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ABSTRACT

Massive Parallel Database Computer
(MPDC) is a relatienal database machine
architecture that integrates microparallel
VLSI architectures for basiec relational
operations and macroparallel data flow
control architecture for coordinated
concurrent execution of subtasks. MPDC
censists of Data Subsystem and Control
Subsystem. Data Bubsystem is in charge of
segment accesses and segment pProcessing.
while Contrel Subsystem is responsible to
Data Subsystem for decomposing gquery
trancections inte comcurrently executable
segment processing commands. Data Subsystem
consists of a poosl of processors for segment
procesging, a set of disk subsystems, and a
multiport pege buffer that is shared by these
modules. Segment processors embody
microparallelism of segment processing, while
Shared Page Buffer resolves resource confliet
problem in parallel processing and allows
massively paraliel processing based on
macroparallelism among segment proceaa%ng
tesks. Control Subsystem wuses a unified
control algorithm that does not ooly manage
adaptive segmentation of relational files but
also efficiently and correctly contrel
highly-reliable interleaved execution of
transactions. Activation of segment access
commands and segment processing commands are
controlled by a data flow contreller, which
gutomatically contrels disk subsystems to
taransfer segments to Shared Page Buffer
pricr to the processing of them.

1 INTRODUCTION

"Most organisms on earth depend onm their
genatic informatiom to a much greater extent
than they de on their extragemetic
information. For human beings. it is the
pther way around. We have through our
brains, a much richer opportunity to blaze
new behavioral and cultural pathways on short
time scales. In addition, human beings have,
in the most recent few tenths of a percent of
cur existence, invented not only extragenetic
but alse extrasomatic knowledge informatiom
gtored cuteide our bodies, of which writing
ig the mest motable example.' This is quoted

from 'The Dragons of Eden" by Carl Sagan
i:sli.gan 1977). Extrascmatic knowledge
accompanied by extrasomatic processing and
extrasomatic reasoning will give us far
richer opportunity to blaze newer behavioral
and cultural pathwavys on much shorter time
scales. This effect will be accelerated by
appearances of high performance database
machines and knowledge base machines that can
cope with wery large databases or knowledge
bases.

While current super computer systems aim
at high speed numerical computatioms, future
super systems coping with extrasomatic
information and extrasomatic reasoning will
require vaet amount of computing power to
produce appropriate information from & huge
information reservoir by repetitive ratrieval
and reasoning. The arrival of such future
super systems with vast amount of computing
power for database and knowledge base
processing requires innovaticns in the
following technologies:

{1) VLSI architectures for high speed
processing of primitive functiomns that are
fundamental in database or knowledge base
Processing s

{2} Hierarchical shared memory organization
that allews copcurrent gaccesses from
massively parallel processors.

{3) File clustering schemes that increase
gecass locality and decreasse file access
frequency.

(4) Control mechanmisme for cooperative
coordination of massively parallel processes.

While high speed sn-core processing is
most important inm current super computers, in
future super systems, memory hierarchy and
file clustering will bscome equally or more
important than that. The use of moving head
disk unics is inevicable to provide a
gufficiently large storage space, while basic
processing in databases or knowledge bases
generally requires references to vast amount
of data. Every basic processing is likely to
accees secondary memories repetitively. This
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gituation should be avoided. Otherwise, disk
accesses will inmtroduce serious delay to
almost every basic processing.

Previous studies on databasae machines,
however, aimed at the high-speed brute force
processing of a full search. Some of them
proposed direct search of rotating disk
tracks (Coulouris et al. 1972, Babb 1979,
Ozkarahan et al. 1975, Chang 1978, UVenura et
al, 1980, Bchuster et al. 1979, Oflazer et
al. 1980}, Some others proposcd buffer
memories and a network that asllows arbitrary
connections between =ultiple processors and
multiple memory banks to e¢liminate
interprocessor transfer of vast amounts of
data (Dewitr 1979)., Some others studied VLSI
modules for basic database operaticns (Kung
and Lehman 1980, Tanaka et al. 1980).
However, few researchers proposed file
celustering schemes and hierarchical memory
organizations based om them (Banerjee et al.
1978, Tanska 1983a). Mo researchers have ever
propoded coordinated concurrency control of
multiple segment processing tasks obtained by
decomposing multiple transactions.

Thie paper will propose a massive
parallel database computer architecturs MPDC
with innovative solutions to the above four
techoological difficelties. The first three
were independently solved in my previous
papers (Tanaka et al. 1980, Tanaka 19842,
1984b, 1983b). Two VLSI architectures Search
Engine and Sort Engine proposed in 1980 gave
a solution to high speed proceasing of basic
functions (Tanska er al. 1980). Recently im
1984, they are modified to allow bit-slicing
(Tanaka 19842), Hierarchical shared memory
organization was solved in 1984 by a
Iulhipnﬁf Page-memory architecture that
allows 10-~10" concurremtly accessible ports
without causing any confliect nor any
guspension (Tanaka 1984b). File clustering
was solved by colored binary trie schemes
proposed in 1983 (Tanaka 19B83b),

This paper will give a brief survey on
these technological breakthroughs and will
propose an overall massive parallel database
computer architecture and its coordinated
control structures that effectively integrate
the independent fundamental technologies.
Section 2 will briefly explein architectural
philosophy of MPDC end an outline of MPDC
architecture, MPDC comsistes of two
subsystems, i.2.. Data Subsystem and Control
Subsystem. Data Bubsystem is in charge of
seguent acceases and segment processing,
while Control Subsystem is responsible to
Data Subsystem for decomposing query
transactions into concurrently executable
segment processing commands. Twe types of
parallelism will Bbe distinguished.
Paralleliem in each bssic segment processing
will be referred te by mieroparallelism,
vhile paralleliem that is foud in concurrent
processing of segment accesses and segment

processing in interleaved execution of
sultiple transactioms will be called
macroparallelism, Section 3 will describe
Data Subsystem architecture. It consistoe of
a pool of processors for segment processing.
a set of disk subsystems, and & multiport
page buffer that is shared by these modules.
Segment processors use mieroparallelism inm
their pipeline architecture, while Shared
Page Buffer has resolved resource conflice
problem in parallel processing and allows
moasively parallel processing based on
macroparallelism. BSection & will describe
Control Subsystem architecture tegether with
two important algorithms that effectively and
correctly increase macroparallelism in
sultiple tramsaction processing. i.e., file
clustering and concurreacy <emtrol
algorithme, Thie section will emphasize the
importance of a unified contrel algorithm
that doges not only manage adaptive
segmentation of relational files but also
efficiently and correctly comtrol highly-
reliable interleaved execution of
transactions. Activation of segment access
commends and segment processing commands are
controlled by a data £low controller, which
automatically controls disk subsystems to
taransfer segments to Shared Page Buffer
prior to the processing of them,

2 AN OUTLIKE OF MFDC ARCHITECTURE

2.1 MPIC Design Philosophy
Microperallelism & Macroparallelism

Bigh-volume processing of databases
requires frequent references to a very large
gtorage space, which makes it inevitable to
frequently access mechanically-accessed
secondary memory devices like moving head
disk units. Database machine research efforts
are now confronted with 'Disk Paradox' as
pointed out by H. Boral and D. J. Dewitt
{Boral and Dewitt 1983). Obviously. the
number of disk units necessary to store a
database is inversely proportional to the
capacity of a single disk unit. Hence.s the
maximum outflow obtainable from a set of disk
units is proportiomal to the transfor rate of
a oingle unit, and inversely propoerticmal to
its capacity. On the other hand, the curremt
disk development effort is directed toward
inereasing diask capaeity with Lictle
improvement or even deterioration in transfer
rate. This lowers the maximua outflow from
secondary memories, which bounds machine
performance and nullifies speed-up
technologies of on-core processaing.

Historically, this kind of problems has
been repetitively emcountered, and reselved
through the combinstiom of two technologies.
A buffer memory placed between & prisary
memery and & secondary memory does not oaly
inerease access opeed but aleso decreases
secondary memory access frequency, while data
clustering into segments increases access



locality, and dees mot eanly decresse segment
references but also enhances the buffer
effect by increasing a chance of repetitive
references to a small set of segments.

These two techniques necessarily
introduce & secondary memory access unit
called & segment, Segmentation divides
database processing into two processing
levels, i.e., segment search =nd segment
processing. For a given transaction, segment
gearch searches file directories to gemerate
a set of gegment processing commands with ome
or two segment locations &s operands.
Segment processing, om the other hand,
executes, for each pegment command, 4 basie
database operationm om one or two operand
Begments., It requires to fetch operand
segments from disks to a2 work space if they
are not there yet., Deconmposiion of a given
transaction into segment processing commands
wust be controlled by a well-defined
concurrency control scheme to maintain
database integrity.

Speed-up of database processing requires
massively parallel proceseing at each
processing level. Parallelism in segment

search will Be refarred to by
macroparallelism, while parallelism in
segment processing will be called

microparallelism. These two types of
parallelism are inherently different. The
main concern of microparallel processing is
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the high-speed processing of each basic
operation on one or Ewo segmentsa.
Macroparallel processings on the other hand,
aimes at wassively parallel processing of
concurrently executable segment operations.
It must cope with transaction decomposition,
concurrency controel of dinterleaved
transaction execution, and pegment command
generation: Since microparallelism concerns
parallelism in each basic operatiom, it has a
definite structure that canm be apriori
depcribed, Macroparallelisws on the other
hand, concerns parallelism among tasks each
of which represents 2 segment operationm.
Therefore. the structure of macroparalleliss
depends on less definitely deacribable
factors like the status of concurremntly
executed transactions and the stactus of each
computer resource. Definite structures of
microparallelism can be embodied by definite
parallel or pipeline algorithma that are
suitable for VLSI implementation.
Hacroparallelisms however, requires much
flexibility in parallel processing control.
Ho contrel architectures other than data flow
centrol may have the required extent of
flexibilitcy.

2.2 An Outlined Architecture

MPPC has a configuration as shown in
Fig. 2.1. It consists of twe svbhsystems,
i.ess Control Subsystem for segment gearch
and Data Subsystem for segment processing.

Control su:)system Data Subsystem

Page Page  [pm—p—T
Operation | Operation — -
watcher Comimander
Interface/Supervisory .
moduie
—
Query > Directory
Processor Eearcher

Page Operation Commeand/Status Network

Segment Transfer Command Bus
Segment Transfer Status Bus

Flg. 2.1. Herdware Configuration of MPDC.
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Contrel Subsystem receives user queries,
analyzes and decomposes them into segment
processing operations through directory
gearches, and generates concurrently
executeble megment commands, while Data
Subsystem receives generated segment commands
from Contrel Subsystem, executes segment
commands concurrently, and sends back =2
completion tokem te Contrel Subsystem
immedistely after the completien of each
command execution.

Data Subsystem consists of a homogeneous
set of segment processore, & set of digk
subsystems, and a shared page buffer between
these twe sets of devices. Each digk
subsystem consists of a disk controller and
several disk unics. Shared Page Buffer is a
page-access memory that is shared by the sec
of processors and the set of disk subsystems.
It is divided into equal-sized pages. Each
Page can store one segment of a file and has
2 unique page address. Shared Page Buffer
allows all devices connected to it to
concurrently access arbitrary pages without
causing any access conflict nor any access
waik.

fegment commands in MPDC are classified
into two categories, i.e., segment transfer
commands and page coperation commands.
Examples of segment Lransfer commands are get
and put commands. They have twe operands,
i.2., & segment address and a page address.
Each segment in disk subsystems has 2 unique
segment address, which uniquely determines
the disk unit that stores this segment. This
unit is called the home disk of thie segment,
while the disk subsystem with the home disk
is called the home disk subsystem. A get
command requests Data Subsystem to read out
its operand segment from the home disk to its
operand page in Shared Page Buffer, while a
put commend requests Data Subsystem to save
its operand page value stored in Shared Page
Buffer into the operand segment in its home
disk.

