PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by I00T, © ICOT, 1984

IF PROLOG IS THE ANSWER, WHAT IS THE GUESTION?

Daniel G. Bobrow
Intelligent Systems Laboratory
Xerox Paloe Alto Research Center
Palo Alto, California 94304, USA
Movember 1984

Absiract: Knowledee programming, the kevstome of the fifth
generation profect, requires specfolized (eols fo help peaple
represent and manipulate knowledge in the computer. Prolog
systents provide some of these tools. This paper mises gquestions
swhich supgest that logie programing showld be combined with
paradigms of fimction, object. rule and access oriented
progremming to focilitate the knowledge programming lask. A
second theme pursued here (s the integration of these paradigms
with cach odber, and within a fexible wser friendly computing
envirgmment Sueh an envirommend must provide source level

debwpging and monitoring facilities. analysis and performance
mming tools, and an extended sel af wser conmimunicalion

Programg
1. Intredoction

Prolog technology has been adopted by the
Japanese Fifth Generation Project as the kernel of
the “official” programming language for research in
knowledze based systems. Although thus paper
contains some direct criticisms of Prolog, its major
thrust is to describe the requirements for a
programming environment for the kinds of problems
faced in the knowledge programming task. It
illustrates by examples the need for these
requirements, and shows how these they have been
satisfied in some environments, including Prolog,
though no single environment contains all the
facilities suggested. A particular environment may
be missing some facilities, and be particularly good
in others.

One theme of this paper is the need for multiple
paradigms of programming. Yokoi [1982] states that
Prolog is being used as the basis for fifth generation
programming because it "gives new paradigms of
programming ... [which] make it much easier to dmi
with programs and programming”, Logic
programming provides a non-procedural
representation of knowledge, combined with a
powerful database search facility. [argue that
although this combination is very puwerful,‘ it is
inappropriate for some problems. By having a

number of other programming paradigms as well,
one can build more understandable programs more
quickly. No single paradigm is appropriate to all
problems, and powerful systems must allow multiple
styles. Just as there many tools in a carpenters
toolbox, each specialized to its purpose, there must
be many in the programmer’s kit. One should not
be forced {metaphorically) to pry up nails with a
screwdriver, Integration of multple paradigms is
illustrated by our experience with Loops [Stefik33,
BobrowStefik83] and with examples from other
systems.

The second theme of this paper is the integration
of these multiple paradigms within a powerful
environment which supports . incremental
development of programs. In knowledge based
programming, we are vsvally trying to develop a
system for which the requirements are not known in
advance. The user may not know the requirements,
or not know what data is required, not know
efficient ways to represent that data to obtain
appropriate answers in reasonable time, or may need
to explore fundamental algorithms. Thus, such
systems evolve over tme, with the definition of the
problem being refined in concord with the
development of the program to selve the problem,
Sheil [1983] refers to this as "exploratory
programming”. It is also the case that programs
once successful are also thought of as a basis for
more extended programs. As new requircments for
the extension, or interactions with other programs
are developed, the original program must change.
The guestions asked here about the environment are
the result of wanting to support that kind of
incremental, ever changing exploratory
programming,

‘The paper has two sections dealing with each of
these themes, The questions presented in falics are
suggested by the material of that section, and each
question should be considered a partial answer 0

the title question. However, it is not Prolog that
alone that must answer such questions salisfactorily,
but any system that is designed w support
programming of knowledge based systems.

L. Programming Paradigms

A programming paradigm or style of
programming supports the expression of a
programers intenl Some common programming
paradigms are the function oricnted paradigm of
Lisp, the object oriented paradigm of Smalltalk, and
the logic oriented paradigm of Prolog. A languagze
supports a paradigm if it provides the primitives of
that paradigm, composition methods, and an
appropriate user language to make programs written
in the paradigm clear. A language must also allow
effective execution of programs written in that style,
for quantitative changes in running time make for
qualitative changes in a system.

