PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1984, 265
edited by I00T, @ I00T, 1984
MULTI-VERSION STRUCTURES in PROLOG
By
Shimon Cohen
Fairchild AT lab.
4001 Miranda Ave, Palo Alto, CA 94304
In the : Given an array A, if you change one of its

ABSTRACT

In this paper we discuss the important problem of
implementing MVS (Multi Version Structures) like Arrays,
Hash-Tables, Sets, in logic programming Languages (ie.
PROLOG). One cam define pure PROLOG predicates
which behave like amrays etc. buot the question is how
cfficicnt these predicates are compared to the equivalent
operations in PASCAL, C or LISP. Obviously the problem
in logic programming languages is that you are mot allowed
to change the structure of logic terms and variables” values,
in logic programming you are only allowed to instantiate
variahles (once).
We discuss:

{1) What kind of MVS we want to have in FROLOG.
{2) The problems in implementing them.

{3) The alternative solutions.

We show how to implement arrays efficiently by intro-
ducing "Multi Version Arrays’. Armays which differ shightly
from each other will be implemented using one physical
array, thus the cost of vpdating an array while retaining the
old array will be small. Tt is also possible (using our method)
to “go back” to older versions and start modifying them
(without any damage to other versions). We show how to
execute parallel operations with such amrays and how to use
*Multi Version Arrays” to implement sets as hashlables (mot
lists). Sets are important and diverse data structures with
many special cases, in order to lake advantage of this
phenomens we propose to add some specifications (while
*creating” the set) which will enable the system {compiler) to
choose the most efficient internal representation (The inter-
pal representation will be transparent to the user).

* Part of this work was done while the suthor was o visitor
at UC Berkeley.

1. Introduction

al of this rescarch i to investigate and improve
bord. ing languages handle Multi Versions
Structures (MVS). In first order logic there are logical terms
whose m:mmmlhchlngndmdvniabmwhmhm
be instontisted only omce. For reasons of efficlency, we
would like to introduce amrays scis cic. Thsp:uhlm?-i:
these MVS is that when you use them 10 cTeale NEW VETO
you need to copy the entire structure. {i.. When you change
udﬂnﬂnﬁnuﬂy,ﬂnmﬂmmﬁcm&nmﬂ.

entries and create a new array B then we call A “the old ver-

sion” and B “the new version”. In this paper we discuss the

difficulties of, and alicrnative solutions to, this problem.

There are scveral things you want to take care of when you

deal with mutable amrays:

{1) The access time (of one element) in the oewest array.

{2) The accem time (of one element) in older versions.

{3) The updatc time.

{4) The Ability 1o modify old versions of the array while
retaining new onca.

(5) Execute parallel operations on some (or all) of the
elements of the armay.

() Etficient representation of SPARSE arrays.

(7) Dealing with Garbage Collection.

NOTE: Some of these requirements are contradictory.

11. Refated Work

The "trec method® < Okecfe 84> (sce the listing in the
sppendix A) is based on the breadth first scarch method of a
binary tree. Each node, in the trec, has an element of the
aray and two pointers 1o other elements. The root of the
tree is index mumber 1, his left child is No. 2 and his right
child i Wo. 3, The leftiight children of No. 2 arc 4/5 and
for Mo.3 are 5/6 ctc. Given an index (N) number here is the
algorithm thet will get you to the desired node which holds
clement a[NE
(NOTE: Look at N as a bit vector (left most bit is the most
significant bit})

(a) Scarch (from the left) for the first 1 bit.
(b) Skip this bit and look at the bits to it's right.
{c) Use the rest of the bits (down to the less significant bit)
s instructions
zero - go to the left.
one - go to the right.

For example: 6 is 0000000110
(=) The first 1 bit is the third from the right.
(b) Skip it and you look at the second bit form the right.
(c) Go rght (sccond bit is 1) and then l=ft
(i bit is zera).
(d) Congratulation !! you made it.

When you implement a sparse array on top of this tree, you
peed only (o maintain the nodes on the path to existing
indexes. Pereira noted <Percira 84> about the tree
method: *The real besuty of the Iog (tree) methods ix the
gpace efficient implementation of SPARSE armays: big
unused holes need not be there at all°.

266

My comments are: (1) I mever argue with people about
beauty. (2} I agree that the trec method is space-efficicat for
SPARSE smays. (3) In many cases arrays are demse (for
example: when they are wsed to implement hash-tables) and
then you pay two pointers per clement as overhead.
KAHN < KAHN 84 > proposed (in paralle] to this werk)
to use one physical array to hold the newest version of the
armay. Other old versions of the amay are maintained by lists
* of "valuc blocks”. Each value block contsins index-value pair
which enablc the system to restore old values. An array is
represented as u list of changes which ends with a pointer to
the physical array. The physical array contains the ncwest
vemion. When you update the array you copy the ENTIRE
list of changes (not very efficient for old arrays) and add the
lest index valuc (before the update) to the list of the old
arrays. His method works fine O(1) when you want to access
or modify the ncwest vemion. BUT it works very bad Of
number of changes) if you want to accem/update previows
versions. It is not clear whether his method is amenable to
parallel operations.