A page operstion command, on the other
hand, requests Data Subsystem to execute a
relationel database operation on its one or
two operand pages, and to write one or more
Pages of result in Shared Page Buffer
location specified by ite destination
cpersnd, These scurce operand pages must be
already loeded either with some segments by
get commande or with intermediate result by
another page operation command.

Each segment transfer command is sent by
Segment Tranafer Commander to ite operand
segment's home disk subsystem through Segment
Iranefer Command Bus. Its home disk
subsystem, when it has received the command,
accesses the home disk and trasnsfers ome page
of information to or from Shared Page Buffer.
When a transfer has finished, the home disk
subsystem writes a completion status code in

its status port. and gends a one bit gignal
to Segment Transfer Watcher, which always
watches segment transfer completion signals
andsy when one of them is set, gets the
agpociated completion status code through
Segment Transfer 5tatus Bus. This completion
status code 1s used as a token by Comtrol
Subsystem to activate next executable
commeande ,

Each page operation commsnd may be
executed by any processor in the large pool
of segment processors. It is put on the rimg
network (called Page Operation Command/Status
Retwork) by Fage Operation Commander amd is
cireulated among segment processors. The
first encountered idle segment processor
takes out this command from the ring network
to execute it. In execution of & three
operand page operation command. for example,
the allocated segment processor reads out two
pages from Shared Page Buffer one after
another, executes the operation, and stores
the result into the destination operand page
in Shared Page Buffer. If & page is not
full, the segment processor is not required
to read the full page. Actually. each page
in Shared Page Buffer is divided into equal-
sized tracks. Segment processors need not
read unnecessary tracks, but it must read all
worde in & necessary track, When the segment
processor has finished its execution, it
sends out its completion status code into the
next empty packet circulating on Page
Operation Command/Status Network. Page

 Operation Watcher always watches cireulating

packets on the network. Immediately upom
receiving a completion status code, it sends
this &8 & token to the data flow control
mechanism in Contrel Subsystem.

Segment processors might be considered
as eager day-laborers, while Page Operation
Commander might be considered as a day-
laborers’ bose. Diek subsystems and Segment
Transfer Commander might be considered
respectively as warehouse workers and as &
warehouse workers' boss. Shared Fage Buffer
is a large table used for shipping and
discharging. Control Subsystem corresponds
to a planning department of & company. The
company receives customers' orders. The
planning department decomposes these jobs
into a set of subtasks. The warehouse
workers' boss orders each warehouse worker to
ghip or discharge cargos that are under this
worker's resposibility, while the day-
laborers' boss circulates subtask erders
among day-laborera. Every jobless day-
laborer is very eager to get a job. He will
jump at a job when it is circulated to him.
The large table is divided into equal sized
sections., Warehouse workers carry cargos to
and from specified sections. Each day-
laborer has his own private woerk table. A
day-laborer, when he has got a subtask order,
goes to specified sections to carcy cargos
from the large table te hie private work



table. Then he does the task and produces s
result cargo. Finally he carries this cargo
to & specified table section and becomes
jobless. The large table provides a lot of
vorkers with & common work space for
caoperative concéurrent achievement of
subtasks,

The increase of concurrently éxecutable
segment commands is essential in performance
enhancement. This is concerned by Control
Bubsystem. Contrel Subsystem consists of
five major modules, i.e., Interface/
Supervisory Modules, Query Processor,
Directory Searcher, Macroparallel Data Flow
Controller, and Page Buffer Manager.

Interface/Supervieory Module is & super
minicomputer that communicates queries and
set of data with external systems. It is
directly connected to one port of Shared Page
Buffer so that it can directly access
arbitrary pages in the buffer. Through this
path, it can get result pages or initially
store a database into MPDC, It works as a
gervice processor to imitially store
databases in MPDC or to périodically save a
dump copy of databases and tramsaccion logs.
Besides, Lt manages transaction statuses.

Query Processor is & minicomputer that
transformes a given transaction into an
optimized program that searches segment
directories and generates segment processing
commands. Each segment processing command
has cne or two source operande s, 8, and the
destination operand 53+ Bach operand is
either a segment of a relational file or a
variable. Eaeh variable may be either a
single page variable with one page capacity
of a2 sultiple page variable with a size of
arbitrary number pages. A segment command

8q * <relational operation> 8y E.azi

requests both execution of a2 relational
operation on 8; (and s,) and the saving of
the result in 83. Programe transformed from
queries by Query FProcessor have lock
statements to control ioterleaved execution
correctly.

Directory Searcher is a super
minicomputer that receives traneformed
programs from Query Processor. It executes
the programs to search segment directories
and to generate segment processing commands.
Generated segment processing commands are
sent to Macroparallel Data Flow Comtroller.
Directory Searcher has a sufficiently large
primary memory and an external low speed
semiconduetor memoxy that is large enough to
store 2ll segment directories. This externsal
mesory is backed up by the disk subsystems in
Data Subsystem through a direct connection te
one port of Shared Page Buffer.

Macroparallel Data Flew Comtroller
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receives segment processing commands,
dynamically comstructe data flow programs of
segment commands consigting of segment
transfere and page operations, sends active
segment commands te Data Subsystem through
the two commanders, receives completion
tokens from Data Bubsystem through the tweo
watchers, and tramsfers activation tokens to
next executsble commands in data flew
pPrograms.

Macroparallel dates flow programs in
Macroparallel Data Flew Centroller require
each segment to be assigned to a page
variable prior toe any operation on it. When
& pegment value is once assigned to a page
woriable, further references to this segment
value refer to this variable. In dynamie
construction of data flow programs; segment
processing commands sent from Directory
Searcher are modified to satisfy this rule.
This translation uwses a table called Segment
Table., which stores information about the
assigoment of & variable to each segment that
hns appeared as & source operand. 1f a
source degment & of & sement processing
command sent from Directory Searcher has not
been registered in Segment Table,
Hacroparallel Data Flow Controller generates
a page variable v and penerates a get command

v+ get &

before this commend. The reference to 8 in
the original command is replaced by the
reference to v. Further references to 5 are
all replaced by references to w. A segment
processing command that has a segment & a8 a
destination operand ie an update command.
Such a command is divided into two segment
commandiy i.e.s one for the agsinment of the
operation result to a temporary page variable
vy and 3 put command

£+ put V.

Data flew programs can be casily
dynamically constructed by renaming variables
in the original sequences of segment
processing commands to satisfy the single
assignment rule, i.e.s edach variable should
not sppear more thanm once as a destination
operand. Data dependencies of coperand page
variables among segment commands are mansged
by a table called Page Variable Table. For
each page variable, this table has an entry
that points te a liet of page operation and
pegment transfer commands that refer to this
variable as s source operand. The number of
elements of thie list is stored in the
reference coumt field of the table entry
apsociated with this variable.

Each command list linked to Page
Voriable Table is used to move activation
tokens to next executable commands when the
asgsociated variable has been given a page
value. Each segment command, whether it may
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be a segment transfer command or a page
operation command, becomes active whenever it
has got tokens for all of its source
operands, Each active segment command is
gent to Data Subgystem after a page of Shared
Page Buffer is allocated to its destination
page variable. The destinationm page variable
and ite allocated page are registered in Fage
Variable Table.

The allocation of a page of Bhared Page
Buffer to a page variable requires page
management of Shared Page Buffer. Page
Buffer Manager has & memory map that shows.
for each page in Shared Page Buffer, whether
it ig used or free. When it is asked for
allocation of a free page either by
Macroparallel Data Flew Controller or by one
of the segment processors, it searches the
map for a free page, sete the corresponding
bit of the map, and returns its address to
the requesting module.

When Macroparallel Data Flow Comtroller
receives a2 completion token from Data
Subsystem, it decreases the reference count
of every sourcae variable of the completed
command. When the reference count of a
variable becomes zero, this wvariable is
deleted from FPage Variable Table, and the
page allocated to this wvarisble is made free
through Page Beffer Manager.

Some segment commands may require more
than ope page to save its result., Such a
command uses s multiple-page variable as its
destination operand. A referemnce to a
multiple-page variable is preceded by an ¢
mark for distinction, Sinece such multiple
page result may become a source operand of
another command, multiple-page variables
should ba allowed te use not only as
deatination operands but also as souwrce
operands .

Macroparallel Data Flow Controller has a
table called Multipage Variable Table. When
e multiple-page variable is used as a
destination operand, a single page is
initially allocated to it, and is registered
in Multipage Variable Table together with a
pointer pointing to 2 page address list
containing only this page. This command is
pent to Data Subsystem and is executed by one
of the segment processors. If the execution
has spent allocated pages and requires more
to save the result, the segment processor
dynamically asks Page Buffer Manager for one
more page through Page Operaticn Watcher and
Macroparallel Dats Flow Controller. An
allocated page address is sert to the segmont
processor through Macroparallel Data Flow
Controller and Page Operation Commander.

The segment processor remembers the
allocated pages, and, when the execution has
finished, it sends back the list of allocated
pages te Macroparallel Data Flow Controller.

This variable length message is sent as
followe., The segment processor first writes
this list ioto a page of Shared Page Buffer
and sends a complation status containing the
address of the page. The list of allocated
page is added to the correspomding list
linked to Multipage Veriable Table.

If 2 multiple-page variable appesrs as a
source operand of a segment command,
Macroparallel Data Flow Controller decompoges
this commond ioto & set of commands without
sultiple-page variables as source operands.
The only exception is & ‘condemce' page
operation command, which will be explained
later.

3 DATA SUBSYSTEM

3.1 Hicroparallel Architeeture for Segment
Proceseing

3.1.] Microparallel Architecture

Segment processors perform high speed
processing of relational operations om one or
two pages of relational files staged in
Shared Page Buffer. Page processing requires
soquential data transfer of pages between a
gegment processor and Shared Page Buffer.
Large delay cansed by sequential transfer is
inevitable. To overcome this problem, the
segment processor architecture should make
much dse of transfer time for page
procesaing by overlapping processing with
tranefer. The eoverlapped execetion of
basic functions in database processing with
gnquential data transfer was first intreduced
by us in 1980 (Tanaka et al 1980, Tanaka
1982, 1983a). Such a mode of execution was
called data stream processing.

The relaticnal model of databases
provides & set of database operations as
listed below:

union, intersectiom,
set difference.

set operaticns i

relationsl operatioms : projection,
selection,
restriction. join,
division.

aggregate operations :  count, sum, average.
maxioum, minimom.

others @ gort.

Suppose that no relations are sorted
apriori with respect to some attribute, nor
provided with am auxiliary files such as
inverted files or link files. Suppose alao
that the size of each relatien is
propertional to a single parameter n. Then
the time complexity of esach operaktion above
is either O(r) or C(mn*logn). They are
classified as follows:



oln) : selection, restriction, count.
Sul, AVeTage, maximum, minimum.

Ol{n*logn) ¢ union, intersection,
set difference, projection, join,
division, sort.

Operations in the first class can be
executed by 2 single full scam of tuples.
The speed up of these operations requires
apricri processing of a file such as
provision of suxiliascy files or segmentation
of filea. Apriori processing of files alse
speeds up the processing of the second clase
operations. However,; these apriori
processing does not solve the inherent
problem: How can we efficiently perform such
apriori processing, and the processing of
each segment? It is well knowe that the
cperations im the second class can be
performed in O{n¥logn) time when they are
executed by algorithms based on sorting.
Therefore, sort may be considered as a key
function for the speed up of database
processing, Besides, we have selected a
bateh-gearch operation 28 an additional key
function, Batch search means the batched
processing of oultiple search processes that
search & common table for different search
keys. The table is assumed to be apriori
sorted. If one of the operand relations is
apriori sorted with respect to an appropriate
attribute, any bimary operation ir the
O(n*logn) growp can be executed more
efficiently by & batch search algorithm than
by any algorithm based on sorting.

Speed-up of sort and batch search is
fundamental in the segment processor design,
Bome parallel processing algorithms based on
data stream processing are required. It is
desirable that these 2lgorithms are suited
for VISI implementatiom. Microparallelism in
these basie functions allows satisfactory
degigns. In our project, VLSI modules
enbodying high speed data stresm processing
algorithme of basic funetioms are called
engines. Farallel or pipeline architectures
of these engines are referred to by
microparallel architectures.