In the Turing mechine sense, all common
programming languages are universal. However,
different techniques for expressing the knowledge
may be more "natural”, depending on the form of
the problem, and the persons view the problem,
There is a tradecil between uniformity of a single
methodology, and the closer fit of different
methodologies to a problem. The costs to be
considered include the cost of learning, the cost of
debugging, the costs of change, and the cost of
running the application, Because different
paradigms organize and factor programs in different
ways, for a particular part of an application, the
various costs for using a particular paradigm can
vary across parts of a single application. By allowing
the user to have a choice, the total cost can be
lowered.

Leverage from use of a paradigm arises primarily
from two sources. The first is through the power of
clision; different paradigms differ substantially in
what can be concisely stated. Significant appeal of a
paradigm arises from what does not have to be
stated. By eliminating redundant or orthogonal
verbiage, the intent of the code can be more easily
understood. This, for example, is an important
virtue of the separation of logic from control in logic

programming.

Accomodation of program changes is the second
source of power in a programming paradigm.
Program change is facilitated by a number of
facilities in the environment; however, an important
component is the set of language features, To the

139

extent the commonly oceuwrring changes leave
invariant appropriate properties of the program, the
programmer need will have less to think about, and
will avoid some change-induced bugs.

Different paradigms allow different things to be
stated concisely, and provide different invariants
under change. One must ask of a programmiog
environment;

What paradigms of programming are available to the
user in the system as ¢ srands?

This is separate from the question of the
underlying implementation environment; that is, a
paradigm could be implemented in Lisp or Prolog or
machine language, The questions about
implementation revolve about whether the
implementation environment provides easy facilities
for building the semantics of the paradigm, whether
it can easily maintain the user illusion, and whether
it allows easy mixing of multiple paradigms. This
leads to a second question:

What support does the environment provide for
embedding new paradigms?

Does the system allow new syntactic forms
embedded within current structures? Can the user
create efficient implementations? s it easy to save
and restore linguistic entities written in new
sublanguages? All these are necessary, if not
sufficient conditions for embedding.

A third question is:

How are the paradigms integrated Inte the
efivironment?

One can epsily imagine using Lisp to implement
Prolog. However, one would like to see, for
example, smooth transitions between Prolog and
Lisp in both directions, and coordination of
environmental tools such as debuggers, editors, ete
In what follows, we describe several different
paradigms, and bring up questions which occur most
naturally in trying to implement each paradigm.

2.1 Object Oriented Programming

Object ariented programming has proven to be a
valuable way of thinking about programs. In this
paradigm, objects combine state and behavior. In
general, objects are grouped into classes, all of which
have the same structure and the same behavior,
Behavior is invoked from an object by sending it a

140

message. A message consists of a nome for a
behavior (often called a selector) and some other
parameters. The response to a message is
determined by the class of the object. Thus, if one is
programming a simulation of some vehicles, this
"messape passing” allows separation of the
implementation of functionality for each class of
object. If one has a collection of different types of
vehicular objects, changing how one of them
responds to the MoveForward message does not
effect the other implementations. Adding a new
type of object which responds to the MoveForward
message can be done independently by diffecent
people. From the users point of view, one wants to
add and view behavior factored by the class of
objects. rather than by operation (the usual factoring
in function oriented and logic oriented systems).

In building a representation of objects within
a system, if one is going to build many interacting
abjects, one is forced to ask about the
implementation:

Can one efficiently represent objects with class specific

behavior and dynamic state?
A second powerful idea of object oriented

programming which should be supporied well is the
notion of specialization. One class should be
describable as being like one or more others with
somc additions, Behavior should be inherited from
the more general "super” classes, and it should be
easy for the user to state this fact. The question is:

Can classes easily be specialized from one or more
siiper classes?

As a simple example, suppose the user defined a
MovableOhject class, with structure that included an
xPos and yPos, and simple behavior that included
responses messages to Move, CurrentPosition, and
Home (return to 0,0). Then every subclass of
MovableObject would include that structure and that
behavior,

General behaviors should be dividable at a fine
enough grain so that subclasses need only specify a
portion of a new behavior specific to the
specialization. For example, suppose the Move
methad for MoveableQbject was:

[Move (self newX newY) ;arguments of the
method are the object, and new position
(¢ self Erase) Call dhe cljees spectfic Erase
(«@ xPos newX)
(+@ yPos newY) :Updute the local informasion
(+ self Draw) calt she objoes spocifle Draw)

Now suppose a specialization Square inherits this
method. Square needs to specialize the Erase and
Draw messages. In the invocation of Move which is
inherited from MovableObiject, it is the method for
Erase found on Square that will need to he called,
One must ask:

What granularity of inheritance s alfowed for an
object hierarchy?