We propose a different method which allows the user
to use the same physical array for many “slightly” differcat
arrays. The cost for accessing an elcment in the most new
array (in our method) is O(1) meaning: it does not depend on
the size of the array or the number of changes or vemsions
which use the same physical array. The cost of update {in
our method) is ALLWAYS O(1) cven if you change very
old versions. The cost for sccessing an element in older ver-
sions of the same array is on the average Of oumber of
changes to the element) compare it with Of number of
changes to the array) in KAHN method.

In our method you cen also take an old version of the
array and modily it (creating a tree of versions) while you
still use the same physical array.

The average here in: O log(number of changes) + number
of changes to the particuler clement)

The worst case will be: Ofhalf the number of changes +
changes ta the particular element) :

One advantage of KAHN method is the fact that his array
package was implemented on top of the the LISP Machine
as part of the LM PROLOG and the way it was imple-
mented needed po changes to the Garbage Collector. The
‘trec’ method can be written in pure PROLOG (again sce
the appendix) so there are no special problems for the GC. I
suspect that the method we propose need some arangements
with the GC
Summary of different proposals
The tree method -
* It is not so good for accem/update of clements in any
version O{log(number of elements)).
* It is good for SPARSE amays (space) but not for dense
array (three times overhead).
* Old versions are not destroyed or Garbage Collected
unless you discard them.
* Garbage Collection is casy.
* Can be implemented in pure PROLOG.
* You can easily increase the size of the array.

EAHN method -

* It is good for update/access of clements i the most
mew verion of the ammay.

* 0ld versions are painful O oumber of updates).

* It is possible to update old versions and have different
versions.

* It in mot cfficicnt (spacc) for SPARSE arrays.

* It is casy to GC them.)

* It is hard to extend the size of the array, you need
to copy the entire array.

Multi Version Method (our method) -

* It is good as KAHN method and beiter then the tree
method for updatefaccess elements in most new array.

* It is better in accessing elemenis in old versions.
O{oumber of changes 1o the element accessed)

* It is the best in updating old versions
{allways constant time).

* It is as bad/good as KAHN mothod for SPARSE array
(womsc then the tree method),

* You need to "teach® the Garbage-Collecior about this
new dats-structure.

12. Where Is the problem ?

To illustrate the problem suppose we have the follow-
ing primitive operation in PROLOG:
array_uopdate(&, I, ¥, NewA).

The meaning of this predicate i "NewA is the army A
whose I-th element is changed to V™.

You don't want to copy A every time you create NewA, you
also want to be abie to cxccute:

array_spdate(A, El, V1, AT), arcay_opdate(A, E2, V2, AZ).

It means that arrays Al end A2 are both derived from army
A, and now we have three (A, Al, A2) arrays each one of
them is slightly different from the others.

Once you have "Multi Version Armrays® in PROLOG
you can implement scts quite efficicntly es hashiables. We
are interested in implementing the following clause:
eneol (5, E, Sr),

Read it:

“E is an element of the sct S and Sr is the remaining sei®.

It can be used for the following problem: * sclect three
different people from a group *

then you would like to execute:

‘z-lgirml.ﬂ}. aneol (52, Person2, 53), oneol(53, Per-

Notc that the set § is unaffected by the above execution, at
the same time you can use 54 as the set of people without
personl-3.

Right now {in PROLOG) scts are represcoted as lists
and you heve to use Hst operations to achieve the same
effect:

eneol([E | Scl, E, Sr).
opeof([A |8x], E, [A | S¢] = onecl({Sx, E, Sr).

However, if E is a term which is partially instantiated and
the sct is big it will be much faster to use another structure
{maybc hashiable) and another technique (hashing) to locats
E. The cxact efficient intermal represcotation of a met
depends on it's size and the type of elements ete. Another
Example: Each PROLOG gystem has a database of facts and
mules, this database is a set, can you imapine using list
representation for this set 77, It is unthinkable 1o access cle-
ments in this sct using list operations.

We claim that sometimes you want a general-type set,
BUT sometimes you have sdditional information which
might help the system/compiler to decide on the Appropriate
efficient representation. We therefor propose & way to
specify additional knowledge you might have about sets. An
attempt in this dircction wes the SETL "base’ decleration
<SETL 75>

2, Exienslons
In this section we propose the following extensions to
PROLOG:

2.1. Sets

Imatead of using the setof or bagof functions which do
mot retum "sets” or *bags” (but a list of all elements in the
“set” ["bag”) we propose to introdnce a rather familiar dats-
type namely a set. A real 'set’ will be implemented in the
moat efficienl way (most of the time a8 an hash-table, BUT
maybe as a list or bit array) depending on it's characteristics,
The way sets will be used is as follows:

() set of al(E,P,5).

Which is the same as the familiar serof function except that
S is o “real” set.
(2) omeol(ES).

Read it as follows™ E is &8 member of the sct 5%,

The problem in (2) is that we can't refer 1o the rest of the set
8, to allow it we introdmce;

(3) oneol(E,S5r).

There arc some interesting cuses:
CASE 1 - Only 5 is instantiated.
Then: E is an element of the sct S where Sr is the new se1
resulting from the deletion of E from the sct 8.
CASE 2 - § and E are instantiated.
Then: if E is in 5 then aa the sbove otherwise fail.
CASE 3 - 8r and E are instantisted,
Then: 5 is the result of adding E to the st Sr.
CASE 4 - Only E is instantiated.
Then: Sr is the empty st and $ is the single (E) clement s=t,

It 5 is & list (us in ordinary PROLOG) which was generated,
for example, by setef then ope can easily access the first ele-
ment (and the rest of the elements) by using lint conatructor:
[B |Sr] Sets s lists are very simple but can become very
incfficient when dealing with big sets (accessing random cle-
ment) or preforming big set operations like: intersection or

Lets mu scc now how we create (declare) pew empty sets:

(4) wet{S Specs).

