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Abstract

In the 1970z languages were provided with
module facilities for building large programs. These
notations can be understood and refined by
translating them into a typed [unctional language
which provides ‘dependent Lypes’. in such a
language we caén denote a large program 5y an
expression whose operators are modules.  This
paper Ltries lo give a readable intreduction Lo the
way in which recent ideas aboul Lypes may be used
for the study of modularity features in
programeming langueges.

1. Introduction

Our pregramming ambilions are bounded by
the size of programs which we can debug and
maintain. When a program exceeds & certain size
no-one in the world understands it. But we hope
that esch part eof it will be understecd by at least
one person end Lhat zomeone will understand how
the paris fit {ogether. Fitting the paris together
has been called ‘programming in the large'. as
opposed Lo ‘programming in the small’ which is the
business of forming the parts by writing
psgignments, while statemenis and procedures.
Pascal, LISP and Prolog permit pregramming in the
small. CLU, Mesa, ModulaZ2, ADA and ML add
fmcilities for programming in the large, variously
called ‘clusters’, ‘modules’, 'packeges’ and 'absiract

data Lypes'.

When we combine modules io perform some
task we need to look at their ‘interfeces’. The
interface tells us what data iypes and procedures
the medule requires and what it produces. To
ensure that we are combining the modules in a
sensible way we check thal their warious input and
sulput interfaces mgree with each other.

Unfortunately, modules and interfaces form an
extra layer of complexity in recent progremming
languages, yet more fealures [er the preogrammer
te wrestle with. We would like to find = uniferm
fremework which would ‘explein® these exira
features ms well as the ones which are familiar
{rom programming in the small, explaining medules
as wsﬁ as proeedures, Butler Lampsen and | have
worked te shew that such a framewerk iz provided
by & typed functienal longusge. Calling a
eollection of date type and procedure definitions
an ‘implementation’ we regard modules as funclions

from implementations to  implementations and
interfaces as Lhe Llypes of Lhe implementialion.
Conventional lenguages cean be defined by
translation inte such a simpler 'Kernel' language.

We hope that our work wlll shew how Lo reduce
the apparent complexity of programming languages
in the facllitiea they provide {or dealing with
medules. This rationalizetion sheould give us tools
to design more uniforrm and powerful facilitiez for
programming in the large.

The aitemplt bto use a iyped funetional
language for programming with modules shows up
some of the limitations of Lhe Lype system usually
employed, and [t pojpts te the need to adopt a
more [lexible and expressive systern using
‘dependent types’. These were originally proposed
in order to deal with the logic of constructive
mathematics (Martin-Lof 1973), bubt recently o
number of people heve become aware of their
importence for programming lenguages,

The approach here iz based on the 'Pebble’
functional lenguage of Lampsen end myself which is
fully defined in Burstall and Lampson (1884).
Indeed the present paper iz mainly an attempt to
motivate 2nd give a summary acceunt of the joint
work with Lampson described in that poper. The
topic  addressed seems Lo be genersting
censiderable interest recently; in particular we
have exchanged ideas with David MacQueen at Bell
Laboralories and with Gorden Platkin at Edinburgh,
and they have colleborated with Ravi 3ethi, Jo
Mitchell and Jimm Hoek. The inspiration for this
work came from & long collaboration with Joe
Geguen and frem the sophisticated module facilities
provided in the Xerox FARC Mesa language. The
theory of polymorphic types was developed by
Reynelds and by Milner.

The other stream of work which |has
contributed iz in  the legic of construstive
methematice and influential work here hasz been
due to Martin-bLof, to Girard, and to Consteble and
hiz collaborators at Cornell.

2. Brilding programs oul of modules

Let us review the currenl stale of the art. We
start off with some building blocks for programs,
ones which are familiar in the context of languages
such as UCSD Pascal, Modula 2, Mese and ADA. (See
Appelbe and Ravn 1984 lor & recent critique of
modularity features of several such langueges.)
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This will {ix ideas on current practice and establish
some terminology, namely implementation,
interface and module.