Explicit message delegation as in for example
Concurrent Prolog (Shapiro and Takeuchi 33)
doesn’t allow such fine grained specialization, Once
a "message is passed” to the delegated object, the
object being processed is the delegate. Thus
specialized calls from the inherited method must be
found on the delegated object

2.2 Access-Oriented Programming

Access oriented programming facilitates
separation of monitoring program events from the
processes thal can cause those events. In particular,
the events of concern here are storage and access to
states of objects. In procedure and logic oriented
programmiug, this is achieved by providing an
interface procedure (relation) which is always called
to make the changes. Then changes and access can
be monitored simply by changed the access
procedure (relation). The mechanism of annotated
values used in Loops provides affirmative answers to
each of the following questions which make it
superior to interface functions for achieving
separation of concerns:

Can programmers moniior arbitrary values without
previous programatic anticipation?

Is the mechanism invisible to programs not using it?

Is there low computational ouerﬁmd when the
mechanism is ot in use?

Is the mechanism efficient when in use?

Is it independent of the number of insiances af the
mechanismm being used?

Does the mechanism allow specialization, and self
embedding?

The mechanism in Loops for achieving this effect
is called an annotated value. There are two kinds of
annotated values: property annotation and active
values. Active valnes can associate, with any value,
methods to be invoked when a data store or fetch is
requested. Active values can be inserted in any

object value, and need not have been anticipated.
The implementation for active values makes use of a
special data type, valueWrapper, which is checked
for on any storage or retrieval operation. This data
type check is extremely fast (supported in the
microcode), and hence adds little overhead when not
in use.

The value Wrapper contains a Loops object which
will be sent a Get or Put message depending on the
access required. Since the valueWrapper is local o
this walue, the efficiency is independent of the
number of other active values in use. Because the
wrapped object is an ordinary Loops object, the user
can use one of the standard class of active values for
monitering, debugging, maintaining simple
constraints, and can specialize these for his own
application in the same way he can specialize any
class of objects.

Property annotations can associate with any value
an optional labelled property list. Such property
lists can be used to annotate the value with such
useful but subsidiary quantities. For example, to
augment a reasoning system to use certainties {or
probabilitics) one can store the certainty of
particular values on annotations for that value
without having to chaoge the structure of the
represated object. If one were to use a TMS style of
reasoner, it would be possible to store justifications
for particular values as annotations, and be able to
do dependency directed backtracking. Annotations
are provide a place for documentation for human
readability of data structures.

1.3 Logic Programming

Logic programming advocates have been split in
whether one should consider such programming as
knowledge representation or higher level
programming. Prolog has been the flagship of Logic
Programming. As such it has attempted to answer in
the affirmative the important question:

Is there a clear declarative reading 1o "program”
statemenis?

However the exigencies of making Prolog into an
cfficient programming language have led o the use
of control mechanisms which effect the declarative
reading. As indicated by Robinson (1983), the CUT
is the GOTO. of logic programming, with well
documented effects on the declarative semantics of
the program statements. Alternative approaches to
Logic Programming which make use of different
control primitives and search strategies, such as

141

SPralog (Smolka83), TABLOG {Malachi &
Manna83), and ESP (ChikayamaB3) suffer less from
this problem.

Another question with an unfortunate answer in
current Prolog implementations is the following?

Are the answers indzpendent of the control flow in the
logic?

The negative answer in Prolog comes up in a
number of guises. Since Prolog is incomplete, it
may fail to gel an answer which is implicit in the
logic of the statements, Another kind of problem
occurs when trying to usc a srraightforward program
a5 a generator. Consider the following definitions:

appendiList, [], List.
append([FIZ], [FX],) - append{Z, X, Y). :Z is the remk of
appending X e Y

sublist{Sublist, ContainingList) :-
append(ContainingList, FirstPart, Y}
append(FirstPart, X, Sublist).