Rudﬂunfm::".inlhmmlheﬂpeu
specifications® where Specs is a list with the following possi-
m:{mhmqlﬂud]

bhﬁmm} size of the sct (the sctual sire can be
The compiler may decide on the size of the hash-table,
Lateger(N1,N2) -
The set consists of integer numbem in the range of N1NZ.
The compiler may decide to implement the sct as & bit

array.
Examplc: Integer(0,100).

bt} -
L n:hﬁhm:&tmum basc act for the set 5,
Example: randay, monday, tnesds wednesday, thers-

day, (riday, mtardayD 7

base(BazeS) -

BascS is an existing sct which s the base s2t of the s=t 5.
Exzmple: buse{ 8z } where Sz was defincd carlicr as = sct.

267

map(Element, Key) -
Elements of the set have two paris: Key and Data,
For example: map{ a0,v),).
In the example: clements are "a(iv)" and the key is 7.
H vou couple it with the other (s2e above) speca. then
you can definc an array as o apocial case:
#et(S, [map{ al,v), I}, Integer(i,1,100)].
will be as in pascal: " array [L.100] of v *.

23. Arrays

Arrays are going to be used as follows:
(1) la_array(A, Skz)
{I}Hl&!‘hmiﬂﬁnﬁﬂnﬂﬂlﬂlilhnpﬁdm+
?Ifmljdlllulm[edthinﬁ‘tﬂg:uthcﬂnofﬂ.
€) If only Sice ia given then A @ & new amay of size Size.
(2) array_element{ A, Index, Valoe).
— A and Index must be instantiated. —
Eh]]'.f?duilﬁwnt'h:nﬂ-l

If Value is a variable then it gets the valus of the
il:l.d.::l:-thr.l:mm
(3) arcay_wpdate{ A, Index, Valoz, NewA).
“-l—umﬂmqt for NewA all the other variables must have

NewA is an array which is like armay A cxeept that clement
Index is replaced,

Is_srray can be called with an extra parameter called: speca
This can take any of the following values:
Fpares - SDATES ATTAY.

Bew - new venion of array is most likely to be used.
snlyew - Only newest version will be used for updaic and
RCCCE,

oalylast - Only last version will be UPDATED.

all - all versions of the army are going to be used (default).

These speca (as in the st casc) can belp the system (o deter-
mige the right internal represcatation.

3. IMPLEMENTATION

In this chapter we discuss the implementation of "Multi
Vemion Amays® (MVA) and the way we can operale in
parallel on them.

31 MVA

The idea is fo use one “FPhysical Armay” o represent
several slightly different arrays. Since these arrays have a lot
in common, we say that they are different *versions” of the
same array. The "Phygical Array” is implemented uning onc

array with the following mformation:

(1) MVAC - (Multi Version Armay Counter) A coumter
which counts the number of updates, initially it is zero and it
is incremented in every update.
{2) EL{i) - (Elemecnt List) Each element in the array is a
list of pamrs, every time we update entry § we push the pair
(Version . Value) onto the front of EL(j). Another words:
twumthmwniﬂptIHDfupdlhludlhbl!n:(m
slon) they were made.
To represent different versions (with the same physical
army) we use MVAPL - (Multi Verson Array Period List).
MYAFPL consista of: (L) & pointer to the physical array (Z) A
"period List" which is a lit of paim of numbers. Fach pair
represents 8 period of updates which are valid for this ver-
sion of the array.

268

EXAMPLE
Supposc we have an armay A with three elements initinlized
to NIL:

Physical Armay (c2ll it P):
MVAC:0
[1] : nil
{2] = nit
[3):add
MVAPL of array A: (<ptrte P> ({0.0)))
Mow we creale & now array B by updating A[1] to vi:
Physical Arcay (call it F):
MVAC:1
(=0 1.vI)
im!
: mil

MVAPL of array B: (<ptrioP> ((1.0))
(NOTE: MVAPL of A remains the same):

Now we create a new armay C by updating B[2] to v2:
Physical Array (call it P):
MVAC:2

i

MVAPL of array C: (<prrtoP> ({2.0)))
(NOTE: MVAPL of AB rcmain the same):
Now we create a ncw array D by updating C[1] to v3:

Physical Armay (call it P):

MVAC: 3
[M:((3.v3 1.vI))
[2): (2 .v2))
[3) : il

MVAPL of arrey D: (<ptrto P> {(3 om
(NOTE: MVAPL of A.B,C remain the same

Now army D i the newest version of the array but using
MVAPL of ammay B (for example) we can still accems the
right value of B[1] which is v1 (not v3) because the MVAPL
of B tells us that only vpdates made in the period 0.1 are
vilid for version B. NOTE that as long as we kecp taking
the newest vemion and updats it (o croata B new version
THEN the size of the new MVAPL remains the same,

Now we create a new amay E by updating CI] to v
(NOTE that we take an old version C and not the most new

wverdon D)
Physical Array:
MVAC: 4

[0 (8 . v 3. v3)(1.v1))
E{fﬂlz.ﬂn

MVAPLof armay E: (<ptrtoP> ((4.4)2.0))

The “Period Lin® of E consists two perinds 0.2,4.4 bocause
array E is derived from array C and changes in period 3 are
not valid for it.