Consider for example n Lypical piece of
program Lo enable us te do computations with
peintz, az shown in Fig. 2-1,

POINT

fype point = 1 record zeoordireai;
yeoord:Teal

end; INTERFACE

Sunclion mipotnd(rreal; yreal)point;

procedure rotafe(p-point; theta:renl):

Junclion mkpoint;
var pipeind;
IMPLEMENT-
pt.zeoord:mz; ptoycoord:=y, ATIOM
mkpoini:=p

begin new(p);

end;

procedure rofoafe;

begin ... end

Figure 2-1: Points

The interface introduces names such as point,
mipoint and rofats and associates & type with esch
of them, bul no execulsble code; thizs code i=
supplied by the implementation. A  program
consists of a mumber of such pieces, referring to
each other (Fig. 2-2).

FPOINT |
type point = t record. end,
Junclion mépoind(zreal; yreal):peint;

procedure votate(ppeint; theta:real);

<implementation of poinkt>

LINE
USES POINT
iype line = t record...end

Sunction mkline(p:point; g peind)line
Sunclion intersects(i1:line; [2:iline)point

<implementation of lint}_

PICTURE

USES POINT, LINE
type pic = record...end

Jumnction mipic({p:peint; olorray of line):pic:
procedure display{p:pic; var doarray of boolean)

<implementation of pleture

Figure 2-2: Points, lines and pictures

The point interface of Fig. 1 is in fact rathe
too informative. [ was realizsed long ago that i
erder to maintain some abstraction about th
nolion of point Lthe interface should not show wha
points are made of, The date type peint should b
opague (Fig. 2-3), roeking peoint inte an absérac
datelype whose implementation details are not i
public view.

POINT ]
lype point INTERFACI
Function mipoint{zreal; yreal):point;
procedure rotafe(pipoint: thetareal)
type point = t record Tooordireat
yeoord:real

ed; [MPLEMENT
Junclion mEpoint: ATIOY
procedure rotafe;

Figure 2-3: Points 8% an abstract data Lype

The next goed ides was to separale the
implementation from the interface (Fig. 2-4).

POINT |

type point INTERFACE

Junclion mipoint(zireal; yreel):point;

procedure rolate{ppoint; thetereat);

FPOINT |

type pointé = trecord..end

Sunction mkpoint, [MPLEMENT-
ATION

procedure rotale,

Figure 2~4: Peints with separate implementation

After all there could be geveral
implementations of the same inlerfoce, different
ways of representing and computing with points.
This means that the conventional way of connecting
an implementotion to an interface, simply giving
them beth the ssme name POINT, iz nol adegquaie
in general. We shall look later at an ellernative
way of making this connection.

So far we have seen & box which preduces an
implementation. Sometimes this implementation is
not fixed but depends on some parameters, a3 in a
general sort function which requires to be supplied
with the type of the elements Lo be serted end en
nggrupriale ordering; we shall call this & module,
(SQRT in Fig. 2-5).

~ But the requirement i relher familior, indeed
it i5 just mnother example of a&n interface, What
has to be supplied to fulfil this requirement is just
an implementation. Thuz we can use the uwsual
parameter notation when writing modules, (This
ingsight appeared in Mesa and in Clear.)

To see this let us look at an example where we



sorT |

Reguires{iype element;
Junction lesseq{el,e2:element):boolean)

procedure seriver aarrey of slam)

MAIN
USES STRINGS, SORT(string; siringlessag]

Figure 2-5: Parameters for SORT

define some interfoees. implementationa and
modules.

First we have an interface ORDERING and two
different implementations of it, one using numbers
and one using strings (Fig. 2-8).

interface DRDERING]
lype element

function lesseqglel efielament): baslean

tmplementation NUMERIC_ORD:ORDERING |
type elemani = integer
function lesseg(il i2tinteger):bealean
begin if 11<i2 then.. . else...
end

implementation STRINGC_ORD:ORDERING
type element = siring
Junction lesseg{sl s2:siring):boolean
begin for j=1 fo ...
end

Figure 2-6: Orderings

Then we heve a module for lexically ordering
elemenis, (Fig. 2-7), producing s new ordering on
pairs of elements from two given orderings. Thus
if words are ordered alphabetically and numbers in
inoreasing order. The pairs <frogd> <raim.d>,
¢water 0>, <grass.d», <reinl> would be lexically
ordered <frog 3>, <grassd>, <rainl>, <raind>,
<water,0>. The porameters P and § are just
required to be ORDERINGs, it i3 no longer
necessary te list  the individual Gtypes and
procedures required ns we did in Fig. 2-4.

