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ABSTRACT

This article is devoted to the description
and justification of an algorithm for solving
systems of eguations and "inequations” in the
domain of finite and infinite trees. By
"inequations” the author designates equations
in which the sign = is replaced by the sign =

FOREWORD

Before plunging Into an arid lecture on
systems of equations and Inequations, let us
say a word about Prolog.

The basic mechanism of a Prolog machine
can be resumed in three lines:

(1) (qgoqi..ge)
(2) po > pi ... Pm
(3) { wpt ... ppm pan ... jign )

Line {1) represents the state of the machine
at time t, line (3) the state of the machine
at time t+1, and line (2) the rule used to
operate this change of state. The pi's and qi's
are terms and p represents the most general

This work was supported by a grant from
Digital Equipment within the External
Research Program: Extensions to the Prolog
Language, Research Agreement no 91 (July 83
= June 84).

substitution of terms for variables which
unifies po and go, i.e. which renders the
terms ppo and pgo identical.

This very simple formulation is nothing
more than a particular case of Alan
Robinson's principle of resolution (Robinson
1965), Here is another formulation inspired
by Prolog implementations:

(1) (qoQt..qgn,S)
(2) po = p1 ... Ppm
{(3) (p1..pm Qi ... gn, SUlpo=qo) )

where S and SU[po=qo) are systems of
equations admitting at least one solution in
the field of finite trees (without variables).
We have replaced the notion of unification by
that of resolution of a system of equations in
a given field. This perspective allows us two
types of generalisation

First, we can operate in a field other than
that of finite trees without worrying whether
the notion of most general unifier still makes
sense. All we need is to be able to decide
quickly whether a given system admits or
does not admit a solution in the new field
Secondly, we can introduce inequations
{equations with sign =) by adjoining to each
rule a set of constraints limiting the values
which can be taken by the variables of the
rule. The program which allows us to verify
that the element x is not included in the list
| can be written at last in a clean way:
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out{x,nil) - ;
out(x,list(y,1)) > out(x,1), [x=y).

We must then redefine the basic mechanism
of the Prolog machine, by the three lines:

(1 (qogi..ga,S)
(2) po->p1..pm, T
(3) ( p1 ... pm Q1 ... Gn , SUTU[po=go] )

where S, T and SUTU[po=qe] are systems of
equations and inequations admitting at least
one solution.

This latter formulation is the one we have
adopted in Prolog |l {Colmerauer 1982b) and
(Coimerauer, Kanoui and Van Caneghem 1983).
Prolog il accepts inequations and operates in
the fields of finite and Infinfite trees. The
treatment of inequations considerably
increases the capacity of the language and
reduces recourses to cuts {(/ or 1) in the
search space. Infinite trees allow us to
represent such upusual data as flowcharts
and the reader interested in this aspect can
consult (Colmerauer 1982a) and (Pique 1G84).
But the fundamental reason for their
introduction is to facilitate the resolution of
equations on trees and to avoid the equivalent
of the notoricus "occur check” in traditional
unification. An analogy can be suggested
between finite trees and integers on the one
hand, and finite/infinite trees and fractions
on the other hand: t¢ determine whether an
equation, like for example 6x-3y=100,
admits at least one solution s much more
difficult in the field of integers than in that
of fractions.

The aim of this foreword was to explain
why we are now going to devote 15 pages to
systems of equations and inequations, to
finite and Infinite trees, and to the
construction of a general algorithm of
resolution of equations and inequations on
trees. This aigorithm, as opposed to that
proposed in (Colmeraver 1982) is actually
used in the implementations of Prolog 11, such
as that on VAX under VMS system.
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| EQUATIONS AND INEQUATIONS
IN AN ALGEBRA

1.1 Basic Elements

We have created the word "ineguation” for
an equation in which the sign = is replaced by
the sign =. Qur aim now is to solve equations
and inequations involving trees. We will first
consider the general case of equations and
inequations on arbitrary ‘mathematical
entities constituting an "algebra”.