32, Update algorithe

Here is the algorithm for & single opdate in MVA. The full
listing is given in the appendix B, the algorithm i= written in
LISP becawse it uses side effect operations (pushing a pair
onto the EL(i) lists).

array_opdate{ OMVAPL, Index, NewValoe, Newhd-
VYAFL)

(1) Add 110 MYAC., ; must be distructive

(2) Push the pair (MVAC . NewValue) onto EL{Index).

(3) Create & new MVAPL (new version of the aray)
Given that OldAMVAPL is

[MVAC,Array] , [V,Vatart] | RestMVAPL |

where:
ARRAY - physical array.
V - top version numbeér.
RestMVAPL - rest of the Old Aray Skip List,

(1a) I (MVAC = V+1) then the now NewMVAPL in:
[MVAC, Arrayl [MVAC, Vstart] | RestMVAPL]
(3b) If (MYAC > v+1) then we update old version of the
armay then MYAPL is:
[[MVA,C. Amayl [MVAC, MVAC] [V, Vstart] |
RestMVAPL}

NOTE:
(a) Update always takes a constant time.
(b) The size of the MVAPL remains the same (3.)

Unlem you go back and update an old version (3b) of
the array.
{c) There is always lpohwrmlha'phyﬂcdmarhthn
begianing of the MVAPL.

Here is the mPRﬂLDGpvm{fnr;ndlahHD
.} that we have the “dirty" operation:

change _entry(Array, Index, Valoe)
mmwm arTaY .

array_update{ [[MVYACArray] [V,Vstart]l RestMVAPL],
Index, Valoe, Newd) >
MVACI s MVAC +1,
change_var{ MVAC, MYACL), ; side effect
get_sntry(Array, Endex;, El), ; get ELIST
change entry(Array, lndex, [[MVACE, Valas] IEI].
make MVAPL{ Array, ¥, Vetart, MVAC, MYACI,
RestMVAPL, NewA).

make_MVAPL{ Array, ¥, Vatart, V, MVACI, RestMVAPL,
[MVAC,Arrayl, [MVACLVatari] | RestMVAFLD » L
; MVAC = V then just replace V with MVACL
-lll _MVYAPL{ Array, ¥, Vstart, MYAC, MYAC], RestMVAL,
[MVACArrayliMVACILMVACILIV, Vatart] | RestMVAPL]),
+ ndd a new pair w the MVAPL list.

33. Access Algorlibm
Here we describe the algorithm which is used to access
an clemeat in the array. Before we go into the details of this
algorithm we will give some examples:
Example 1:
HVAPLII. [[20, warray], [20,0]] ;

I‘-L(SJ-[[H ﬂ],[u.ﬂ],[s vill

THEN: v1 is the
Example 2:

MVAPL is: [[20, s#array], [20, 19], [15,0]]

It means: Only versions in the range [0.15,19.20] are good
tor this MVAFPL.

Then: ¥v2 is the result.
Example 3

MVAPL is: [[20, #*array], [20, 19), [15, 13, (7, 0]

It means: Only versions in the range [0.7,13.15,19.20] are

Then: v3 in the result.
array_element{ [Array | RestMVAPL], Index, Valoe).

s FLIST and ELIST are local vams
The Access al
(1) Set PLIST <— RestMVAPL, ELIST < — EL(Index).
(2) If ELIST is empty return nil (default value)
(3) If the first version number in PLIST is less then
the version number of the first value in ELIST
then: skip that element from ELIST and continue in (2).
{4) Now we know that the cod-of-period version number is
bigger s0 we want
to check if the start version pumber is less or equal to
the element version.
If it is s0 then this is the clement.
(5) Otherwise: we skip the top pair (of version pumber)
from PLIST and continuc in (2),

Here we all have a chance to figure out whether it will be
more clear to graap the algorithm when it is written in PRO-
LOG:

array_clement{ [Array | RestMVAPL), Index, Valoe) >
g+1_entry(Array, Index, ELIST),
; primitive access to array EL(Index).
array find(ResMVAPL, ELIST, Vaue).

array_fnd(_, [L [D. ; defanlt ks ool Lt
array find([[V, Vetari] | Rasdl [Ev, _]
| Relist], Valoe) =V < Ev , [,
array_find{ [[V, Vstart] | Rasl |, Relist, Valoe).
3 drop first pair from ELIST
array_fnd([[V , Velart] | RestAFLL [T Ev, Value]
[Retistl, Valoe) -
Vaelart <= Ev, L ; Value is returned (sce unification)
arcay fiad([[V, Votart], [[Ev, Valoe]| _], Valoe) = L
; special case when the last version in PLIST is alone..
array_fzd([_ | Rplist], Elist, Value) >
array_find{ Rplist, EList, Yalue).

; Drop a pair of version numbers from PLIST and continue.

34. Backtracking

In Backtracking we want to undo the effect of the last
update; since update is a simple up:rmml the opposite
(backtracking) is also simple, actually it is simpler. To back-
track do the following steps:

1. Decrement the counter MVAC (of the physical array).
2. Dizcard the top pair in EL{Index) where Index is the last
wpdated entry.