For batch search and especially for
sort, there are a lot of VLSI algorithms
including these proposed by us. VESI
algorithms suitable for search and sort
engines used in each segment processor should
satisfy the following requiremwents:

(1) feasible bardware complexity.

(2} allowable pin complexity,

(3} large tractable volume of data,

(4) data stream processing, and hence, 0(n)
processing time,

(5) Wordlength extensibility, i.e., bit-
#liced architectures,

(6) tractable data wolume extensibility,

(7) no aceess to external submodules except
I1/0, i.8., speed-up by closed omn-chip
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processing like on-chip memory accesses.

VLSI search algorithms are classified by
three parametere h, d, and t*. where h
denotes the nember of comparators, d is a
maximum duration time to obtain a search
result for a single search key, and t° ies a
throughput time of batch ssarch processes,
i.e., the time obtained by dividing the total
processing time by the oumber of search keys
in sufficiently large batch search. A VLSI
search algorithm with h, d, t* respectively
equal to hin), d(n), t*(n) for a search table
of size n is classified as a (O(h{m)).
0(d(a))s 0(t*(a))) type. Search of & table T
can be performed by parallel search of
gmaller tables obtained by equally dividing
T. Parallel search using B search modules of
a type (f;(n). £,(n). £.(n)) forms a
(B*E,(n/B), E,{a/B), f {nffai type search
medule. This %ank paralleliem is applicable
to any type of search modules, and hence; it
is not considered below. Table 3.1 shows
variows VISI search algorithms together with
first two poftware algorithms for comparison.
It phows three parameter values, whather a
gsearch table is regquired to be apriori

Table 3.1, Search hardwares

h number of comparators.
t maximum processing time for a single search.
t= throughput time of a batch search, Le.,
precessing time of a batch search
number of search kKeys

necessity of apriorl table sorting

Lable Mt
bit-slicing
hold | e example
1 :nm n v | v | sequential search
1 ilegn logs |v binary search
fiom| nf v | v | multiple-key
sequential search
#n iasp(nl v | v | multiple-key
plpetine sequential
frun m e
logzlogas 1 v u'll pipeline batched
binary search
(Search Engine)
ainl 1 v plpeline batahed
seouential search
nil 1 v associative memory

v* : Interval Search Engine allows bit-slicing.
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sorted, capabilities of table update, and
wordlength extemsibility.

In database processing, throughput is
more important than duration of a single key
search. Algorithes with t equal to 1 are
desirable. They are capable of data stream
processing. Among them, necesssry comparatore
should be minimized to minimize hazdware
complexity, and to maximize tracteble dats
volume of a single chip. Pipelined batched
binary search and its extension, pipelined
batched interval binary search, have these
desirable features. They were proposed
respectively as Search Engine (Tanaka et al.
1960} and Bit-5liced Interval Search Engine
{Tanaks 1984a). The latter is the only VL3I
algorithm that allews bit-slicing with ne
external submodule. B8ince bit-slicing
requires at least twice as many conmection
pins as the nueber of comparators, it can not
be applied to those algorithms with h
proportiomal to m. Twe Sesrch Dogines can be
considered ag a pipe that is initially loaded
with & serach table and converte each search
key of an input stream to its search result
during the flow of the stream through this

pipe.

VLSI sort algorithme can be classified
by different three parameters h, t, D, where
h donotes the number of comparators, t is the
maximem sorting time, and D is the maximum
delay of the first output preparation after
the last input, A type (O(h{a)), O(t{n)l,
o{p{n))} is defined similar to search, where
n is the number of wvalues to be sorted,
Table 3.2 shows wvarious hardware sort
algorithms, including first threa software
algorithme for comparison. Since sequential
input and owtput are inevitable im high-
volume processing microparallel
architectures, the total sorting time should
be evaluated as the sum of sequential L/0
timeé and the delay D. This desirabilicy
measure differs from sorting time t.

Algorithms with fewer comparators and
shorter delay are more desireble. Pipeline
Heap Sert proposed nes Sort Engine has the
minjimum delay and minimum comparators (Tanaka
et al. 1980). The second best in database
processing may be Pipeline Two-Way-Merge Sort
(Tedd 1978), Its O{logn) delay is allowable.
This algorithn was extended to allow bit-
slicing (Tanaka 1984a). Because of the same
reason described above, bit-slicing of those
algorithms with h proportional te n, or more
than that, is impractical. Besides. pipeline
Heap Sort has inherent difficulties im bie-
slicing.

These observations show the superiority
of Bit-Sliced Interval Search Engine and Bit-
Sliced Two-Way-Merge Sorter for our purposes.

3..2 Bit-Sliced Interval Search Engine

Table 3.2. Sort hardwares

h: number of comparators.

t: madmum sorting time.

D: maximum delay for the first output
preparation after the last Input.

bit=slicing —_—

h t D I example
2”7

n ”r butble sort

1 |miogn mlog heap sort
logn] »~ | logn| | pipeline merge sort
(Todd 1978)
iv| (Tanaka 19843)
logn] n| O plpetine heap sort

(Tanaka et al. 1980)
parallel even-odg sort
(Baudet and Stevenson 1978)
n a | logm | parallel tree sort
(Bentley and Kung 1979)

n Al 0 paratlel encmearation sort
(rasuura et al. 1982)

i Al 0O reboud sort
{Cnen et al. 1978)

n n 0 pipeline bubble sort
(Kung 1980)

| In| {n| mesh-connected bitonic sort
(ThOMSoN and Kung 1977,
Nasslml and Sahni 1979)
n |iof n|1ofn| | Shurne-connected bltonte
sort (Stone 1971)

” | logn logn| fMuller and Preparata 1975)
| logs 1ogm | (Hirschoerg 1976)
AV & iiogr k100 | (Hirschberg 1978)
nloga| logm logm | (Preparata 1978)
A1/ K Mﬂq’iﬁmﬂn (Preparata 1978)

An interval search engine (ISEE)
performe batch search operatioms. It
searches a same table of m keywords for
different search keys. Let T{i) dencte the
itlet keyword in this table T. The keywords
are assumed to be arranged in a nondecreasing
order. The table is stored in an engine
preceding to the bateh search processing, in
which m search keys are sent to the engine
one after another as a stream (kps Kye sess
k‘n'-l}' For each input key k., the IE cutputs



an interwval “L_ .ﬁa'.ll of table addresses.
These are the minimum addresses that satisfy
rnfnctiuly the fﬂlluuing two conditions:
T(A ])- zk and T(4") » k, Their difference
A%-AY iz equal to the number of keywords in T
that are equal to k. In an ISEE,; & search
table is represented by a binary tree called
g left-gided binary tree. An ISEE with L
lgvela can store & table with no mere tham
271 keywords. At each level j of & tree, the
number of nodes that are loaded with keywords
it dencted by LOAD{j), and be referred to by
the load factor of this level. An ISEE has a
hardware configuration similar to & Bearch
‘Engine (Tanaka et al. 1980} (Fig. 3.1). The
logic circuits at each level j get a search
key k& and a pair of addresses {w'{j). w (j))
from the Epper level and outpute k and
(w™{§+1)y w{j+1)} to t}ll-n.e next level j+l. The
values of w(0) and w (0) are assumed to be
always zero, Let TJ(i) dencte the keyword
stored in the node at the intra-level address
iin the level j, The addresses w l:j'l'lj and
w{j*l) are caleulated as follows:

wi(i+1) = 2wl §)+c0MC),
cowp = k £ TIGL(§)) or wl(§) > LOAD(3)-1
cni':j} = if CONDY then 0, else 1,
wR(§+1) = 2md(§)ecoR(d),
conp® = & < TI®(§)) or vB(3) > LOAD(j)-1
co®(j) = if coMd® then 0. else 1.

The search result (oY, aR) for 2 search key k

is obtained as the output addresses from the
bottom level.

1 word
The 1st level
2 words
Tne 2na level |
4 words
The 3rd level
Memory banks
2t-1 words
The Lth level (5— BEY A
: Logic circuit

Flg. 3.1. ISEE haradware conflguration,

Hows let us comsider how to realize a
bit-sliced architecture of an ISEE. First we

121

shall modify an ISEE teo _have two bitse of
output signals CoU(j), COB(j) at each level
j- Such a modified ISEE is referred to by an
MISEE.

A bit-sliced ISEE with n~bit wordlength
is defined as a module that is conmected to
an MISEE with m-bit wordlemgth to form & new
MISEE with {n+m)-bit wordlength. Each of its
levels hag two output ]Linea cu%[j_), co™{i).
and twe input lines Cf (j)s CI (JL’. These
two input limes CI™{j) and CI™(j} are
respectively connected to C0V{j) and CO™(j)
of the corresponding level of the preceding
m-bit MISEE. An n-bit bit-sliced ISEE with
each CI%(j) and CI®(j) respectively set to
zero and one works in the same way as an n-
bit MISEE. The pit-sliced ISEE can not see
the boundaries w-(j) and w™(j) caleculated at
each level of its lefthand MISEE., However,
we first asaume Lr.he:.r are visjhle. They are
dencted by Wo{3) and W"(j) for the
distinction from those of the bit-sliced
ISEE.

Ag to the caleculation of €O¥(j) (*
denotes L or R}y four possible cases should
be conaidered:

{1) Case X" : wh(3) = w3 = W3,
{2) Case 1.: W‘i{j} . W:{j} - ?RH}'
{3) Case K" : W3 < wi(3) < WiCi).
(4) Case B* : W) < w*(5) = W),

These signals COM(j) and COB(3) are determied
ae shown in Table 3.3.

Table 3.3, Calculations of CO'(J} and cOR()

ahd state transitlons of a search process.
= genotes L or R

case| cl) cfp coND= COMD Hoery
0 D - 0 e
0 1 F 1 R*
e 1] 1 T 1] L=
1 0 - - -
1 1 = 1 W
0 - F 1 M+
L* i - T ] L»
1 = - 1 L=
- = F 1 [
N - - T 0 N
- 0 - i} R*
R* - 1 F 1 R
- 1 T i} N

Although we have assumed that W(j) and
HR‘{j} are visible, actually they are not.
This problem is solved by introducing states
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of a search process. For each search key,
its search process changes its state as it
moves from the top level to the bottom lewvel.
At the top leval, each eearch process
initializes its state to (XY, x), The state
transition is specified by two automata, each
of which ?Ecifitf transitions among i:hir
tRasEt[H,L.N. 1 or the set {X", L
N*, R™}. These sutomata are described io
Table 3.3,

3.1.3 Bit-Sliced Two-Way-Merge Sorter

5. Todd (TODD 1578) proposed a sorting
algorithm that repetitively applies merge
operations to every two sorted runs in an
input stream to imcrease the lemgth of sorted
rune. The initial input stream is comsidered
as a sequence of sorted runs of lemgth one.
In order to perform theas repetitive merge
operaions in a pipeline fashion, a two-way-
merge sorter has a hardware configuratiom
similar to that of an ISEE. AL every time
when the next two input runs arxive at a
gtage, the logic cirenit at =ach level begins
to merge these two rung to cutput a merged
run te the next level. A hardware module
with L levels outputs fI):-on the bottom level a
sorted run of lemgth 27

A bit=eliced architecture of this module
can be eapily designed if we cspo find out how
to slice a merger used at each level of this
module. Let L and B dencte two sorted
streams of same length, and L{i), R(i) their
i+lst elements. The logie circuit at each
level can be decomposed into two pacrts. The
first part receives an input element at every
gtep and stores it at a proper address of the
memory bank at thie level, while the second
PaATt merges two streams, whose next slements
are always guaranteed to have been already
gtored in the mesmory bank by the fivet part
of the circuits.

