,% are variable names
created in depth abstraction.

The subterm that in this item
nﬁérespﬁsda to variable term t3, is
¢ (A,R7). BSince color R2 appears in
the head of the item, the subterm is
not temporary. Hence t3 oannot be
statically temporary. Similarly, the
agfternpzthat corresponds to t4 is
¢ (A5 7). Colors Pl, P2 do not
appear in kthe head. This subterm is
temporary. Hence the stakic
temporaryness of t4 is not forbidden
by this item. Conforming in the same
fashion, one sees that the subterms
for t4-t8, t1l0 are temporacy while
subterms for t3, t%, tll, and tl2 are
not.

By examining all the closed items
that are instances of clause 7 (we
skip the details), it turns ouk that
the subterms corresponding to td4, &5
and t7 are always temporary. Hence we
have found that k4, t5, and t7 are
statically temporary.

The other wvariable terms remain
non-temporary by the static analysis.
A careful examinaticn of the program
reveals, however, that there are no
other statically temporary terms than
terms t4, t5, t7 found above. Hence
our approximate method works

accurately in this example.

Obviously, terms td4, t5, and t7
are statically temporarty in the strong

28]

sense 1if there is a "cut™ at the end
of clause 7 {or "cut" is appropriaktely
vsed in the other clauses). Another
possibility to discover strong
temporaryness is to collect
information on backtrack points using
a dynamic method, as delineated at the
end of Section 3.

5 CONCLUSION

A rather informal description of
two methods wuseful in organizing
memory — management in Prolog
implementations were given, based on
the concept of a temporary term.
Further research, both exparimental
and theoretical, is needed to test the
practical wvalue of the proposed
technigues, A particularly interesting
problem for such a study is the
applicability of our ideas in parallel
implementations.

REFEREHCES
Aho, A.V. and Ullman, J.D.

Principles af Compiler
Addison-Wesley, 1977.

Design.

Bruynooghe, M.

Garbage collection in Prolog
interpreters. In: J.A. Campbell {ed.),
Implementations of Prelog. Ellis
Horwood, L1984, 255-267.

Clock=in, W.F. and Mellish, C.5.
Programming in Prolog.
Springer-Verlag, 1981.

van Emden, M.H.

An interpreting algeocithm for Prolog
programs. In: J.A. Campbell (ed.),
Implementations of Prolog. Ellis
Hﬂrﬂﬂﬂd, lﬁﬂd, 93"'11”.

Kowalski, R.h.

Predicate logiec as programming
language. In: Proc. IFIP=-74 Congress.
gggtg;?ollanﬂ Publishing Company,1974,

Mycroft,A. and 0'Keafe, R.A.

A polymorphic type system for Prolog.
Artificial Intelligence 23(1l984),
295-307.

Wilszon, J.F.

On the compilation of Domain-Based
PROLOG. In: Proc. IFIFP-83 Congress.
North-Holland Publishing Company ,
1983, 293-298.

282

Sato, T. and Tamaki, H.

Enumeration of success patterns, in
logic programs. Int Automata,
Languages and Programming, 10th
Colloguium, Barcelona 1983. Lecture
Mokes in Computer Science 154,
Springer-Verlag, 1983, 640-652.

Warren, D.H.D.

Implementing Prolog. Report 39,40.
Department of Artificial Intelligence.
University of Edinburgh, 1977.