269

To do that we need to keep on the backtracking list a record
with: (1) the Index (2) a pointer to the physical array. Once
we backirack into this record, we simply do the above O{1)
operation.

35. Doing It in paralel

Supposs we want to apply a function/predicate P in
parallel to an array and change some (or all) of it's entries.
The predicste P has iwo parameters Plopatootpol), we
apply it to each entry (which is the input) and replace it with
the output (if P succeeds), If P fails then the old value
remains, Example: Suppose we have a big matrix and we use
& simple relaxation algorithm which iteratively changes the
clement value until 2 termination condition is met. This
predicate is applied in paraliel to all the clements in the
matrix.

Using the MVA technique we can do the following:

1. Add one to the MVAC.

2. Uss this number in the parmllel application as the version
number of the value. Recall that cach time we update a
vilue we add (infront of the EL(i)) a pair [Version , Value].
The algorithm in Concurrent PROLOG < Shapiro 83> (for
example) will be: (NOTE that we are going to have side
effiect opcrations again)

parallel_mapl P, MVAarray) = | ; commbt (why not ?17)
MVYAarray =[[MYAC, Array] | Plist),
MVACIBMVAC+ 1,
change_var(MVAC, MYACI),
aivaslze{ MV Aarray, Ske),

..P_-_P"w'l ll Shee, Armay, H‘r*c]-}’
make MVAPL{ Array, MYAC, MYAC]L, Plist, NewA).

make_MVAPL{ Array, MYAC, MVACL, [[MVAC,Vetart]Rest],
[MYACILArray], [MYACI,Vstart] | Rest] » L

make MVAPL({ Array, MVAC, MVACL, [[Vald,Vtari)Rest],
[MYACLArTay];, [MYACLMYACI)[Vold,Vatarf] | ResiD = |,

map in para(P, From, To, Array, MYACI) =
From == Ta, |
map b _para(F, From , Tel, Array, MYACI),
map la para{P, Tall, To, Array, MYACI),

; While "doit" does it in parallel

map_lo_pars(P, [ndex, Index, Array, MVACI) = L
array ELWArray, Index, ELI),
dolt(P, Carrent_valoe, Index, Array, MYACLEH),

dolt(P, Carrent_valee, Index, Array, MYACLE, EI) >
F(Current_valoe,New_valoe),l, ; success of P means change
change_entry(Array, index, [[MVACL, Newvalue]| EID,
udl(_i_,_,_._,_] + ofherwise,l ; If oo need to change don't fail,

rcturn safely.

270

3%. Trade-offs Optimlzations

As it often happens in real life, we can use simple
trade-offs and some practical comsiderations to achicve
efficient behavior of the program. In this case we want to
insure that worst case access time per clement will ALL-
WAYS be O number of changes to this element).
We obscrve that MVAPL is a list of pairs of versions
numbers, each pair represents a period of tme in which
updates are siguificant. Actually MVAPL can be
represented as m sed (bit vector of size MVAC) where the K-
th bit represent version oumber K. If the bit is "on' then
values opdated with this version aumber are significant for
this MVAPL. Maintaining this bit vector imposes changes on
the update algorithm:
(1} Increment the MVAC of the physical array.
(2) Copy the bit vector from the old MVAFL

{which is also a bit vector).
(3) Increase the size of the bit vector by one

(bit) and set it to "on’.
{4) Add the pair (MVAC - Value) to the clement list.

Obviously in step no. 2 we are doing O{number of changes)
operations which is worse then the O(1) (that we previously
claimed for the update operation), BUT we gain alot in
tcrms of acces (for the worst casc) which becomes
Of(pumber of changes to the accessed clement). ALSO prac-
tically every 100 updates need roughly 3 long words {assum-
ing 32 bits per word). In KAHN method (in the worse case)
you will need to copy 100 values . If we update in parallel
then steps (1H{3) are executed once for the cntire cperation
and then each process updates it's own element,

The access algorithm is implified: If you access the K-th ele-
ment then you simply iterate down EL(K) and usc the ver-
sion number of cach version-value pair to check the bit in
the bit wecior MVAPL. If the bit is "on® then this js the
required value. NOTE that acces time for the most new

array is still O{1).

Finally, you can usc a mixture of these two represcotations
(1) list of periods (pair of version oumbers) (2) bit vector.
Use a lisi of bit vectors each of them 32 bits long (onc long
word). Each element in the lism will be eight bytes long
divided as follows:

(1) 4 bytes for the bit vector,

(2) 1 byte for number of bit vector.

{3) 3 bytes pointer to the next bit vector.

That will be good enongh for 256 * 32 updates (total of 8196
updates), after which we simply recommend to (really) copy
g; entirc array and start from the beginning (sce appendix

Other Special Cases

If we can guarantee (using a compiler, for example)
thet the armay is going to be used as in PASCAL or C
meaning: only the last vorsion is accemed or modified, then
we can simply use arvays with side-sffects (Big deal..). If we
can guaraniee that only the most new vemion is going to be
modified but we allow sccess 1o old versions then we can do
the following:

A pointer of a given version of the array will be a pair: (1)
version (2) pointer to the physical array, e
Each cotry of the physical array will have two fields:

{a) NEWvalue - the newest value.