A bit=sliced merger has two l-bit input
lines LI and BRI, and two 1-bit output linee
LO and R0. Thesa lines are used to conneckt
multiple bit-gliced mergers to form a single
merger. The operatiom of the i-th alice
module is delayed (i-1) steps from that of
the leftmost module., Let the left pointer lp
point to the next element of the left stream,
and rp point to that of the right stream. If
L{lp) and Rl{rp) are equal at the leftmost
glice, we will advance both of the twe
pointers, and make the module at this slice
to output one value that ie cqual to both
L{lp) and R{rp). The signal LO denotes the
advance of the left pointer, while BO the
advance of the right pointer. They are set
to one if their corresponding pointere are
advanced. Otherwise, they are set to zero.

How let us consider the second slice of
a merger. The second elice of a merger
oparstes in & similar way as the leftmost one
does unless it reaches either the left

boundary or the right boundary of the
leftmost slice. If it reaches, say, the left
boundary, it must stop the advance of the
laft pointer. The following output must be
gelected from the right stream uvntill the
right pointer also reaches the right boundary
of the leftmost slice.

Let us first introduce several
notacions:

C : A counter that counts how many times
the two pointers are simueltaneously advanced.
Initially zero.

vy ¢ The previous output; initially zero.

ol ¢ The difference of lp between the current
glice and the preceding #lice. It becomes
zero when the module reaches the left
boundary of the preceding slice. Otherwise,
it is kept positive. Initially zero.

ok ¢ Similarly defined except that 'left' is
replaced with "right'.

pl = plarr,
pfr = pRegy,

The elassification and the operations in
each case are described below:

Case 1. pYt = pfr = g = 0 : nonexistent.
case 2. DX = 0% = 0, € (=n) >0
{L0, BO) = (0, 0}; output vps €+ C-1;
pb « pbr; pR « .,
Case 3. D17 = 0, DP* > 0
Case 3.1. € = 0 or R(rp) = v,
(L0, RO) + (0. 1) output R{zpl;
vp + Rlep): rp + rptl; p¥ « plig
pf < pRrog,
Case 3.2. C % 0 and R(rp) % v,
(L0, RO} + (04 0); output wy; € + C-1;
DL*DI"': o « pfr,
Case 4. DM > 0, DPt =0
Case 4.1. C =0 or L(lp) = v,
(LO.RO) + (1. 0); output L{1p);
vg + L(1p); 1p + 1p+1; DL« plo-y;

ok « pfr,
Case 4.2. C 5 0 and L(Ip) % v,



(Lo, RO) + (0, 0); cutpuc vp: C = C=1;
pl < plty pR « iy,
Case 5. %" > g, DRr >
Case 5.1. min{L{1p), R(xp)) % vy and ¢ ¥ 0
(1o, RO) + (0. 0); output vgi € + C-1;
ol « plry p® « phv,
Case 5.2. € = 0 or min(L{1p), R(rp)) = v,
Case 5.2.1. L{1p) < R{rp)
(L0, RO) + (1, 0); output L{lp);
vg + L1p): 1p + 1p+1; pl « plig;
p® « pfr,
Case 5.2.2. L{lp) » R{rp)
(L0, RO) + (0, 1}; output Rirp);
vg *+ R(xp); rp + rp+l; DL « plo;
p? + pReay,
Case 5.2.3. L{1p) = R(rp)
(L0,R0) + (1.1); output L(1lp);
vp * I1p); €+ C+1; 1p « lp+l;
rp + rp+l; DY« ploop; pR « pReog,

The slicing methoed deseribed above is
applicable te a two-way-merge sorter.

The two different bit-sliced VISI
architectures both require (4L+1) pine per
chip. For L=12 (i.e., capacity = 4095
words), their pin complexity becomes 49+a,
vhere @ pine are necessary for power supplys
elock supply, and mode control. This number
seems to be acceptable. The bit-sliced ISEE
with L levels and 1 bit width consiste of Z4-
1 memory cells (+ for L=12, 4095 cells) as a
whole, and twe 4 state autometa at each
level, while the bit-slicad sorter with L
levele and 1 bit width consists of 3(2Y-1)
memory cells as & whole, and & simple logic
circuit with several registers at each level.
Therefore, even if we use static RAM
technolegy, each module with L_levels and 1
bit width requires less than 10Y trameistors.
This number ensures their feasibility,

3.2 Segment Processor

Segment processor has an architecture
consgisting of a high performance
microprocessor with more than & page storage
apace besides its progrm epace, and two
engines, respectively for batch search and
sort, that have énough capacity to process
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two pages of data. These engines work as
subprocessors of the main microprocessor and
they are capable of block data transfer to
and from the main precessor memory.

Page operation commends that segment
processors receive and execute have either of
the follewing formate;

Pa* + B0 (Q;{PA;), Q,(PA,)),
{Qi mn% balnil.} :

PAY « U0 (gleA)),
(either U0 or Q may be nil.)

Pﬁl* + :uuﬂanua(?ﬁz*ln
where

PA ¢t a page address allocated to a
single page variable,

ra* 1 a pege address allocated to a
single page variable or to a
multiple page wariable,{ If it has
been allocated to a multiple page
variable as the first page. it is
marked with a multiple page
indicator {u)

o i eelection andfor restriction
operatioms,

BO : & bivary operatiocn such as
intersection, wnion, difference,
join, and division,

oo i 2 unary operation such as
projection, sort,; count, sum,
average, maximuim, snd minimum.

A command with the first format requests
execution of a Binary operation. The segment
processor reads out each source operand page
from Shared Page Buffer. During the page
transfer, it selects only those tuples that
satisfy the qualification conditiom of Q. and
stores them in its loecal memory. It ptr%brms
the binary operation using dedicated engines,
and write down the result in the destinaticn
operand page. If the destination operand has
a multiple page indicator, the segment
processor requests Page Buffer Manager for
one more page whemever it requires more pages
to save the result, Page Buffer Manmager
returns page allocation information to the
requesting segment processor. When 4 segment
processor completes the executions it sends a
completion status code to Control Subsystem
with the list of multiple destination pages
if any.

A4 command with the second format
requests unary opeération execution on a
gingle page. The segment processor reads out
the page from Shared Page Buffer and selects
tuples satisfying the qualification condition
of @ during the page transfer. Then it
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performs Che unary operation. The result ig
paved in the same way 2s mentioned abowe.

The third format command requests a
special operation. Pages are not always
fully loaded. It is sometimes desirable to
condense & set of pages into a smaller set of
pages. It will decrease page refarences.
The third format command requests this
cperation. It is the only command that
allows a multiple-page operand in a source
operand position. The source page list is
sent to the segment processor via one page of
Shared Page Buffer. The segment processor
first reads out this page. It repeatedly
reads out the pages in this list, condenses
them and saves the result in the same way as
other format commands save their result.

Each segment processor begins to search
for a next task whenever it finishes a task.
It continues to probe Page Operation
Command/Status Network untill it gete & task,

3.3 Shared Page Buffer

As will be explained in the next
section, our segmentation schemes and our
concurrency control based on them can
generate a large awount of comcurrentiy
executable segment processing tacks. If
datzbases are stored in an ideal shared
storage device that allows sufficiently many
concurrent accesses [rom Segment ProcCessSOrS
the assignment of each segment processing
tagk to & different segment processor
realizes massively parallel database
processing. In practice, databases are
divided and stored in multiple disk units,
any of which can not- be concurrently accessed
by multiple segment processors., Besides,
disk units require seriously large access
time.

Thie problem was solved in my recent
paper (Tanaka 1984b). The multiport page-
memory architecture proposed in it provides a
new type of a shared storage space. Ffor
magaivﬁly parallel proceesing. It can afford
10°~10" ports each of which can read or write
an arbitrary page in the shared storage space
without causing any conflict nor any wait.
The principal idea is based om the fact that
the access sequence of words im a page may ba
arbitrary.

Ite basic architecture with n ports
consists of n equal-sized memory banks and an
n*n interconnection network with its
contraller (Fig. 3.2). The n memory banks as
a whole forms & memory space divided inte
equal-sized pages of consecutive words. The
page size 5 is assumed to be a multiple of n.
Consecutive words in each page are arranged
horizontally aeross all memory banks. Ome
horizontal line of this arrepgement ie called
8 track. Consequently, a track has n words.
& word address in @ page buffer is denoted by

a pair (p, d); p is a page address and d is a
digplacement in that page, In orthogonal
arrangement in o mewmory banks, the word with
sddress (p, d) locates in the memory bank M{d
mod n), and its address in this bank is
Lip8+d)/n). If the network in Fig. 3.2 is
capable of connecting each port i and the
memory bank M(wx(i)) for & permutation a of n
integers from 0 to n=-1, each port can access
a pingle word im am arbitrary page
concurrently with other ports, The
displacement d of this word irm each page
should be ko+a(i) with k being one of the
integers between 0 and §/n-1.

Forts

B O I O
~00ooooon

Switching Network

~ 0000000
~ U0000o0

== (0000000

Memory Banks
Flg. 3.2. Shared Page Buffer Archltecture.

4 scan sequence of order n is defined as
follows,

Defimitiom 3.1.

A permutation Sequence @ps Gys ... i6 & BCED
soquence of order m if it satisfies both of
the following conditione:

(1)} Each ¢; is a permutation of n integers
from 0 to n=-1.

(2) For each integer i between 0 and n=1, and
any nonnegative integer j,» the sequence
(es(ids @rpg(ids wn 4 @y, -101)) is a
pegmutatin of n integers frém O to n-1.

A network is said toe realize a
permutation a if it can connect each port i
to the memory bank (i), A permutation
realized by a network N at time tA, where 4
i a cycle time, is dencted by Hi. If the
sequence Np, By, ... is a scan sequence, the
metwork N 18 called a scan netwerk. 4 scan
netwerk has the following property,

Theorem 3.1

The configuration in Fig. 3.2, when a scan
network is used, enables egeh port to start
reading or writimg any page at any time
independently from the other porte’
operation. The operation takes no more
consecutive memory cycles than the page size.
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Apsume that & pert i begine to access a page
p at time t. In a page acceéns mode, words in
a page npeed mot be accessed in the ascending
order of their displacements. Let us
consider am access sequence;

(BoFL(3))s (PoBeyy(D))s won o (Palpyg.q(id)s

(pen+N (1)), e » (pansl o0 1(i))a
- {P.k nﬂlhkn_,_j{ i}] M o
LLT ¥ {‘Dis'ﬂ+Ht+s_l{i}}-

From the definition of a scan network, this
sequenceé accesses a4t each time a memory banmk
that is free from accesses by the other
porte, Bince, for any k., the sequence
{‘ﬂt‘_kn‘l}r Htﬁ'k-ll*‘ {L]‘s s “&+{k+h} ,,,1{1}}
i# & permutation of n integers from o =1,
the set of displacements

kol g n(ide kntly o (i) o s

kR4 (k41 )n=1 (1)

covers all the displacements between kn and
{k+l)n-1. Thie implies that the dieplacement
set io the access sequence above covers all
the displacements between O and a-1.
Besides, the number of addresses in the
sequence is equal te the page size,
Therefore; the theorem holds true. [

The access sequence maentioned in the
above proof is called & standard access
pequence of a scan network. Ite j-th address
is represcnted as

(p, Lj-f'l'l_fn"‘ﬂt_.',jt i

4 scan petwork that repeatedly realizes
n different permutations Bge G1s ees » By
in this order is called a periodiec scan
netwerk. Generally speaking, the periodicity
decreases the network hardware complexity,
As shown in Fig. 3.3, pericdic scan networks
can be constructed from log,n rows of basic
switching meodules and 2 controller that
changes tha state of each awitching module,
This is similar to the case of aXn
interconnection networks studied to allow
flexible connectidns between processors and
mamory banks (Lawrie 1975; Pease 1977, Goke
and Lipoveki 1973, Parker 1980), Different
from them, a periodic scan network need not
allow arbitrary connections between two
groups. For simplieity, all of the switching
modules at each row are assumed to be
controlled by 2 single control signal., The
controller neede to provide only log,n
signals. An array of lugzn control signals
at each instance ean be represented by a
log,m bit binary number with the top level
pignal as its M3B and the bottom as ite LSE.
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This oumber is called a control vecter. The
j*let control vector is denoted by c(j). A
epecial sequence of control vectores
satisfying,

for any i, ¢(i) = i med n

is called the regular pequence of control
vectors. In the sequel, every control wector
sequence is regarded as regulsr. Among
pericdic dcan networks, the following two
types are worth mentioning., The number of
ports is assumed to be a power of two.