module LEXICAL_ORD(P-0RDERING Q:0RDERING)
{OROERING
iype element=recerd z.‘P,EEEﬂ‘Lii;.E;-.y?E-maEﬂ!
end
funciion lesseg{pl,plelement):boolean
begin if Plesseq(pl.z,p2.z) then  else. end

Figure 2-7: Lexical Ordering

We can now define & sorting interface, iwo
different ways of realizing it end s main program
which uses all this (Flg. 2-8).
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inlerfoce SORTING [
tiype element

procedure sort(var c:erray of element; noindeger)

module SHELLSORT{P.ORDERINC):SORTING]

meodule QUICKSORT(P:0RDERING):SORTING I

_ d

MAIN 1

Figure 2-8: Sorting

Mesa hes mest of this capability, with rather
complicated synlex, bul it does nol distinguish
between implementations and modules. Logically we
onn write modules wilh ne parameters instead of
the implementations, deing withoul implementations
in the programming language. Bul then the ides of
implementation is just explanatory and semantic;
you cannol write down an implementation. | believe
that this makes it harder to understand what is
going on.

H we lorget aboul what iz in the boxes and
look just al the lines on top of Lthem we get a very
important idea: a progrom plan (Fig. 2-8). This is
where ‘thinking big' happens. It gives us an
overview of Lthe whele progrem siructiure, omitting
the detsils. But it is precize and capsble of further
relinement, not just informal hand waving.

irderface ORDERING. SORTING
tmiplemenlation NUWERIC_ORD-ORDERING;
STRING_ORD :ORDERING
module LEXICAL_ORD{P Q:08DERING):0RDERING,
SHELLSQRT(P:0RDERINC):SORTING:
QUICKSORT(P:ORDERING):SORTING

Flgure 2-9: A program culline

Thiz i3 best expressed as 2 piclure with
interfaces as Lhe nodes and implementations and
modules on Lhe arrows, (Fig. 2-10),

LEXICAL_ORD

NUMERIC_ORD
SHELLSORT

ORDERING ) mnm@

QUICKSORT

STRING_ORD

Figure 2-10: Diagram for program oulline

¥e can use this picture te have [un devising
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varieus progrems (rather as the ‘rallroad
disgrams’ for Pascal Syntax allow you to devise
programs syntectically). For example:

dofine GuSoriNF=QUICKSORT(
LEXICAL_ORDINUMERIC_ORD.STRING_ORD))

%5 now a program leoks like an expression in
terme of implementations and medules, which can
be fype-thecked by checking competibilily of
interfaees. It iz really aice to be able to write
expressions Lo denocte big progrems.

It iz poessible te base a module linking
language en lhese ideas, and indeed Lhis has been
done at Xerox PARC (Schmidt 82, Lampsen &and
Schieidt 83), Echmidt designed and implemented &
‘Bystern Modeiling” language, based on an  early
wversion of Pebble, to express the linking of large
collections of Mess modules.

In ihe next seclions we will deseribe the
formel basis  fer this vwlew of large scale
‘programming, & basis which has been cembodied in
the functional kernel language Pebble (Burstall and
Lampzon B4).

3. Implementations, interfaces and modules

We would new like Lo remove the specis]
character of the consirucls which we have
encountered inm ouwr exeamples of Ioodular
programming, se as to treat them just like such
ald friends as integers and procedures.

‘The analogy which we seek to establish is
implementation — walue
interface — type

modils -— funetion

If we can make sense of this analogy,
‘programming in the large’ with implementations,
interfaces and modules will become just Llyped
functicnal programming. This endeavour molivated
the design of Febble, one of & number of recently
proposed typed funelionsl lamgeeges which extend
Lroditional ideas of types in the light of work in
ihe theery of constructive mothematies.