(b) EL{i) - the list of pair (as before).

UPDATE -

(1) Increment MVAC by L

(2) Push the pair: MYAC, NEWvalue(i) to EL(i).

(3) Insert updates value into NEWvalue.

(4) Return & pointer to the array which is a pair: MVAC,
addres.

ACCESS - (newest version)

Ar fast a3 PASCAL or C, use the array address and access
the value in NEWvalue feld.

ACCESS - (old version))
Use the version number in the array to look for the value in
EL().

4. Sommary

In this paper we addressed ourselver to the problem of
implementing MVS. We propose bow to define the
appropriate predicates in the langusge and then we discussed
the problems and sofutions.

The range of srray applications can be categorized by:

* Dense vi. Sparse amrays.

* Size of arrays.

* Update of last version ve. update of all versions,
{most of the time/ only)

* Access of lest version va. access of all versions
(most of the time).

The alternatives for internal representation arc:

* A copy per version - Need to copy the entire array
every update,

* Tree method - good for Sparse amray.

* Ken Method - good for array where the last version
is used most of the times.

* MVS method - good when all versions are likely to
be accesmed.

* One Physical array - Only if you are surc that you
will access the newest verzion.

5. Refereoces

< Clark 82>

Clark E. L. and McCabe F. G.

*FROLOG: a language for implementing expert systems®
Machine Intelligence 10, 1982.

< Carlsson 83>

Carlsson M. and Kahn K.

*LM-Prolog User Manual®,

UPMAIL Technical Report No. 24,
Uppeala University, Sweden, Nov. 1983

< Clocksin 81>

Clocksin W. and Mellish C.

*Programming in PROLOG"

Springer-Verlag, Berdin, Hicdleberg, NewYork 1981,

-:Grhwnh ld B3>

BOOK, Prentice Hall, 1983,

< Hill 74>

Hill R.

*LUSH resolution and its completenem®

DCL Mcmo NO. 78, Dept. of Artificial Intelligence,
Univ. of Edinburg, 1974.

< Kahn B4>

Kahn K,

*Incorporating Mutable Arrays into Logic Programming®
Private Communication,

The Intl. Conf. on Logic Programming in Sweden 1984,

< Kennedy 75>

Kennedy K. & Schwatrz J.

*An Introduction to the Set Theoretic Language SETL"
Computation and Mathematics with Applications, 1 (1975)
pp- ¥7-1189.

< Kowalski 74>

Kowalski R. A.

*Predicate Logic as Programming Language”
Proceeding IFIP Congress 1974,

< McDermott 80>

McDermott ID.

*The FROLOG phenomenon®
SIGART MNewsletter 72, pp:16-20, 1980.

< Dkeele B4>

RA.OKecle

*Updateable Binary Trees”

In Stanford On-line PROLOG library (5U-score)

< Pericra 84>

Periera F.

A comment about mutable arrays which appeared
in the PROLOG electronic digest

< Robinson 82>

Robinson J. A. and Sibert E. E.
*LOGLISP: An altemative to PROLOG"
Machine Intelligence 10, 1982.

< Sato B3>

Sato M. and Sakurai T.

*QUTE: A PROLOG/ LISP type language for
LOGIC programming”

Proc. of 8th inl. Joint Conf. on Al, Volume 1,
Avgust 83, Karleruhe, West Germany.

< Shepiro 83>

Shapiro E.

* A subset of Concurrent PROLOG and {t's Interpreter”
ICOT Technical Report, TR-003, ICOT 1963,

< Warren 77>

Warren D. H. D, Periera L. M. and Periem F.

"PROL OG- The language and its implementation compared
with LISP*

Proc. of Symp. on Al and Programming Languages, 1977,
SIGPLAN Notices, 12, No. B, and SIGART 64, 109-115.

< Warmen 80>

Warren D. H. D.

*Logic Programming and Compiler Writing®

Software Practice and Experience 10, pp: 97-125, 1980,

< 'Warren 82>

Warren D. H. D.

*High order extension to PROLOG: are they needed T
Machine Intelligence 10, 1982,

271

Appendix A
rl

Here i a copy of O'Keefe file for vpdateable arrays (the
tree method). in the end we added pp_tree & top which help
you to test and understend this method.

File :TREESFL

Author : RA O'Keefo

Purpose: Updatable binary irees.

We have:
list_to_tree : O{N)
tree_to_list : O(N)
get_label 1 O(lg N) as: array_element
put_label : O{lg N} &s: array_update

Where N i the oumber of clements im the tree. The way
get_label and put_label work is worth poting: they build up a
patiern which is matched against the whole tree when the
position number finally reaches 1. In effect they start out
from the desired node and build up a path to the root. They
still cost Oflg M) time rather than O(N) because the patterns
coptain O(lg N) distinct varisbles, with no duplications.
put_label simultaneousty builds up & pattern to match the old
tree and a pattern to match the new tres.

get_label(Index, Tree, Label)

treats the tree a8 an amay of N elements and returns the
Index-th, If Index < 1or > N it simply fails, there is no
such clement.

*f

_label(N, Tree, Label) -
find_mode(N, Tree, t{Label,_,).

find_node(l, Tree, Tree) =- 1.
find_mode(N, Tree, Nodc) -

N=1,

0 is N mod 2,

MisN /2,

find_node(M, Tree, t(_Node,).
find_node(N, Tree, Node) =

N>12

1is N mod 2,

MisN # 2,1,

find_node(M, Tree, t{_,_Node)).