1. A rotary metwork
Hj{i} = i+j mod m

2. A shuffle scan network
(i) = i#{j mod mn),
where 19) is & bitwise exelusive OR
ef i and j.

A rotary network uses 1x2 switch
modules, and has a comnection pattern as
shown im Fig. 3.3. The controller repeatedly
sends & sequence of control vectors 0, 1, 2,
changes its partoer bank incrementally from i
to n-1l, and then from 0 to i-1. A shuffle
sean network uses 1% switch modules, and has
a different connection pattorn that is well
known ab emega network (Lawrie 1975). Its
contreller also sends & contrel wvector
sequence 0, 1, 24 . » n=1 in this order.
The j-th partnmer of a port i is determined by
the bitwise exclusive OR of i and {j-1 mod
n). For n=8, port 0, for example, repeatedly
changes ite partner bank in this order 0, 1,
2, 3, 4+ 54 62 Ts while port 3 changes its
partner in a different order as 3(=011®000),
2(=011e001), 1{=011€010), O(=0l1€q011),

Port 1 2 3

& g 8 ]
01 01 01 01

MNetwork

Controller
0 1] i 2 3
1 Memory Banks

Flg. 3.3. x4 rotary scan network.
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7(=011e100}. 6(=011€l01), 5(=011€110),
&4(=011%111).

Memory interleaving can be applied to
improve access rate in consecutive
retrievali.

In the preceding paragraphs., we
neglected the delay of basic switch elements
used as scan network components. Actually,
gn aceess from a port to one of the memory
baoks needs to pase through log.m switches in
an n¥n network. If n is 1000~10000, the
number of switches to pass through becomes as
large as 10~13. The additional delay caused
by these awitches becomes comparable with the
memory access time. This almost doubles the
effective memory sccess time. This proble=m
is resolved by pipelining && many accessas as
the numbar of rows in the network.

Each port of & mmltipert page buffer has
a congtant access rate. Some devices can not
transfer data without fluctuations occuring
in transfer rates. However, the consecutive
accesses to the shared page buffer does not
allow mccess rate fluctuations. Besides,
some devices such as disk units can not start
a page read/write operation arbitrarily.
Some other devices cam not access words on a
page in an acbitrary order. These devices can
not be directly connected Eto the shared
buffer.

These problems are solved by intzoducing
two n word track buffers inbetween such
devices and the shared page buffer ports.
Two track buffers are used alternately.
While one of them is receiving the next n
words from either the device or the shared
buffer, the other track buffer is sending the
last received n words to the other system.
Since the transfer rate of the shared page
buffer is much faster than the transier rate
of the device, the transfer of a page to and
from the shared buffer has to wait for one of
the track buffers to be f£illed up or be
emptied after every n word transfer. If the
buffers are considered as a part of such a
device, the delay introdoced by this
interface is oo more than n cleck cycles,
which is independent from the page size and
much smaller than the transfer time for a
gingle page.

4 CONTROL SUBSYSTEM
4,1 File Structure
4.1.1 Colored Binary Trie

File segmentation ig inevitable to cope
with large files of information even in the
design of database machimes if we want to
enlarge their capacity. It divides dastabase
procesging into two levals, i.e., search for
gegments necessary for transaction
processings &nd relatiomal operaticm

processing on each segment or each segment
pair. In the MPDC architecture, it separates
macroparallelism and microparallelism. If
files are megmented arbitrarily, most queries
require accesses to 2ll the segments, which
severely abates the system performance.

File segmentation schemeés are the
clustering techniques that appropriately
distribucte file records to a large set of
segments #0 as to balance and minimize the
number of eegment accesses nacessary to
answer various queries. Every segmentation
scheme consists of two components, =&
directory and a set of segments. A directory
ie 8 set of rules that specifies how to
distribute the file records to a set of
segments. It may be represented by a hash
function, a table, or a search tree. Every
gegment has the same finite size as the page
size, &nd hence it may possibly overflow.

For the retrievals based on the values
of 8 single key attribute, whether it ie
primary or mot, a lot of segmentation schemes
have been proposed. Some of them have been
practically used and approved. However,
gegmentation for the retrievals based on the
values of multiple secondary key attributes
has not beer much explored yet, except
extended k-D tree (Chang and Fu 1981) and k-D
trie (Orenstein 1982).

(ur studies on this problem proposed two
colored binary schemes {Tanaka 1983b). Here,
these schemes will be briefly reviawed.
Suppose first rhat we have a relatiomal file
of records each containing n secondary kéyd,
where each secondary key has a fairly large
number of possible values. We can map the
records whose secondary keys are (kgs Kjseew
kq-1) te the (n*m)-bit number

hu(kn]hl{kl}-a !h.n_l{kn_lJ L]

where each hy is a hash function that maps
the values of the {i+l)st secondary key
attribute into & set of m=bit values. Use of
partially order preserving bhash fumctioms
{Tanaka 1983a) is desirable for those
attributes that peossibly appear in & range
search condition. The sbove expression
stands for the juxteposition of o m-bit
values.

How the segmentation of a relational
f£file can be stated in an abstract mahner as
follows. Suppose that we have a lot of bocds
each colored with one of the different
colorss Cps Cps ese s C,_ys The set of these
colore is elnnnted by C. bead with g5 color
ie referred to as a c;-bead. Each bead ie
labeled with apn m~bit value. There may be
beads with a same color and & same label. A
rosary ie a string of n beads gach having a
different coler. The ¢-label of a rosary is
defined as the label om its c-bead.

Rosaries are made one by one, choosing



an arbitrary label for each color. They are
stored in a set of drawers each having a
conptant capacity. Initially, only a single
drawer is used to store rosaries. and hence
ite directory has only one entry (Fig. 4.l
{a}). If an overflow occure, the rosaries in
the drawer should be divided inte two
classes. They can be divided based upon the
values of a certain bit of a certain color
label. For this division, we use the most
significant bit of some color label. The
directory will come to have two entries
corresponding to two mew dravers that store
the two clagses. It can be represented 25 a
binary trie with two leaves and & root that
is painted with the color whose labels were
used as a basis of the divieion (Fig. 4.1
(b)), If one of the two drawers overflows
again, its contents are further divided ince
two clagses. In general, the division of a
cluater can be based upon an arbitrary bit of
an arbitrary coler label unleps this bit has
been =zlready usped ag a basic of another
division in the process of having produced
this cluster. We use, in every division, the
lefrmost unused bit of some color label. The
directory of drawers that deseribes the rules
of cluster division can be represented as a
colored binary trie. It is a binary trie
whose internal nodes are painted with one of
the n colers.

(11}

| I | c
e
—l |
directory drawer diractory drawer

(a) the initial state (b) after the aplit
by a color ¢

Figs 4,1 The division of the contents of an
overflowing drawver based on a bit of the e-
labels of rosaries

In a colored binary trie, the left
branch from 2 node colored with ¢ is
represented by ¢, while the right by ¢. The
concatenation of the representation of
branches along the path from the root to any
other node uniquely identifies that node in
the trie. This identifier is referred to as
a node code. For & node code & and esch
color ¢, we define the c~code of that node as
a bit sequence that is obtained by first
deleting all the appearances of ¢' and c'
from = for cach ¢' different from ¢, and then
replacing ¢ and ¢ respectively with '1" and
"0, The e-code of the node with a node code
¢ ig denoted by cla)s whila the length of o
and that of c{ax) ere respectively represented
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by ple) and plela)). The node a of a colored
binary trie stands for the cluster of
rosaries whose c-labels begin with efa) for
each color ¢,

Each customer requests a search for all
those rosaries with a specified label on a
specified color bead. The processing of such
a request first requires & search of =
directory for drawers that possibly contains
some of the requested rosaries. Then it
rvequires searches of these drawers for all
the resaries of the requested type. The wait
time of a customer is approximately
proportional to the number of drawers to be
gearched, Fig. 4.2 shows an example
directory represented by a colored binary
trie with three colors, B, &, and B.
Segments are denmoted by the leaf nodes. They
are labeled with the numbering from 1 to 6.
Let the search for rosaries with the c-label
v be referred to as a 'c=v' search. For the
search of BE=00...00, it is necessary to pull
out three drawers 1, 2, and 3. For
E=00...01;, the same get of drawvers is
réquired. Generally, these drawers ate
necessary and sufficient to mearch for all
the rosaries with the R-labels beginning with
00. These search requests are represented by
R=00#%*...%, where "% gtands for an arbitrary
binary wvalue. A search request DB=Qwk,,*

- requires to pull out four drawers, 1, 2. &.

aod 5. The number of necessary drawers
varies depending on the coler ¢ and ite label
¥: This number is denoted by naccess(T. c.
v)s where T denotes a directory trie.

N
/NN
A

B 4

)\

23

Fig. 4.2 An example directory represemted by
a eclored binary trie with 3 colors

Let Cavg(T, ¢) arnd Cworst(T, c)
regpectively denote the average and the
maximum number of segment accesses Necessary
for searches based on the wvalues of the e-
labels i.e.,

Ccave(T, ¢) = average (naccess(T, g, v})
ve{0,1}®
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Cworst(T, ¢) = max (naccess(T. c. v)).
vel0.11™

Ewo kinds of access costs can be defined:
1. aversge cost

costl(T) = average (Cavg(T, c)).
cel

2. worst cost

cost2(T) = max (Cworat(T, c)).
cel

Supposge that we have a directory T and
that one of its drawers overflows, We want
to choose the most desirable color to split
the overflowing leaf of T so that the result
trie may have the least cost. Suppose that
the overflew cccurs at a leaf with a nede
code o, let a trie obtained by splitting
this leaf based on the leftmost unused bit of
t=label be denoted by new(T, o, c). The mest
desirable color is formally defined as the
ene that minimizes the following fumction of
the color variable cg

Cnast%_G{:)- ¢nstiEneu{T. dy ¢}l

There can be two different schemes
corresponding to the two cost functioms. The
best average scheme minimizes ccustl..ul[:}.
whili the best worst scheme minimizes
Cnnst-r.u{t:]. The best average scheme resultes
in a good performance throughput, while the
best worst scheme improves responce time.

4.1.2 Best average scheme

For a :nlared trie T and an overflowing
leaf &. Cecosty (e) is calculated as follows.

Theorem &.] (Tanaka 19E83h)
Gcnnt%’u{c)
= costH{T)+(1/n) sum (1/2)P(c"(a))
u'iﬂ
-(1/a)(1/2)Pleled} (4.1.1)

This theorem says that, in the best
average scheme, the split of a leaf with a
node code & should choose a color that
minimizes p{c{u)). Suppose thet n eolors are
Cpe Syv =es s 8nd e 5. As & special case of
the best average schemes, 2 scheme is a best
average scheme if it selects, for the
splitting of a node at the i-th level, the
color ¢; whose suffix j is congruent to i-1
module ﬂ. Such a scheme is called a regular
best average scheme. Regular best average
schemes result in the same schemes as k-D
tries. Actually, k-D trie is & special
implemencation of the best average colored
binary trie scheme.

4.1.3 Beat worst scheme

When an overflow occure at some leaf of a
colored trie, the best worst scheme splits
this illf by such & color that minimizes
Ceosty ,{c). If both ¢® and ¢ are different
from ¢ then Cworst(new(T, a, ¢'), ".E.' is equal
to Cworst{new(T, s ¢}y e} Let ¢’ denote a
representative of the colors that sre
different from c. Then the following theorem
holds.