Let us see how we can regard implementations
&g values. Based on the examples we have locked
st we may say thal:
an implementzlion is
cither a nume beund Lo a basie value

(0.1.2,....true false....}
or Lo a funclion
or to an n-tuple

or Lo a Ltype

or an n-tuple of implementations

This suggesis Lhat we define our welue space
ey follows:

& value is
either a basic value (0.1,2, .. truefalse....)

ar o function
or an n-tuple of values
or a Lype
or a binding

where

a binding i cither & name bound Lo 2 value

or a tuple of lﬁndiug:

Notice that we have replaced t{he word
tmplemeniadion by binding. This is because the
idea of a collection of names bound te some kind
of walues iz already familiar in most funclionel
langunges ond need nel be reslricted to the
particular context of 'programming in the large’
In fact a binding is whal iz oftem described aflter
lel, for example

et x=u+2 and ponel § or 7

in if p then z-1 else x-1

We think of the expression afler [lef being
evalusted to give a binding., and prefer to think of
it s & pair of elementary bindings, which we write
using "~' rather than the overworked sign "=". Thus

lef [ ~ u+2, p ~ not g or 7]
in if p then z-1 else z-2

In a siluabion where u s 1, q is false and r is
true, the expression alter let evalustes to Lhe
binding [z ~ 3. p ~ true].

Bindinge will do wery well Lo represent
implementations.

Similarly
an interface is
either & name with a given Lype
or a 'product’ of interfsces

50 since an interface i= o be the Llype of en
immplementation we need

n type is a besic type {integer,boclean....)
or type - Lype
or Lype = Lype
or o declaration
whaore
o declaration is
either & name with a given type

or & declaralion = declaration

Now & deeclaratlon is the type of a binding.
For example the binding



[z~ 3, p ~ true)

hae es its Lype the decloration
zinteger = prboolean

(We shnll see later that sz well asz the uszual
notiens of ¥ ond =+ we will need dependen! versions
in the above definitions.)

Ancther example: the binding

[element ~ integer, f ~ facloriad]

has a= ils Lype the declaretion
element:iype » fi{integer =+ fnteger)

Here fype is & speécial typs. namely the type of
all types (including itself). Introducing such a type
lays us open to the possibility of paradoxes (Girard
18972). We believe however thal Lhe zystern may be
appropriate for computing purposes.

Declarations will do wvery well to represent
interfaces,

We can now summarise three of the major
decisions taken in designing Pebble.

- We toke types as values
- We take bindings as values

- We toke decloroations as types

From a theoretical point of view Pebble iz just
typed lambda caleulus with some syniactie sugar
{noetably the let construction) end the three
extensions above plus o fourth, dependent tynes,
which we will discuss shorlly. We designed il with
two aims in mind

= to mot us a kernel lengusge inte which
we could translale the much richer and
more ad hoc synltax of PARC's Cedar
language se a3 Lo give a precise
definitlon of Cedar. (Cedar i3 n
successor to Mesa.)

- te enable us to exténd the Ceadar
langunge sufficiently to act az its ewn
module linking language.

4. Bindings and declarations

Let us see how we can play with bindings and
declarations. Bindings naturally appear after let
as we have seen. Declarations natvrally appear in
formal parameter lists i.e. after ‘A, thus A ziné.. .
As usunl we permit ourselves Lo write flziini)~..
instead of the mere primitive f ~ Azint... Here
are some examples of manipulating bindings and
declarations
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lef ziind ~ | in
tet ditype ~ (yrint « prbool] injnote: d is a dest]
let bid ~ [y =~ =#0, p ~ frue] 40
fnote: b is a binding]
let b in
if p then y else y+1

We mey also define a funection f which takes a
binding asz argumeni. After the delinition of d
above we could write

tef flbed) ~ let b in
if p then y else y+1

Here f takes ss an argument a binding &
whose type lg given by a declarallon d. Netlice Lhat
we can Lypecheck the function f without knoowing
the value of b, but we must know the value of the
declaration d since this Lells us that p iz 2 boolean
apd y ia an integer, We could rewrite tha
definitien of f thusz

lat f(b:d) = if (Lef b in p) then (lef b in y)
elsa (lef &b in y) + 1

Here let b in p means fhe value of the name p
in the binding b, and il is closely equivalent to the
form b.p in Modula 2 (for example), meaning the
identifier p defined In module &. A familiar
example would be sicok.emply.