-I"

list_to_tree(List, Tree)

takes a given List of N elements and constructs a binary
Tree where get_label(K, Tree, Lab) < => Lab is the Kth
clement of List.

v

list_to_tree(List, Tree) :-
list_to_tree(List, [TreeTail], Tail).

list_to_tree([Head Tail), [t{Head,Left Right)Qhead],
[Left,Right\Quail]) = list_to_tree(Tail, Qhead, Qtail).

list_to tree{[], Qhead, [[) - Hst_to_tree{Qhead).
list_to_tree{[WQhead]) =- list to_trec(Qhead).
lm_m_m{[[l

272

.l'

put_label{Index, OldTree, Label, MewTrec)

comatructs a new tree the same shape as the old which more-

over has the same elements except that the Index-th onc is

Label. Note that O(lg N) new apace is needed.

o

put_label(N, Old, Label, New) =

find_node(N, Old, 1{_Left Right), New,
t(Label Left Right)).

find_node(1, Old, Old, New, New) = L
find_node(N, Old, OldSub, New, NewSub) =

N>1,
0is N mod 2,
MiN /2
find_node{M, Old, t(Label,0ldSub,Right), New,
t(Label,NewSub, Right)).
find_node{N, OId, OldSub, New, NewSub) =
N> 2,
1is N mod 2,
MisN I/ 2,1,
find_node(M, Old, t{Label,Left,0ldSub), Mew,
t(Label,Left,NewSub)).
.l"

tree_to list(Tree, List)

is the converse operation to list_to_tree. Any mapping or

checking operstion can be donc by converting the tree to &

list, mapping or checking the Hst, and converting the result,

if any, back 10 a tree. It s also easier for a buman to read &

Emmnm.uﬂwnrd:rhthem;mﬂlnmm
G .

*f
trec_to_list{Tree, List) :- tree_to_list{[TreeMail], Tail, List).

tree_to list([], [J, D = 1
trec_to_lis((Al L _, [D = var(A).L
tree_to_list([t(Head Left Right)Qhead],
[Left, RightiQtail], [Head Teil])
tree_ta_list(Qhead, Qtail, Tad).

"™

pretty print the tree (pp_tree was written by myscif).
Use it to print the tree created by Tist_to_tree’ ete.

*f

pp_tree(Tree) = pp_tree(Tree, [,).
pp_tree{ Tree, _,_) = var{Trec),l. % cmpty leaf
pp_tree{ t(LabelLR), L1, LRT) =
Int{l,LRT,YeaNol),
pp_trec(R, [YesNollLilr),
ttline({L1),write (Label),nl,
Irt(r,LRT,YesNo2),
pp_tree(L, [YesNo20LIL1).

fine([D > L
nuw(hr:n + tline(L),write{" 7).
tiline([nlL]) =~ ttline(L)write(" 7).

In(LRT,LRT.y) =\
% returns 'y’ if first two params are the same
Iri{_, n). % otherwise "o’

% top - simple top loop to test the above defs.

top > top{Tree).
top(Trec) =

write(Enter: a(L,V). (NOTE 4. to exit)),al,
mdﬂﬁ}' 1.

top{Tr

mp['l'm.q}?l. % cefini

top(Tree a(L.V)) =

pui_label(l,Tree, V, NewTret),

write(" Tree after update °) ,ul,

This is the LISP verslon of the MVA package, the main rea-
son for writting it in LISP is the peed for side effects.
NOTE: this file was tested on FRANZ lsp.

Multi version arrays for LISP systems (This package is for
FRANZ LISP)

Written By: Shimon Cohen
Time: Feb 4, 1984
Place : UC Berkeley

NOTE: To help implement this package in ancther LISP sys-
tem we [ist the functions which scem to be unique to
FRANZ LISP. (In FRANZ LISP the array we are using it
called *vector’): The rest is written in “standard” LISP which
will (hopefully) be portable without modification.

(new-vector 'size)
RETRUNS: Internal LISP array of size sze”
(vsel ‘mvarray ‘index ‘value)
RETURNS: the value
(vref "mvarray ‘index)
RETURNS:; The clement "index

The above functions are used by this package to implement
the following MVA (Multi Version Array) package:

(mvaarray ‘size)
RETURNS: A new amray of size ‘size”.
(mvap "array)
RETURNS: truc if 'array’ is mva array,
(mvaset ‘oldarmay index ‘value)
RETRUNS a new array (the old onc retnins it's valucs)
{mvarct “array ‘index)
RETURNS: the value of index’ element.
(mvasize "array)
RETURNS: The mva array size.