Given the problem:

sublist{fa b], X).

Prolog goes into an infinite loop without giving
any answers. This is a result of the order of the
literals (goals) in the definition of sublist, and the
depth first generation order for lists for append.
Simply reversing the order of the clauses won't help,
because then the problem:

sublist(X, [a])

will loop forever (rather than fail) after it generates
the first two sublists of [a].

Another question which arises from the theme of
muitiple paradigms s:

How easy is it to embed other paradigms in this one?

There are several parts to this problem, some of
which are casier in logic programming, and some
harder. For example, to translate statements in
relational form to other Prolog statements (where the
natural semantics is logic) is easy in Prolog
Unification, a natural for combining of pattern
matching and structure decompostion, is a good
starting point for a compiler. The harder part to
achieve is the incorporation of special syntax, and
more the inclusion of non-logical semantics,
especially non local control struciures, ESP

142

{Chayama83) is an example of a Prolog exiension
which incorporates features to make such extensions
easy. Languages such as LM-Prolog
(CarissonKahn83) use a Lisp base to extend the
Prolog syntax and semantics.

With the trend towards decreasing cost for
hardware, it is becoming clear that the individual
user will have access to multiple machines. This
leads naturally to the guestion:

How are parallel computations expressed within the
paradigm?

Much work has been done in Prolog on
identifying sources of parallelisim, and allowing users
to take advantage of it Conery [1981] ideatifies four
primary Kinds: and parallelism, for each of the
subgoals of a goal, or parallelism, for alternative sets
of subgoals for a single goal; stream parallelism,
where pipelining of results can allow one process to
take partial resulls from another; and search
parallelism, where a database is to be searched, and
the assertions are divided betwetn processors.
Shapiro (1983) has suggested using read only
variables as a primary synchronization mechanism
for such parallel activity. Object oriented parallelism
has focused on data flow to objects which compute
when enough arguments are available, and
independent actor models, with queues of messages
for synchronization. This clearly is an important
direction for future work.

24 Rule Based Programming

Rule based programming is often very much like
logic programming. However, at least two issucs are
usually developed in rule systems which have not
been addressed as much in the logic programming
paradigm: dealing with uncertainty, and explanation
Systems.

Many knowledge based systems must deal with
uncertain information, and inferences which are
judgemental rather than logical. Extensive work has
been done in the context of rule based on combining
the evidence from a number of sources. This is at
the heart of the Mycin system for medical diagnosis,
and its various offshoots. One must ask of any
sysiem:

How is evidential reasoning handled?

The second point which is most strongly seen in

rule based systems such as Mycin is the development
of extended [acilities for providing user explanations..
By keeping track of the rules used to determine the
answer to questions, the system can provide the user
with a justification which consists of the trail of rules
which provided positive evidence. A problem in this
form of explanation is that it does not usually show
how negalive evidence was used 10 mule out
alternative conclusions. On must ask of any system:

How does the system explain its results 1o the user?

There is a the tension in Prolog between providing
an efficient programming language (for example, to
write append), and writing a higher level reasoning
system. For the former, explanations in terms of
storing program traces are inappropriate; for the
Iatter, it is worth the cost. A compromise which has
been tried is to build an intepreter in Prolog which
does the recording, at the price of an extra level of
interpretation. '

3. The Environment

Knowledge programming is explomtory
programming. The specification of the system is
developed with its implementation. As Kowalski
{1984) puis it

", a Prolog programmer who is always
correcting errors ... s a bad programmer. Bui
for a person using Prolog ... as a language for
analyzing ... knowledge,...trial and error is
unavoldable."

The question then arises for every knowledge
programming environment:

What iools are available for understanding, debugging
and Improving programs incremenially?