How we can say thal
- implementations are bindings
= interfaces are declarations

- modules are functiens from bindings to
bindings

6, Dependent eross types

If we try to use bindings fer implemeéntations
and declarationz for inlerfaces, we come across a
difficulty. Consider the interface

ORDERING
type element
Function lesseglel e2:element):boslean

We would like to write thiz inlerface na

(element:type) = (lesseq:element x element —3
boolean)

When we write (z:3) = (y:t) we mean to declare
the types of ¢ and ¥ and assume that we already
know the values of s and ¢ {which should of course
be types), But here the use of element after
lesseq: does nol veler to some pre-cxisting Lype
glement; it refers to the elemeni declared by
element:type, and we will nol know whal Lype
element is meant until we gel the binding to
correspond te this declaration, Ferlunately this
gilustion was encountered in the type theory of
constructive mathemeties (Howard 10888, Scott
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1970, Martin-Lof 1973, see Constable and %latin
1984 for a recent formulation). It was also
cbserved by Constable snd Bates{1984) in weork on
program verification and by Demers and Donahue
in dealgning their lenguage Russetl (Demers and
Donahue 1980) We need what is knewn oz a
dependent fype. of which there are iwe kinds,
corresponding to = and Lo — raape:tlv%‘y (3 apd v
il one uses a more logical nolation, and in
Maprlin=Lof's nobation). Interfaces nesd the first of
these, dependent cross.

Te distinguish Lhe dependent cross from the
usunl one we write it with = Hefore the » we may
wrile not just a type but Lhe decleration of a name
which maey be used after the = Thus we can write

(elementitype) = (lesseq:element = alement
=+ boolean)

The general form iz
n:Tl = F2{n)
where n is 8 name
T1 iz an expression denotling a type

T2 iz an expression denoting & type end

(optionally) using the name n.

Thiz dependent cross denolez o Llype whoas
elements are peirs, the first component being an
eiement of Lype T1 and the second an eclement
whose Ltype depend: on the velue of the first
component. Thus the fype of the sgeond componand
depends on the volue of the first

Some examples will help

{i) (nind) = (array[1l.n)] of real)
elemenis [4, 7.1 1.2 8.0 B85 |
(2, Te 15 1.7 ]

{#4) (t:type) = (i = Hst(t))
elements [int v I8, (1,2.30]]
[boat v [true,(true, false)]]

[Hst(int) . [(1.2).0(0.3,2).(2.200])

[41d) (pitype - type) = (plint) = int)
element [list ., CAR]

The type-checking rule for de‘pendenE [T
types may be written thus:-

if e haz type T1
and b has type M2(a)
then [a.b] kos type n:Ti = T2(n}

Thus in example (1) above

ind has type type
and [6,{1,2,3)] has type intb = list{int)
o [int,[8,{1,2,3)]] Aes type (L:lype) = (8 = Hst({i))

Dependent cross types are mnot altogether

unfamiliar, A Lextbook delinition of a finite
aulomaton might be

"An automaton is a S-tuple (1,5.0.6.y) where I §s a
sel of inpuls, 3 & set of stotes, 0 a sel of oulputs,
d: [¥5->3 iz a funclion and ¥: S=+0 iz & function.”
We cen Iimitate this in our Lyped langusge by the
dependent cross type

(Fiype » Siiype » Dilype) = (S5 = (§—=0))

Here the second component iz a produoct type.
but to reproduce the informal deflinition mere
closely we con make it into a declaration

(Itype = S:type = 0:type) = ((8:48 = 5) x (7:5-0))

Part of the mollvetion for our investigalion of
more expressive type systems came from our
experience of coding up category Gtheory as
programs {Burstall 1980, Eydeheard 1882,
Bydeheard ond Buratall 1983), Davld Mac@ueen
spenlt considerable eflort rewrlling our calegory
programs using & more sophisticated Lype system;
indeed we regard them as sometlhing of a challenge
for langusge designers. This centributed. to ilhe
development of MacQueen's propesals for & medule
systemn for ML {(MacQueen 1884).