(mvachanges ‘array)
RETURNS: The oumber of modifications made to the

arrmy.
(mvacopy “array)
RETURNS: a copy of the array (without old history)

*

{def mvaarray (lambda (size)
(cons {cons 0 (new-vector size])
(tst (0 . O)))

(def mvap (lombda (array)
(and (listp amray)
(listp (car array))
(listp (cdr array))
(mumberp (caar areay))
(vectorp (cdar array)))))

(def mvasize (lambda (a) (vsize (cdar a))))
{def mvachanges (lambda (s) {caar a)))

fod

A pointer 1o a mvaarray has the following siructure: The
‘car’ points to n dotted pair whose "car’ ia the “clock’ and the
‘odr® is the actual array. The "cdr’ is a list of pair of oumben

(time periods).
*

(def mvaset (lambda (oldarray index value)
(prog {clock ; internal array “clock”
clockl ; plus 1
a ;"internal array” {p real one)
1 ;history Hst
el ;dotied pair [the above

)
(sctg cl (car oldarmray))
(serq elock (car elj)
(sctg clock (addl clock))
(se2q a (cdr <))
(z=tq 1 (cdr oldarray))
(vsct a index {cons (cons clockl value)
(vref & index)))
(rplaca ¢l clockl) ; update *internal clock®
(return (cons cl
(cond ((eq clock (caar 1))
(cons (cons clock1 (cdar I))
(edr 1))
(t (cons (cons clockl clock 1) 1))
W)); end of MVASET function

{def mvaref (lambda (array index)

(mvaref-find
(edr array) ; the pointer history

[;ﬁ:l(mrmy}hh];mdmmmnm
(def mvaref-find (lembda (plist elist }
(prog nil
locp

{cond
((mull elist) (return nil))
((< (casr plist) (caar clist))

273

(setq elist (cdr clist))
(go loop))

((= = (canr elist) (cdar plis)); the clement “time®
(return (cdar clist)))
(t (sctq plist (edr plist))
(go locp)))
) ; end of MVAREF-FIND

"

MVACOPY
Fast Copy of ‘mva amay’

*

{det mvacopy (lambda (oldarray)
(prog (newarray i size a v)
{setq sire (mvasize nldlmy]]
(ectq newarrsy (mvaarray size))
(setq a (edar newarray))
(setq i 0)

{cond ((eq | size) (return sewarray)))

(sctq v {mvaref oldarray i)

{cond ((null v) all) ; default is nil anyway —
(t (veet & i (list (cons O w)))))

(s=tq § (add1 1))

(go Toop))
)) ; end of MVACOPY

(def mvaprint (lambda (array flag)
(prog (i sizc a v)
(setq size (mvasize array))

(et a (cdar array))
(sctq i 0)

(cond ({eq i size) (rotum array)))
(print 3)
(patom ™: ") ; prints without quotcs marks
(cond (flag (print (vref a i)))
(t (print (mvaref array i})))
{terpri}
(sctq i (addl i)
(go loop))
M) ; end of MVAPRINT

274

Appendlx C
”

Load this file after you load the file in Appendix B, then use
the same old functions: myarer & mvaref the tame way.
These Procedures were optimized to squecze adjcent Bit
vectors of all 1.

Such adjacent bit vectors are replaced by a single number (1),
A pointer 16 a mvaarray has the following structise: The
‘car’” points to a doticd pair whose "car’ is the "clock’ and the
'cdr” is the actual array.

The ‘cdr’ is a list of pair of numbers where:

cdr - a 32 bit vector

car - pumber of bit vector

*

{def mvaset (lambda (oldarray index value)
(prog (clock ; internal array “clock”

clockl ; plus 1
a ; Minternal array” (a real one)
| 3 history List

el ;dotted pair of the above
cmod ; clock mode 32
coum ;clock div 32

]
(setq el (car oldarray))
{setq clock (car clj)
{setq clockl (addl clock))
{scig a (cdr cIj)
(zztq 1 {cdr oldarray))
(eetg cmod (mod clock 32))
(setq coum ([/ clock 32)) ; shift right 5 bits
(vset a index (coma (cons clock value) (vref a index)))
(rplaca ¢l clockl) ; vpdate "internal clock”
{return
(cons cl
(if {eq caum {caar 1)
3 if still space in this bit vector
(cons (cons coum
(boole 7 (cdar [) (Ish 1 emod))) : OR in
(edr 1))
{cons (cons coum (lsh 1 emod))
; new bit vector 32 bit
(i (and (eq -1 (cdar 1)
i <1 means; all bits are 1
(cq (caar) (subl coum)))
; squeeze all 1+ hit vectors
(if (cdr I)
{cons 1 (if (eq 1 (cadr I})
(cddr 1) (edr 1))
(if (zerop {caar I)) {cons 1 (edr 1)) N))
) ; end of retum
) ; end of MVASET function

(def mvaref (lambda (srray index)
(mvarct-find
(edr array) ; the pointer history
{Eﬁ (cdar armay) index) ; The clement history

(def mvaref-find (lambda (plist elist)
(prog (fag mv pv)
(setq fag nil)
NEXTplist

{if (eq (car plist) 1)
(progn (setq flag t) (setq plist (cdr plist)))
(sctq flag nil))
NEXTelist
(if (oull elist) (rerum oil))
(setq mv (mod (caar elist) 32))
(setq pv (/ (car elist) 32))
(if flag (if (or (null plist) (> pv (caar plist)))
{retum (cdar elist)))
(if (> pv (caar plist})
(progn (setq elist (cdr elist))
(g0 NEXTelist))))
{cond ({eq pv (caar plist)) ; check for member-ship
(if (zerop
(boole 1 (Ish 1 mv) (cdar plist)))
(progn (seiq elist {cdr clist)) (go NEXTelist))
(return {edar elist)))) ; YES this is the onc
(t (setq plist (edr plist))
(go NEXTplist)))
1) ; end of MVAREF-FIND