3.1 Errors, Tracing, Breaking, Monitoring

In trying to understand a program, it is often
useful to run it at slow speed, tracing its steps, and
taking them one at a time. In addition, when when
a program error occurs, the program should halt and
allow the user to explore the dynamic environment
of the computation. In embedded paradigms, and in
systems where the dynamic state is coded for
efficient computation, this imposes an often difficult
criterion of translation of the computational
environment into the source language of the user.

What view of the program state is available 10 the
user?

In Interlisp-D (Sanellad3), facilities are provided
so that views of data values can be filtered through
macros provided by the user. Loops uses these to
allow objects being processed to be in their source
form. In the Prolog implementations [know, tracing
and stepping are shown in source form, but
inspecting the environment of a computation
requires knmowing internal representations, if it is
available at all

One can ask more generally what appropriate
abstractions of a complicated system can be seen by
the user. Graphs of potential call trees, dependency
of modules, definitions of interfaces are all potential
candidates. Supporting growth of systems that are
inevitably too big for one person requires many af
these views.

Another important facility for incremental
debugging is the ability to make a change in the
program source, back up the stack to the last call to
the place where the error occurred, and to resume
the computation form that poiht. The reason this is
necessary is that in large systems, developing the
state in which the failure took place may be long and
expensive, and/or may have required extensive
human intervention which may be tiresome to
recreate,

Can exception handling allow special processing,
and backing up of the process?

Recognition of cxception conditions is oflen a
way of making main line coding straightforward, and
gasy to understand. Lisp machine lisp
{WeinrebMoon81) for example, has a complex error
handling system using objects that allows recognition
and specialization of code to deal with error
situations.

3.2 Analysis and Performance Tuning

For resl applications, one needs to tune
performance. This implies muitiple representations,
space-time tradeoffs, and the ability to change
implementations while holding the higher level
specifications invariant. It also reguires timing
analysis tools easily accessible to the user.

Examples of the latter tools are the Mastescope
and Spy tools written by Larry Masinter for
Interlisp-D. Masterscope provides a full analysis of
the cross-calling behavior of procedures, and their
use of variables, local and free. It was easily

143

extendible to include message sending by procedures
to be stored as part of its database. A graphical
interface allows easy access to the source code from
the network of relations. Since it is integrated with
the file system, it keeps track of changes to pieces of
the system, and can update its data base when
necessary.

Spy is a program which allows the user to see
how much time is being spent in any part of his
program. It provides a graphical view of the
incremental and integrated time spent in o any
gubroutine of the sytem during a particular
computation. The cost of using the Spy is small,
since it runs by sampling the computation rather
than by computing and storing intervals.
Comparable measurement tools need to be
developed for Logic programming systems to allow
the development of production quality systems.

Varigus techniques are available for improving
the performance of systems. In Lisp, a standard
technique is Macro expansion which ‘climinates
function calls, and can specialize the code for the
arguments. A similar but more general technigue is
suggested by Kahn in Prolog by specializing
interpreters using Partial Ewvaluation. Smolka has
suggested in that Prolog programs be marked for
data flow (which are the input, outputs}, and
functionality (only once answer expected) 1o obtain
specialized compilations with much greater
efficiency. These technigues get to be more
important as we develop a library of programs on
which many people depend, and which are in the
inner loops of computations,

33 User Interface tools

Systems are for people, and we should be able 1o
stay in a single computational environment as we
switch between all the computational tasks of our
everyday life. This leads to the question:

How rich s our computational environment?

People need to switch between tasks; hence
multiple proceses are a necessary part of the
environment. High quality displays are needed for
high bandwidth communication, People
communicate with each other, both on a rapid time
scale (several times a day) and over a longer period
to report their results. This implies the need for
integrated message systems and editors for papers.

144

These facilitics ought to be built in the same
environment as the knowledge programming system,
both to minimize switching time for the people, and
to allow programmatic interaction with the facilities
so that we can use the best tools o improve our own
facilities. The figure below illustrates how a number
of tools are available simultaneously in the Interlisp-
D system.

Hromplt Window -

L asgs wgEments mtertapad,
LG integtdLes:
Procatuere-ariented frogeamening,
|onject-orisned v
s el e
Pregrimmes.