6. Dependent arrow types

The other form of dependent Llype can be
regarded ns n geperalization of Lhe — Lype
eongtructor, as uged for example in dinteger
— boolean. We write it — > IL enablez us to
introduce polymorphkism, a [acility which is
evailable in sSome sophizticated type eystems,
notably the ML language (Gorden, Milner and
Wadsworth 1878, Milner 1983 , Mycroft and O'Keele
84). but not in Pascal and its descendants. In
Pascal If we wani to write a procedure to lranspose
a two-dimensional array, se thal a_ becomes a , we
have to know whether QL iz an integer erray br a
real array. Although the code I3 Lthe same in
cither case we have Lo wrile {wo secparate
procedures, Pransposelntegerdvrray and
TransposeRealdrray. We would like to have a single
procedure Transposedrroy which could hendle an
array with any type of elementl. To achieve this in
Pebble we use the approsch proposed by Reynolds
(1974), lhat is we give Transpesedrray an exlra
parameter, namely the type of the elements in the
array. Since we have already decided ito treat
types as valuez there is no particular diffienlty in
passing & Lype &5 o parameler. (Revnolds who
maintained the wsual distinetion between types and
values had Lo introduce a mew abetraclion operator
A for Lypes, analogous to A for values.)

Thus we can wrile FPransposedrray as a
function which takes a type, {, as argument and
delivers e&s itz result a funclion; this resulting
function takes an array of f as ils argumeni and
delivers a transposed array of § as its resuitl.  More
briefly Trenspesedrray given a type & delivers the
transposition function for arrays of type ¢. (Such
funclfnn producing f{unetions are permissible in
LIZP or ML bul net in Pascal.) Fer example we may
use Transposedrroy on an integer array a thus

let al: array of int ~ Transposedrray(int)(a)

But what is the type of this function
Transposedrray? Ils argument is a type t and Iis
resull is a function of lype erray of ¢ = array of
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type = (wrray of ¢ =+ avray of t)

but then the name ¢ is mnot declared. Se
instead we uze a dependent arrow type:-

t:type = > (array of t = array of i)

The declaration before the = > inlroduces the
neme ¢ which may then be used after the —>.
{Reynolds would write thiz asz Al{erroy of @
-3 array of £)).

The general form is

Tl = T2ln)

wherTe N 15 4 Name
Tl is an expression densiing o fype
T2in) iz on erpression dencling a type

and oplionally using fhe mame n

The elementz of thiz type are funetions whose
argument iz of type T1. The lype of fhe resulf
depends on the value of the argument.

Other examples are

(i) (ninieger) == (array [l.n] of real)

glements - the function which for any
infeger n20 produces
an array of zeros of length n

- the function which for any

integer n20 produces
the array of square reois of the
Jirsi n iniegers.

(i) f(h:iype) —+ > (Hst(t) = lsi{i))

elements - fhe funciion which for any
type ¢ produces fhe idemiily
Junction for lisls of elements
of iype t

- the junclien which for any iype

t produces the vewerse funciion
for tistz of clemenis of type £

The iype-checking rule for dependent arrew
types may be written thus:-

If for an erbitrary a of fype T1
fle) hos dype T2(a)
them f hes iype nT1 —+> T2(n)

[n Pebble we take a symbolic value for & and
perform symbelic evaluation at type checking time.
Thiz is & cemputationally oriented approach, rather
than & semanticelly criented one.

A somewhat difierent approach te
polymerphisrm  is  taken in L. There
Transposedrray iz not given en exira parameter.
Ite type is

array of ¢ —* array of t
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where t is a type variable by global convention
rather than explicil deeclaration. This can be
written more explicitly with a universal guantifier

(for eil t){array of t — array of {)

Wew in ML Traonsposedrray may be applied
direetly to an integer array (for example} snd o
fype inference system is used to determine thal
here t must be an integer. This inference system
uses uwnificafion, &5 in resolutien theerem proving
or in Prolog, but now at the Llype level (Milner
1978). A system with stalic type checking using
such gquantified types is described by MacQueen and
Sethi (1982); they give a denoctational sementics
end type inference rules. The unificotion method
iz more elegant and convenient than passing the
type as an explicit parameter. However il does not
extend Lo higher order type variables, and if these
are allowed we have to resert te explicit
pararpeters.