Theorem 4,2 (Tanaka 1983b)
If a ecoler ¢ maximizes ﬂwufatl:nwl:'l". o 1:1'}
e} then it minimizes CcnltT'Etc]. :

Let L.(v) and W_(v) be defined as
follows;

L.(v) = card({alaeT, cla)=v}),
W.{v) = if, for any aeT, c{a)kv then O
else L;{v}+-£x{?c{u-ﬂ), W, (vel)),

vhere card(S) denotes the cardinality of a
set 5,

Theorem 4.3 (Tanska 1983b)
Cworet (T e) = LA

Let us define Hg(vJ as followe;
walv)
= if v=c(a} them W_{v)+l
elseif v&P(c(o)} then W (v}
else for be{0.1} such that webePle(a))
if W (veb)aW_(veb}+l
then H'c(\"}
else L (v)+W3(veb), (4.1.2)
where P(v) denotes a set of prefixes of a
finite binary sequence v. Then the following

theorem holds,

Theorem 4.4 (Tanska 1983b)
Cworst {new(T, o, c¥), e} = W:Ie}.

The algorithm for the best worst scheme
is stated as follows. where a Finite set Sc
is defined as

8. = {c(u)la is & leaf of TI.

Algorithm
1. Compute H:(d for each e,

The number of eteps necessary for the
computation of W*(v) is proporticmal to the
length of cfa). fhtrafu:e. the total nusber

of steps necessary to compute W.(v) for n
different colors ie proportiomal to



sum plc(al) = plal.
e

which is bounded by the height of the colored
trid.

?. Choose a color ¢ that mazimizes
Cworst{new(T, a, "), ch

Since Cworst(new(T, m. e¥). &) is Wu{ﬂ-
what we have to do is to find out a nulur
that maximizes Hcfi}. If there are more than
ofie candidate. choose one that minimizes
plefall.

3. Split the overflowing node by the selected
color cp, and uvpdate L.(v) and W _(v) for each
c and vc!{:{u}]

For any ¢ different from cg. and any
vePle{adl,

LEE“{V} + Lz{\f]i
Wee¥(v} = Wilv).
For Eeg
S0EW 4 (5 -{cla)}) v {e(o)a0, ela)ell,
ngw(v} + if v=cla) then L (v)-1
elseif wv=clo)el or v=ela)el
then L {v}+l
else L.(v).
W¥(v) + if veSZ®¥e{0,1} then 0
eleeif vkP(c(a))
then W (v)
elsa Igew{vi
+max(Wg"¥ (ve0),
HE'“(?*I}I.
Because of the same reason, the number of
steps necessary for the update of L {v) and
W_ {v) is proportionel to the length Sf clal).
Tﬁezefnre. the total number of steps
necessary to update L, (v) and W_(v) for all
different colors is ptnport;anal to plals
which is bounded by the height of the colored

trie.

Our spegmentation schemes have the
fellowing advantageous features.

1. It is cempletely adaptive, and has no
restrictions on the number of segments and of
attributes.

2. It can be arbitrarily chosen either to
minimize the average number of segment
accesses or to improve the worst case
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performance. This property is different from
an extended k-d tree scheme and from & k-4
trie scheme, which can minimize ounly the
average., Besides, the minimization in them
is performed under the restriction that the
node splittimg at each level uses & same
secondary key. Our new scheme assumes no
guch restrictions.

3. A search of the directory with N segments
and its leeal rewriting need only O{log H)
time on an average for large N. Especially,
if the wvalues of the secondary keys are
independently snd unifermly distributed,
these operations need no more than O{log W)
tima for large K.

4, The reguler best average echeme makes the
average number of segment accesses NECesSAry
for the processing of a re &T?l aelection
operation no more than O(N'D T}, where K
and n are respectively the number of
relational records and the number of
secondary key attributes. On the other hand,
it ie proved that, if the record values are
vnifermly distributed, ne segmentation scheme
can m'}f this file access cost less than
o(nin-1J/n whether it is static or
adaptive.

The computer egimulations have shown
varipus desirable features of these schemes.
Among them, the following features are worth
mentioning .

1. The leading factor is about 70 ¥. which is
fairly good.

2. In the best average echeme, the axpected
pumber of segment acesses necessary for the
processing of a relational saelection
operation almost coincides with the lower
bound of the average cost, and it is almost
independent from the distribution of record
values. Thie iz shown in Fig. 4.3.

3., In the best worst scheme, the responce

segment size = 10
the number of golers = 3

! caartiT)
H

00 .
: simulation pesults —
-n af the best l“"@f .\“- r,h.ggretlnll
. s-:r_nre:lr-"_____.. lover beund

50 = f__.-
; _.-"‘"f' the nuzher of rosaries
0 5 w000 gobo 3pao boop  seco  6EGD

Fig. 4.3. Experimental analysys of colored binary
trie schemes,

(a) simulated average number of segment accesses
In best average scheme together with lts
theoretical lower bound. (The loading factor 1s
assumed to be 70% in the computation of the
theoretical 10wer bound.)
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time of the processing of a relational
selection operation is almest independent
from the distribution of reecord walues.
Besides, the maximue number of segment
accesges becomes very close to the expected
number of segment accesses. I[n other wordss
the best worst scheme results in very small
variance of the number of npecessary segment
accesses in the processing of wvarious
selection queries. This is shown in Fig.
Gada

segment size = 10
the musber of colors = 3

tht-l“]. “.“21':]
-eul.ta['r] in the best
averege schese "
B2 1 cost®(T) im the best _'__:*"
worst schese i
'._-sﬁ":'?'-:-ﬂ‘ - 1
50 e TN eestT(T) in the bast
R =i average schens
T T N cost T (T] in the best worst scheze
2B
o
L] 1000 =000 3000 kgoo 004 L5

Fig. 0.8. Experimental analysys of colored binary
trie schemas,

{b) comparlson of the two schemes, Le., the best
average scheme and the best worst scheme, In the
case In wnich record valugs are uniformily
distributed.

4, In the proposed schemes, the number of
segment accesses necessary for the processing
of & relaticnal restriction cperatien is
spproximately the same a5 in the case of &
gelection operation.

5. In the proposed schemes, any full equi-
join of two relations each of which has O[N)
gegments and o aeconda::&_ff}v )attrihutes
requires no more than O(N B joins of
two segmente. Otherwise, its maximum time
complexity is 0 ﬂzfv Besides, io our
schemes, if o(m'"~ ”“} size buffer ie
provided, any full equi-join of them reguires
no more than O(N) diek sccesses, Otherwise,
O(N} size buffer is necessary to achipve O(N)
access complexity, In MPRC, 55 o(ln-1) ny
segment processors and o(N‘®~1//0y pages in
Shared Page Buffer are available, any full
equi-join of them requires no more than O(N)
time. Mo database machines cther than MPDC
have ever achieved theoretically proved O[N}
time processing of any full equi-join.

All of these desirable features of our
gchemes shows their applicability to the
practical relational files and also to the
large relational database machines.

4.2 Concurremcy Comtrol

%.2.1 Unified Approach to File Orgenizationm,
Version Control, and Concurremcy Control

Maseive macroparallelism requires highly
coneurrent execution of segment read and
segment write operations. Besides, high
relisbility requires a sound recovery
mechanism that does not seriocusly lower
syetem performamce during its executiom. The
multiversion model of databases
simultaneously satisfies these requirements.
Existence of old versions ensbles us to bring
the system back to its old state before a
failed update operation.

A file is not necessarily provided with
a new version of the whole file whenever it
is updated. Otherwise, multiversion database
systeme are iwmpractical. In segmented file
organizations. it is sufficient to provide
new segment versions only for modified
eegments, If files are clustered inte
segments to increase access locality. the
number of modified segments in each update
operation does mot become large. Each
segment c¢an be revised independently.
Version cenmtrel of segments requires
directory handling and concurrency control of
segment processing. Therefore, these three
functions should be integrated inte unified
control mechanism. Since MPDC uses colored
binary trie schemes as its pegmentation
schemes, this sectien will give a
miltiversion coneurrency control mechanism
for colored binary trie schemes. Actually,
the concurreney contrel described in this
section is applieable to databases with a
tree structured directory, which is not
necessrily a coleored binary trie scheme.
Therefore, it will be formalized in its most
general form. This section may be also
applied to implementation of high=performance
and high-reliability database management
gyetems.

£.2.2 Models of Transactions and File
Organization

Transactions are classified inte two
categories, i.e. read transactions and write
transactions. Transactions with no update
operations are read transactions, while
others are write transactions. A file is
considered &8 a tree structured set of
objects. The root object of this tree may be
interpreted as a relation directory that
stores, for each relation, the physical
location of its segment directory. A son of
the reet may be interpreted as the entry of
the corresponding segment directory. A
subtree with a roeot's som as its root
corresponds to & hierarchically organized
segment directory of a relation. A colored
binary trie is an example. Each leaf node
represents a segment, or more precisely, a
segment address. In & multiversion
directory, every node is allowed to hawe
arbitrary number versions of the
corresponding cbject. Therefore, each segment
may have arbitrary number of segment
versicns., For simplicity, in other sectiona,



segment versions are simply called segments.
Versions should be preserved while they are
possibly referred to. Unnecessary versions
ghould be deleted to decrease total mumber of
storage segments.

Objects are lock units. Old versioms
for each objeet allow read transactions to
read them while a write transactiom is
producing & new version of the same object.
&n object is modeled as & finite sequence of
values of a same type, i.8..

0= {‘-"ﬂl ‘-"’I. sae @ "F.n_ijl

where n i the number of versions of O and
be denoted by n{0). A wvalue v; i called the
i+lst version of the object 0y and be denoted
by O(i}). The index i is called the versiom
number of v;. We call the first version ol
the new version, O(l)} the current version,
and every remaining version an old version.
Every new versiom is usually nil. It takes a
non-nil wvalue only while the object ie being
modified by a write transaction, When the
update ends succesfully with a commit command
having been iesued by the transactiom, the
object iz modified as

0+ (ﬂill D{n‘}r Ui:l}l TR Ufn{UJ}]-

(5.2.1)
This operation changes the wversion number of
each version. Actually, versions that will
not be further refered to are deleted and the
repaining versicns are compressed during this
assignment. For the present. however, we
gssume that the number of wversions is allowed
to incresse monotonically. This simplified
model will be modified later in this section.

Asspciated with a datsbase is a set of
assertions called integrity comstraints. &
database is consistent if the current wvalues
of objects satisfy the given integrity
constraints. We assume that a database is im
correct state if it is consistent. A correct
transaction, if executed alone, transforms
the databsse from a correct state to another
correct state. During intermediate states,
even & correct transaction may violates the
integrity comstraints through its execution,
Therefore, the concurrent executiom of a set
of correct transactions may produce an
overall result that is not correct because of
the interference of each tramsactiom with
gnother one. & set of correct transactions
is considered to produce a correct result if
they are executed without any intervention,
or in other wordse,. if they are executed one
after another. Therefore, the correct
execution of the transactions Ty Tye wen s
T will be correct if it produces the same
effect as some arbitrary serial execution
(T s T s wsa s T }I where P is a
pe;ghajtgggjfunction.E{ﬁ%ia condition is
referred to as serializability. To achieve
the correct execution of the concurrent
transactions, they must be synchronized in
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some way. Usually, this is managed by
various locking protocols. Here, we will
propose & locking protocel for the above
described new model.

Our protocol provides six kinds of lock
operations for object locking. They are r-
lock (read loek), w-leck [write loek), r-
unlock {read unlock), w-unlock (write
unlock}s commit {commit operation), and roll-
back (roll-back operatiom). Although lock
operation names are similar to those in well-
known theories, their semantice are quite
different.

A tead lock, when it is set on an
object, keeps its current versiom value at
this time, and ensures the readability of
thie value untill the lock is released by a
corresponding read wnlock operation. This
current version value may change its version
number during the executions i.e.s it may
become an old wersiom,.