Tt iver Save Form [
mdgvsage -Edtor T N
Subject; Timing for Frolog on D-Machines
Ta: Kahg
ee: Babeow, Jrefik

Eet,
I ovae very encouraged by che reqales of our
eXperimants an compiling Frolog on the Xems
D-kfachinas TF we can achisve 10,000 LIPS as
these exnerimeants indleate, integrated with
Lzozs, it will provide a marveloas base for
compariag the vulity of differe=nt parsdigme,

rﬂ.lnh;

4. Conclusions

The questions that have arisen in this document
have been driven by the philosophy that people
need 1o have a large set of tools for building the fifth
generation systemns that we have all set our sights on.
Although it has criticized some of the current
incarnations of Prolog and other systems, its real
focus has been explore how computational
environments should be enriched. The question is
not which language or system is good and which
bad, but rather what are the proper twols and
paradigms for easch problem, and how can we
combine them to get maximum synergy.

Gliss inhiritance Latiae

Emfrmnruﬂtr{'r

This figure is taken from the screen of an Interlisp-D machine ronning Loops. In the lower left i= a
clectronic mesage being sent !'[was created using a text editor which is alse available lor production of
formatied documents, To the rght are two wses of graphical net Yrowsers, The upper une shows a timing
breakdown produced I:q.r the Spy system, where the size of the box is proportional to the proportion of time
consumed by the particular function. The lower network shows the inheritance lattice for a Loops simulation.
of a Truckin world., 1t is an active network, allow wsers to access and change classes by pointing at the node in

the display,

Acknowledgements: I wish to thank Mark Stefik, a
close collaborator and friend, with whom many of
these ideas were developed: Ken Kahn for teaching
me much about Prolog and logic programming that
is otherwise inaccessible to those outside the
community: and John Seely Brown, the Intelligent
Systems Laboratory and the Xerox Palo Alto
Research Center for providing an environment
which supports the exploration of ideas and systems.

Bibliography

Bobrow, D. G., Stefik, M. 1. The Loops Manual,
Intelligent Systems Laboratory, Xerox Corporation,
1983

Carlsson, M., Kahn, K. The LM-Prolog Manual,
li‘}]l;’g'lhl];, Uppsala University, Uppsala, Sweden

Chikayama, T. ESP - Extended Selfcontained
PROLOG- as a Preliminary Kemel Language of
Fifth Generation Computers, New Generation
Computing, Springer Verlag V. 1, No. 1 1983

Conery, 1. 8., Kibler, D. F. Parallef interpretation of
logic programs Proc of the ACM Conference on
Functional Programming Languages and Computer
Architeeture, October 1981

Goldberg, A. and Robson, D. Smalltatk-80, the
language and its implementation, Addison Wesley,
1983

Kahn, K., Carlsson, M. The Compilation of Prolog
Programs without the Use of a Prolog Compiler,
FGCS "84 Tokyo 1984

Malachi, Y. Manna, Z. and Waldinger, R. TABLOG:
The Deductive-Tableauw Programming Language,
ACM Symposium on Lisp and Functional
Programming, 1984

Robinson, J. A., Logic Programming - Past Present
and Future Wew Generation Computing, Springer
Verlag V. 1, No. 2 1983

Sanella, M. [fnterlisp-D Reference Manual Xerox
Corporation 1983

Shapiro, E. and Takeuchi, A. Object Oriented
Programming in Concurrent Prolog New Generation
Computing, Springer Verlag V. 1, No. 1 1983

Sheil, B. Power Tools for Programmers, Datamation
1983

Smolka, G. Making Control and Data Flow in Logic

145

Programs Explicit, ACM Symposium on Lisp and
Functional Programming, 1984

Stefik, M.J., Bobrow, D. G., Mittal, 8., Conway, L.
Knowledge Pragramming in Loops. Report of an
experimenial Course, AAAL Magazine Fall 1983

Weinreb, D. and Moon, D. LISP Machine Manual,
MIT Cambridge Mass, (July 1981)

Yokoi, T. et al, Logic Programming and a Dedicated
High-Performance Personal _ Computer, Fifth
Generation Computer Systems (T. Moto-oka) North
Holland Publishing Company. 1982