7. The serting example in Pebble

We ere now able Lo show the sorling example
of Figures 2-8, 2-7 and 2-B written in Pebble
(Pigure 7-1}. Theé interface ORDERING becomes a
declaration, the implementations NUMERIC_OAD wnd
STRING_ORD  become bindings, the meduls
LEXTCAL_ORD becomes a functien frem bindings to
bindings, and =o on.

Pebble primitive bindings have Lhe ferm
<name>:<type> ~ <expression> bul the <iype> mey
be omitied. Bindings to functions may include
paremeter names and use is inslead of ~. Bindings
are connected by ' (sequential) or by ond
(simultaneous). P§element is equivalent to lel p in
element, sxeepl that an error oceurs if p does not
bind element. This example uses = bui nol —¥*>,
gince there &re no peolymerphic funclions

8. Sharing implementations

Our generel aim has been to provide a {lexible
means of building large programs. I is sometimes
useful to have more ithan one implementation of &
given interfpce, for example one implemeniation
might Be small but slow, another faster but
requiring more space, perhaps an optimised version
of the former. In languages such as Modula 2 er
Ade, which atlach the implementation to Lhe
interface by using the same nome, this is diffieult.
in Mesa or Pebble it iz streightforward using the
parameter mechanism, similarly in 0BJ (Goguen.
Meseguer and Plaisted B2) znd in UHacQuean's ML
meodule proposal (MacQueen Bd4).

It iz perhaps worth noling thet the dislinetion
heiween ‘classical' algebra and ‘modern’ slgebrs
ean be seen as the difference between one
implementation of an interface and mmultiple
irmplernentations, Classical  algebra  studied
idividual struetures sueh as real numbers,
complex numbers and matrices over Lhese; think of
these as implementelions and their axiomatization
as the interfasces (with some specifications added
to the declerations). Modern algebra studies axiom
systems such as ‘group’ (en interface) which may
be interpreted by many differenl structures
(implementations).

Hewewver if &n interface cmn have multiple
implernentations a new peo'lem arises.  How do we
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Let
ORDERING: type ~
(element:iype) =
[lesseqelement = element — bool);
NUMERIC_ORD:0RDERING ~
{element: ~ ini,
lesseqi(iliint = i2vint) = bool 43 ..)
and
STRINC_ORD:ORDERING ~
(element; ~ siring,
tesseq:(sisiring = s2:5iring) —» bool iz ..}
ard
LEXICAL_ORD:(P:ORDERING » QORDERING) —
ORDERING is
(element: ~ (z:Pielement = y:0% element);
tesseq:(eq:element « e2:element) —> bool 4z )
and
SORTING: ~ element:type w
sorfarray(element) = orroy(element):
SHELLSORT:(P:ORDERING) =+ SORTING IS _.
and
QUICKSORT:(P.ORDERING) — SORTING IS ... ;
QuBeriNS:sorbing ~ QUICKSORT(
LEXICAL_ORD(NUMERIC_ORD ETRINC_ORD))

Figure 7-1: Sorting example in PEBBLE

indicate that »n medule with twe parameters
requires them Lo be satisfied by implementations
which share & common subimplementation.
Suppose for example we have a linear slgebra
module, it might have Lwo parameters whose
interfaces are 'vectors' and ‘matrices’ respectively,

Linear algebra: wveclors = tnofrices — whatever

But this only makes sense if the vectors and
matrices are over the same kind of element, say
soth over reals or both over complexes (Lechnically
they have Lo be over Lthe same field).

In Pebble we can express this by introdueing
an exira parameter and paramelerising vector and
natrix (this device derives from Mesa).

fielditype ~ ... INTERFACE
veciprover:field —» lype ~ ...
PARAMETERISED INTERFACE
maofrizover:field — {ype ~ ...
PARAMETERISED INTERFACE
linearalgebra: Fifield = (vectorover(F)
» molrizover(F)) — whatever

HODULE

& Lypical call of linear algebra might be

Real:field ~ [MPLEMENTATION
Fectorlover:(F:field —»> Vectorover(F)) ~ ...
HODULE
Matrizlover:(F:field —> Malrizover(F)) ~ ...
MODULE
Linearalgebra(Real Vectorl over(Real),
Matrizlover(Real])
IMPLEMENTATION

This might be called ‘sharing by
parameterisation”. MecQueen's proposal for a
module faecility in ML (MacQueen B4) suggests
ancther approeeh which we might eall ‘shering by
equations’. The idea iz to allow one to add
eguations to an interface. Consider the declaratien

{t1inieger » jinteger) = (kinleger = Linfeger)

A binding of thiz type iz & [[i=1j=8].
[k=3.5=4]]. .