A write lock enables following update
pperations im the same transaction to
exclusively posses the new version while they
produce a new value on it. A write lock also
ensures the readabilicy of the current
version velue and prohibits its revisiom. If
all update cperations in & transaction have
finished normally, 2 commit command ig used
to release all write locks. Each new wversiom
value produced by the transaction replaces
the old current version value if the update
ocperations have actually changed this new
version value from mil. In thie case, all
values of an updated object 0 will be shifted
to the past by the assignment statement
{&.,2,1). If no actuoal update has been done
on this objects i.e., if O{0) remains nil,
then ne operation is performed. If the
update operations have not finished normally.
write unleck commands are used to release
write locke., 4 single roll-back command camn
also pullify all uwpdate operations in the
failed tramesaction. In these case, wversions
will not be revised and modified new versions
are reset to nil.

In our protocol, neither w-lock, w-
unlock nor roll-back is allowed te use in
read transactions, while meither r-lock mor
r-unlock is allowed in write transactions.
This restriction does mot reduce concurrencys
because multiversion systems allow
gimultaneous setting of r-locks and a w-lock
on & shared object. Each write transaction
ig allowed to issue no mere than one commit
command .

Pransactions are assumed to have their
identification number. For each object O,
the set of trapsactioms that have set a lock
on the i+lst wersiem of O is denoted by
L{o(i)}}. The sec L{0(0)) is either empty or
a sigleton with one write transaction number.
For each i, L{O(i)) is either empty or a2 set
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with only resd transactioma.

Each object version represents an object
value during a certain time peried. To
elarify this time period, it is necessary to
introduce a logical cloek LC. It is &
counter that is initially reset to zero and
hase sufficiently many bits. It is
incremented by one whenever a write
transaction igsues a commit command. The
value of LC defines a nonlinear monotomic
function of the actual time. It will be
called the logical time. A mew versiom value
becomes referable, i.€., its version number
becomes positive, when the modifying
transaction iEsues & commit command.
Therefore, the time stamp of 2 version ias
defined as the logical time when thie version
value became referable, i.e., when a commit
command made it a current version. For izl,
let te(0(i}) denote the time stamp of a
version 0O(i}. In logical time, a version
value of 0{i) was the current value of the
object O during & time peried [rs{0(i}),
te{0(i-1)}), where [t;. t,) denotes a set of
real numbers that are greater than or equal
to t; and less than tg. For i=l, ts(0{i-1)}
is assumed to be the current wvalue of LC.

Wow, let us define two macro operations
on an object.

procedure revise(0, ts);
begin
t+{nil, O(0), 0(1), «.. » O{n{0})};
n{0)}+nl0)+1;
for i=n(0) to 1 step ~1 do
L{o(i))+Llo(i=1))z
for i=p(0) te 2 step -1 do
ts(0(i))+es(0(i-1));
L{o{0) )+o;
ts {001} )+ts;
and;

procedure roll-back(D);
begin
Mnil- otl]r L] 'Dful:ﬂ”}}
L{0(0))=#;

eiid §

Lock operations are defined as follows.
Associated with esch resd tramsaction T is a
semi-open interval [, tj) that is initially
sat ta [0, +), wheraa'denoten the positive
infinity., This interval will be callad
temporal requirement, and be denoted by
tr(T). Associated with each tramsaction T i=
a finite object set obj(0) that stores names
of objects with a lock by this transaction.
In the following definitions, T denotes the
subject transaction.

procedure r-lock(D);
begin
find the mipioum 12! s.c.
tr(Tinfes(0(i)), talo(i-1)))%s;
Lio{i))+L{oli)uiTl;
te(T)+er(Tinles(0(i)), tal0(i-13));

obj(T)+ebj(TIu{0};

end}

The minimality of i is required to read the
latest referable value of each object. The
condition and the second last assignment are
necessary to read out contemporary version
values, Otherwise, a transaction may read
values of different objects that did never
exist &t the same time. Such a problem will
be referred to as 8 version consistency
problem. Our protocol can ensure wergion
consistency, This will be proved later in
thie section.

procedure w=lock(0);
begin
if L{o(0))%e
then reject the request
else
begin
L{o{o) +{T);
obj(THobj{TIu{o};
endg
end;

This procedure ensures mutual exclusion of
simultanesus write lock requests.

procedure r-unlock(0);
begin
for i=l to n{0) do
L{o{i))+Ll0(i))={T};
obj(T)+obilT)-(0};
endi

proceduere w-unlock(0);
begin
roll-back(0);
obj{T)+obj{T)I-{0};

end;
procedure commit
begin
if T is a read transaction
then
for each 0 in obj{T) do r-unlock(O)
elee
begin
te+li;
LC+ta+]l;
for each 0 in obj(T) do
if 0{0)%nil then revise{0, ts)
elae roll=back(0);
end ;
obj(TI+E;
end;

procedure roll-back;
begin
for each 0 in obj(T) do
roll-back(0);
ob j{T)+@;
end;

The multiversion hiervarchical lock
protocol that uses the above lock procedures
ig described as follows.



Protocol

l. A write transaction can not refer to nor
modify an object without setting a write loek
en this object, while a read transaction can
mnot refer to an object without secting a read
lock on it.

2. Read tranpactions do not wee w-lock nor w-
unlock, while write transactions do not use
r=lock mor r-unlock.

3. Each transaction locks an object no more
than once.

4, Bafore locking am object, a write
transaction must lock its parent object if it
has ome. A write transactiom should not
release a write lock on sn object O before it
has set all the necessary locks on the son
objects of 0. If it has locked all mecessary
son objects, and if it bas never modified O
and will not modify mor read 0, then it may
release the write lock on 0 By using w-
unlock. Otherwise, it can release the lock
after it has finished all update operations,
5., Each transaction must release all the
locks it has set before its exit.

f. Each write transaction can issue no more
than one compit command and any number of
roll-back commands.

Any imterleaved execution that follows
this protecol is deadlock-frea and
serializable. These are proved as follows.

Theorem §.2.1
Any interleaved axecution that follows this
protocol causes no deadlock,
proof For two write transactions T; and Tas
lat 0:T;+T, denote that T, requested a write
lock om an object O after Ty had set a write
lock on the same object.” If there is &
dundluck. I:here must ba a nhain guch that
:T H *T " ase I-T "‘T If
al'r -51' zhnlds fzar an ub;ut E thnl:l the
fourt.h ru..'li of our protecel implies that, for
the parent objeet p(0) of O, p(0):T +T, also
hnld.s. Hence, for the root ebject 0,
iT "3'5.'2 zust hold., If a deadlock occurs :u
tEe above chain, it must also hold that
0 :TI*TE o] Tzﬂal ELEI 1 DrrTn"’T Since
uch transaction can set g lock on the same
object noe wmore than omce, these relations
lead to a comtradiction. [

Theorem 4.2.2

In our protocol, & roll-back command can roll
back any failed updates before the exit of
the transaction.

proof Obvious from the definition. []

Theorem %.2.3

Any interleaved execution of transactions
following this protocol is serializable.
proof Let us consider 1111:-W:leave=i exacution
of transactions TJ.' Tos ass Let us
define the transaction time ttl'ﬁ for each
traneaction as follows. If T ig a write
transaction, tt(T) is the LC value at the
time when T issued a commit command. If T ia
a read transaction that finighed with [tl,
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t,) as its final temporal requirement, then
tt(T) is defined ae ¢+ %V yhere 1d(T)
ig a positive integer that identifies T. This
value is well defimed since temporal
requirements will never become empty. Let
T » T ' ..- s T be a permutation of
Hl‘} 2 tr{%ylug that if i<j then

H{TP{I:.]}“”TP « Then, the effect of the
interleaved e utmu iz equal to the serial
execution Tp n)* This
can be prove {d}} i}luwh Let 1. be the

maximum intepger satisfying the ful.lqw:.ng
plr:i.al seri.aliza.hi.lity condition: If T

san had mot nctuaillly
nmif_filid any nh;w_cl:. tﬂ:e execution would have
proeduced the same effect as the sarial
execution T + T 5 ans » GUXCOpRL
the values rpegi au'E(g} '.I‘NHII:r 41YE e s
T - Obviously, i luu l grea er than 1.
1? “gmrn e¢xists no i less than or equal to mn.
then the theorem is proved. MAssume that i is
a positive integer less than or equal to n.
The transaction T iz either a read
transaction or a write Cransaction.

Case 1 (Tp is 4 read transaction.) The
tead lock procedure r-lock emsures that every
object versiom 0(j) that Tp(;y has read
satisfies that

Et(Tpeyy) € [E8(0(3)s to(0(i=1))). (4.2.1)

On the other haad, it huldu for any k<i thatc
Lee(Tpp4y)) 2 ttt'r “: Besides, the
e:aauunn of Ip E‘ }. wer v Tpgo 1) can
not produce any varn.un whose time stamp is
greater than ltt.('l' }_I' Therefore, the
object wversion O(j) tizal: satisfies (4.2.1) is
the current versiun value immediately after
the execution of Tp ys TP( P—

Hence, the partial un.al:.u ilicy cnniftmn
also holds for i+l. This contradicts the
maximality of i.

Camne 2 (T Pli ig a write transaction.) Since
ee(T (1 Yate THJJ holds for amy j<i, it
hel 6r 4Ny "Wwrite tramsaction T (3
utiafji.n; j<i that if both T B(i) and IP( 3
get write locks on am ubJect 0 %1&1
a:r -I-TF + This means that zany
!ud:.l(l‘.lcat ions }by '1' ) must have come after
all modifications gr write transactions in
T « T 2w Tp y» What remains to
pgyir::a I.Brii}ﬁt no nm t:anaut:nnn in Tpeqys
s s Tprio read version valies
nuﬁ;l‘:ed by Tp uu.ne that Ty j) reads a
version value fSEﬂ} that is produced by ‘1‘
Then it holds that ts(0(k))=tt(Ty and
ee(T Jrea(0(k))sise., telTp }?1-.1:
How Pte‘lr}. since 1 is greater Ehfn js it r.ozlda
chat ct(T B( :tt(TP y)» which contradicts
the above :'vl.at:.un.%erefure. the partial
gerializability condition alss holds for i+l,
which contradicts the maximality of i.

Therefores, there exists no such integer
i, and hence the imterleaved execution is
totally serializaeble. [
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The above discussion has assumed a
simplified object model that allows
monotonically inecreasing number of wversioms.
Actually, an old version may be deleted if it
is mot subject to further references. For
each read transaction T, let t(T) denote the
LC value at the time when this transaction
first set a read lock, Let th denote the
minimum t{T)} value among any rcead
transactions that are still being executed.
Then, the execution of a commit command may
delete all versions whose time stamp ie less
than tR, preserving only the latest of such
versions for each object. It is obviocus that
these deletable versions are not subject to
further references. This method keeps the
maximum number of object versions within &
reasonable range.

The multiversionm hierarchical
concurrency control ie performed by Directory
Searcher to decompose cach transactiom into
correct concurrent execution of segment
commands .

4.3 Directory Searcher

Interfacef/Supervisory Module and Query
Processor require no innovative architectural
technologies. They are necessary to provide
a hoet computer with a high level interface
to MPDC. Their software systems will not
become much different from corresponding
software modules of current relatiomal
database management systems. Query Frocessor
transforms a given transaction into an
optimized program that traverses tree
structured segment directories and genecrates
segment processing commands. The execution
of this program is performed by Directory
Searcher,

Suppose that we have two segment
diresctories., a8 shown in Fig. &4.5.
respectively for R(A, Bs C) and s{D, E).
These directories are based on colored binary
trie schemes. For simplicity. each directory
node ie assumed to have only its curremt
wersion. These example directories are much
smaller than practical directories. For
simplicity., attribute wvalues are assumed to
be & bit long. Some exzmple query

R(A B, C) S(C. D)
A D
SN N
c E E

R/\c E/ S/\b B/\s
A /\\" AT

RpRz Ry Rg Sp 33

Fig. 45. Example directories in MPDC.

trapslations into segment processing commands
ara given below. They are performed by
traversing the directories.

update Select tuples in R satisfying A=1000,
B=0000, C=0000, and change their B values to
1000.

%y +[A=1000 and B=0000 and C=00001(R;);

K+R,=X;3
o e oyl Be10001%, 5
B *put Xgi
i 0113 conaists of cne page
then Rg+put (X4
else
begin
segment-split(Re, attr. seg). 5532}:
mu-aplit{%. attr, K&[ 15};
septput L
Baf g tput 15;
end;

The procedure segment-splic(R-. attr, Begy .
geg,) will be executed by Directory Searcher
during the execution of this program. Given
an ovarflowing segment address, it returns
the splitting attribute and two new segmeént
addresses seg) and segy. The procedure page-
split(Oxy, attrs Xy Kg) will be executed by
a segment processor. It will distribute
tuples in OX4 into tweo single page variables
X, and XZg, depending on the splitting
attribute’s values.

join (R[B=0000]1)[A=D]S
Xy +(R [B=00001)[A=D]8, ;
(R, [B=0000])[A=D]S5:
Xy+(R, [B=00001) [A=D ]S, ;
x5+(Rﬁl'.B=ul]n 01)[A=D]8g3
Xg+(Rg [ B=00001)[A=D]S} s
g&ﬂnstmmnn [A=D]sg;
E_-.rcundenﬂ e{]tl 1XgsKqa X, 1 EgaXy .x,.] :
Actually, directory nodes have multiple
versions, However, it does not much
complicate directory search and generation of
segment processing commands. The opdate
example above, for example, changes the
directory as shown in Fig. &.6 if it causes
an overflow. An underflow of a segment is

//W

o fh, B) 0,(niL, C)
)

N4

0, ML, R) "Q, (i1 ©) Og (nll, BIXQ, (i, Re)

/\

0, Oy Oy MILRLR)

Fig. 46. An example of Oyq (nll, attz, Rg)
a multiversion
colored blnary 011 (nll, segy) ’
trie directory. 0y (nil, segy)



racovered only by merging it with its brother
segment if any. Therefore, some underflows
are not recovered., However, our theory
ensures that it does mot csuse seriocus
problems. If an underflow occurs in 0, and
the merge of 0? and {Ja can be stored in a
single segment, then they will be merged into
o new segment Oyg, and Oy will become (nil,
“?B' Cls

Directory Searcher is also in charge of
concurrency controel. Locks are eet on
objects in directories, following the
protocel in Section 4.2. A read lock set on
a segment is released when all commands that
refer to this segment in the same transaction
complete their execution and their completion
tokens are all received from Data Subsystem
by Macroparallel Data Flow Controller. 4
write loek on a segment is released im either
of the following cases. If no command in the
transaction actually changes this segment, it
is released by 2 w-unlock command after all
commands in the transaction that refer co
thie segment complete their execution, If &
command changes this segment, it is released
by a commit command after all vpdates and
references in this transection complete their
execution. Im & recovery routine of the
transaction, a roell-back command is used to
aullifies ite failed execwtion.

&4 Macroparallel Data Flow Controller

HMacreparallel Data Flew Controller
receives segment processing commands,
dynamically constructs data flow programe of
segment commands for segment transfers and
page operations, eends active segment
commands to Data Subsystem through the two
commanders, receives completiom tokens from
Data Subsystem through the two watchers, and
transfers activation tokens to next
axecutable commands in data flow programs.
To perform these operatioms, it has five
tables, Transaction Table, Command Table,
Segment Table, Page Variable Table, and
Multipage Variable Table.

Segmant Table describes, for each
operand segment. & page variable assigned to
it., When Macroparallel Data Flew Controller
receives a4 segment processing command from
Directory Searcher, it examines if the
command has any operand segments that are not
yet registersd in Segment Table. If it has
any, the controller assignes each of them a
new psge variable, and stores this assignment
in Segment Table. BSuch & page variable is
called a segment page wvariable. Operand
segments in the original command zre replaced
with their corresponding page variables. A
command thus obtained is called a page
operation command. If the original command
has such a new source operand segment, the
controller generates a get command that
requests transfer of thie segment to the
assigned page variable, If the original
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command has such & new destination command,
the controller gemerates a put command that
requests tronsfer of the assigned page
variable to this segment. Put and get
comamands are called segment tramsfer
¢commands ,

The destination operand page varisble of
each command is alloecasted & free page in
Shared Page Buffer when it is semt to Data
Subsystem for its exexeution. Page Variable
Table stores, for each operand page variable,
ite statuse, its allocated page address, a
pointer to its reference list. and its
reference count, The status field shows if
the page value is already computed. Each page
variable appears mo more than once as a
destination operand. When all operand
segments in a command received from Directory
Searcher ave replaced with page variables,
Macroparallel Data Flow Controller makes a
new entry in Page Varisble Table for the
destinstion operand page variasble. It alse
searches this table for its source operand
page variables, which have been already
registered in this table. It stores this
command in Command Table with its subject
transaction number and links this command to
the reference lists asscciated with the
source eperand page variables' entries in
Page Variable Table. The reference count of
these entries are incremented by one. Their
page allocation fields are set to nil.

Command Table is a waiting room for
generated segment transfer commands and page
cperation commands. It stores a waiting
command with its subject tramsaction number
and ag many token bits as this command's
source cperands. Associated with Command
Table is the active command queue that stores
addresses of the commands in this table that
are ready for execution. When & command is
stored in Command Table, the contreller also
examines its source operand page variables!
statuses stored im Page Variable Table. If a
page variable walue is already computed, its
corresponding token bit is set to one.
Otherwise, it is set to zero., If all token
bits of the command are set to one, this
command is added at the end of the active
command queue. Get commands are always added
at the head of the queue immediastely after
they are generated. Each command becomes
active when all of its source operand page
variable wvalues are already prepared in
Shared Page Buffer, in other words. when all
token bits of the command become one. When a
command becomes active, it is added to the
active command queue. Active commands are
gent to Data Subsystem with their locations
in Command Table. Before they are sent, their
cperand page variables ate replaced with
physical page addresses in Shared Page
Buffer. Their source operand page variables
must have been already assigned page
addresses because of the single assignment
rule and the activation mechanism.
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Macroparallel Data Flow Controller replaces
the source operand page variables with their
correspending page addresses by searching
Fage Variable Table. If o command has a page
variable destination operand, the controller
asks Page Buffer Manasger to allocate one free
page in Shared Page Buffer to this
destination operand page variable. This
allocation informatiom is stored in Page
Variable Teble, If the destination operand
is a multiple page variable, a list
conslsting of only this allocated page
address is stored in Multipage Variable Table
and & pointer that points to this list is
stored in page Variable Table,

If a command is sent to Data Subsystem.
it iz removed from the active commsnd queue.
When Data Subsystem finishes execution of &
segment command, it sends back a completion
status code to Macroparallel Datz Flow
Controller either through Segment Transfer
Watcher or through Page Operation Watcher.
The completion status code includes the
command address in Command Table. If the
gtatus code shows normal completion of
execution, Macroparallel Daca Flow Controller
reads out the sommand address from the status
code, gets its destinatiom pege variable from
Command Table, searches Page Variable Table
for this varisble, and secta the corresponding
toker bite of all the commends that are
chained from the referenmce list pointer field
of this variable's entry in Page Variable
Table. During this marking process, if the
controller finds out a command whose all
token bits become one, it adds this command
to the active command queue. For each
completed command, the contraller alseo
updates Page Variable Table entries
associated with its source page variables,
It decrements the reference count by one, and
ramoves this command £rom the reference list.
For each transaction, Transaction Table has a
pointer that points to a chain of this
transaction's variables, except segment page
variebles, in Page Variable Table. When a
transaction finishes its execution, page
allocation to the wvariables im the list
linked frem this transaction's entry in
Transaction Table sre all releaged, and these
variables are deleted from page Variable
Table.

When all pages in Shared Page Buffer are
gpent for page allocations, FPage Buffer
Mansger cam not allocate a new page to a new
variable without releoasing ome page
allocation. Its selection is based on the
LEU slgorithm. Buppose that the selected
page it a segment page. If the transacticn
that requested the preparation of this page
ie already finished, the page allocation is
released and this variable and the read out
segment are deleted respectively from FPage
Variable Table and Segment Table. If the
transaction that prepared this page is not
finished or if the selected page is not a

segment page. then this page value is saved
into a work disk storage space provided by
the digk subsystems. The destination address
in the disk storage space is written in the
page address field of Page Variable Table
with a2 mark indicating disk storage space
allocation. If an active command that is te
be sent to Data Subsystem has a source page
variable whose allocated page address is in
the disk sterage space, the controller aske
Page Buffer Manager to allocate this variable
a4 new pages sends a get command to Data
Subsystem and put the object command at the
end of the active command gqueune.

Macroparallel Data Flow Controller
controls the activation of sufficiemtly large
macro operations such as segment transfer or
page procesaing. Therefore, the contrel
overhead will be hiden by the concurrent
execution of macro operatioms by Data
Subsystem. An appropriate selection of
segment size is required.

5 CONCLOSILON

The maseive parallel database compubex
architecture that has been propesed in this
paper provides both fundamental technological
breakthroughs in the performance enhancement
and the capacity enlargoment of database
processing and a unified way of integrating
these technologies inte a datsbase computer.
Bacause of the "Disk Paradox' pointed out by
H. Boral and D.J. Dewitt {Beral apd Dewitt
1983), it has been believed these days that
the vse of moving head disks as secondary
memory devices puts it out of the question to
design and to implement a massive parallel
database machine.

The MPDC architecture has solved this
problem am follows. It has decomposed
database processing into two levels, i.a.,
directory search and segment processing.
Every relation is divided into equal-sized
pagments, Corresponding to cthis two-level
decomposition, MPDC comnsists of two
pubsystems, i.e., Data Subsystem and Comtrel
Subsystem. Data Subsystem is in charge of
sogment accesses and segment processing.
while Control Subsystem is responsible to
Data Subsystem for decomposing query
transzctions into comcurrently executable
segment processing commands. File
segmentation requires file clustering schemes
te imcrease file access leocality and to
decrease segment accesses and segment
processing tasks. Control Subsystem uses
adaptive multiattribute clustering metheds
called colored binary trie schemes. Data
Subsyetem consistds of a pool of processors
for segment processing, a set of disk
subaystems, and & Shared Page Buffer shared
by these modules. Segment processors use tWo
types of bit-sliced VLSI modules for high
speed processing of batch search and sert
operatioms, These modules overlap their



processing with data transfer to and fro=
them to make much use of page transfer time.
Ehared Page Buffer resolves memory sccess
conflict problems in parallel processing and
allows massively parallel processing based on
macroparallelism among sfi'“"f processing
tasks. It allows 10°~10" ports to
concurrently access arbitrary pages without
causing any conflict mnor any access
suspension, Some ports are connected to
segment processors and others are usad by
disk subsystems. Bhared Fage Buffer doas not
only increace segment access speed but also
decreases secondary memory access frequency.
These two e¢ffects together with the provision
of concurrently accessible multiple ports
have solved the alleged '"Disk Paradox' of
magsive parallel database machines. Control
Subsystem, on the other hand, uses a unified
contrel algorithm that does not only manage
adaptive sogmentation but also efficiencly
and correctly contrel highly reliable
interleaved executioa of transactions.
Massive parallel execution of segment tasks
roquires highly concurrent execution of
tegment road and segment write operations,
Besides, high reliability requires a sound
recovery mechapism that does not seriously
lower system performance during its
execution. Control Subaystem uses &
meltiversion concurrency contrel mechanism
based oo the colored binary trie schemes as a
unified solutiom to segment management,
concurrency contrel, and recovery. Activation
of segment access commands and segment
processing commands are controlled by a
dataflow controller, which sutomatically
controls disk subsystems to transfer segments
to Shared Fage Buffer prior te their
procesging. Each active command is sent to
Date Subsystem and be executed either by a
segment processor or by a disk subsystem.
The use of auxiliary files for further speed
up has not been deseribed im this paper
because such £iles are also comnsidered as
relations and can be treated by MFDC software
éystems. Such software systems as well as
detail specifications of the data flow
mechanism and total performance evaluation
require further elaberation.
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