But we might sdd an equalily constraint

(i:integer = jrinfeger) » (kxinteger = Linteger)
where i=k

Then the sbove hinding would not be of this
type. But [[i=1j=2], [k=1j=4]] would be.

New a component of a binding cen itself be &
binding, so we can maeke lthe implementetion of the
field be a component of the implementation of
vector and similarly of matrix

Jielddype ~ ...

vectoritype ~ vfield;field » ..

maetrizitype ~ mfield field = ...

Lnearalgebra{vvector = momatric where
(révfield) = (mEmfield)) = whafever

Real:field ~ ..

Vectorlvector ~ [ufield ~ Real, ]

Matrizl:matriz ~ [mfield ~ Real....]

Linearatigebra{¥ectorl Malrizl)

[(We have presented MacQueen's jdea as a
simple extension of Pebble rather than explein his
notation).

Introducing suweh equalions requires that the
typechecker be eble Lo werify that they are
satisfied. According to MacQueen thiz can be deone
in a streightforward way without any general
Lheorem proving.

Yet & third approach to sharing was embodied
in the specification language Clear (Burstall and
Goguen 81) in which each theory (interfece) kept a
record of where its compenents came from, thus in
terms of Pebble notation

(integer = integer) = (integer » intfeger)
would not involve sharing, but

(¢ = integer) = (¢t = intoger) where £ ~ infeger



would demand the same value for the first and
third components. (This use of where does not
pormit subalitution, and it might better be written
sharing.)

8. Typechecking and semantics

One of our degign decisions (n Pebble was to
teke iypez as wvalues. This gives & certain sconomy
of notions, for example we need only one kind of
larnbda absiraction. However one may maintain the
distinction ‘between Lypes and values as deo
Reynolde and Maocqueen in  the work already
referred to. Abollshing the distinction and
maintaining it raise somewhal different problems
for typechecking and semantics and the respective
merits of these twe optiens sre not yet clesr.

Typechecking may be deseribed either by
inference rules, which allew us to deduce Lypes for
terms, or by an elgerithmn which evaluates Lhe type
of n Lerm. Burstaell and Lamﬁmn [1984) presents
inference rules for Lyping Pebble, and sinee they
are deterministic they may be re-interpreted as én
algerithm. MacQueen and Selhi ([1982) present
inference rules for Lypes in Lheir langusge, bul it
is not ebvious hew te produce an algerithm,

Pebble iz defined using the inferential form of
operational semanties {Ploikin 1981), but we lack a
denotational semantics. We do mnot have an
implemnentation of Pabble, but we suggest how one
might be eblained from ihe operalienal sementics.
MacCracken (187%) gives a2 denclational semantics
for Reynolds® [erm of golymnrphic lambds ealculus
{#ee Foriunme el al 1983 for further investigations).
MpoQueen nnd Sethi (1882) glve & denotational
semantics for their languege with dependent Lypes,
extended by MacQueen, Plolkin and Sethi (1884)
Bruce wand Meyer (1984) give a denolationel
semantics which seems close Lo whet one might
expech for Febble. Hook (19B4} gives an operational
semantics for o kernel language for Russell,

10. Conelusion

The modularily facilitios of current
progremming lengusges form ah extra layer of
complicalion on top of the base language. We would
like as much simplicity and {lexibility az possible
in tools [or crealing large programs in an
intelligible manner. Hence we Ltry Lo understand the
top level by re-expressing it in a simple funclional
language with dependenl types. capable of Ureating
implementations as values. [i is salisiying to see
the fruitfulness here of ideas developed elgzewhere
for the legic of constructive maothematics.
Theoretical insights help us to understand design
possibilities {or convenlional programming
langueges ond for special sysiem  building
ianguages.
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