Throughout this paper we will consider an
infinite, enumerable set V of symbols called
“variables”, Each time we will need a subset
of variables, we will take it from the set V.
We will also need other symbols called
"functional symbols® to each of which a
positive integer, called “arity”, is associated.
When the arity is zero the symbols are called
“constants”,

Definition: An "aigebra™ A is defined by a
get D, its "domain”, and a set of cperations on
D whose names constitute a set F of
functional symbols. More precisely:



- to each constant k is associated an
element a of D, written a=k;

- to each functional symbol I having arity
n*0 is associated a function written [ which
maps each sequence ai...as Of elements in D
into an element a of D, written a=fa1...an.

From now on we will be in the realm of
such an algebra which implies that we have
taken, among cother things, 2 domain D and a
set F of functional symbols. The well-known
notion of “term” lends us formulas to
represent elements of the domain D. We
propose the following definition of “terms™

Definition: A “term™ t of depth n20 is a
finite sequence of juxtaposed elements of
FUV such that:

- if n=0, t is reduced to a constant or a
variable,

= ifn21, t is of the form fti..tm, I being
a functional symbeol of arity n, and the ti's
being terms of depth less than m, with at
least one of them of depth n-1.

To define the element of the domain
represented by a term we must introduce the
notion of assignment of variables.

Definition: Let W=[x1,x2,..) be a subset of
variables. An "assignment” X of W is a set of
pairs of the form X = [x1:=a1, x2:=a2, ...) in
which the ai's are elements of D. If Lt is a
term which does not involve variables other
than those of W, then the value t/X of t in
the assignment X is the element a of D
obtained by replacing in t the xi's by the
corresponding ai's. More precisely:

- If t iz a simple variable x, then a is the
only element such that the pair x:=a occurs
inX,

= if t is a simple constant k, then a=k,

- if t 15 of the form fti..tm 2nd ai=tisX,
then a=fa1..am.

We are now ready to define Dboth
syntactically and semantically the notions of
equation and inequation.

Definition: If ty and t2 are terms, then the
ordered triplets (ti,=t2) and (t1,= t2),
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written as t1=t2 and ti1=t2, are respectively
an “equation” and an “inequation”, A "system"
S Is a possibly infinite set of equations and
inequations. When 5 contains no inequations,
it is referred to as a "system of equations™.
The assignment X of the set V of all
variables is said to be a solution of 3 If for
each equation s=s" and inequation t=t' of S
one has s/X=g'/X and t/X=t'/X. We use the
notation SoliS1 to denote the set of all
solutions of S. If S admits at least one
solution, S is “solvable”, otherwise S iz
‘unsolvable”. If W is an arbitrary subset of
variables, we call “solution of” S “on™ W, each
assignment of W which is a subset of a
solution of 5. We use the notation Solwl5] to
denote the set of all these assignments.
Finally two systems are considered
"equivalent” if they have the same set of
solutions,

Note that to show that two systems have
the same set of solutions it suffices to
consider the solution on the subset of
variables ocurring in the union of the two
systems. These definitions are fllustrated by
two examples,

Example 1.1.1

Consider the algebra A:

- {ts domain D is the set of rational
numbers, f.e. the numbers which are
representable by fractions;

- its set F of functional symbols is
{0,1,+] where O and 1 are constants and the
symbol + is binary (i.e. of arity 2);

- the elements O and 1 are respectively
the rationals O and 1 and the function + is
addition.

Let {x,y,z,x1,y1,21,..]} be the set V of all
variables. The system
[eux=+1exz, y=+xz, +xy=+1z}
which s written in infix notation as
(Ox+x)=(1+(x+2)),
y=(x+z),(x+y)=(1+2)}
is solvable and has this solution among
others:
(=1, y:=1, z:=0, x5:=0, y1:=0, .1
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Example 1.1.2

Consider the classical boolean algebra:

- its domain D s the set of logical values
“true” and “false”;

- its set F of functional symbols is
(1,0,~,&,v], the symbols 1,0 being unary (i.e,
of arity 1) and the symbol &,v being binary.

- its elements 1 and Q are respectively
the values "trug” and "false”, the function =
is the logical negation, the function & is the
logical “and” and the function ¥ is the Togical
"or”,

The system [vxy=8xz, x=-~y} is solvabie
and has as solution on {x,y} the assignment
[x:=1, y:=0). In contrast the system [x=y,
x=0, y=1) is unsolvable.

1.2 Eliminable variables

A classical way of soiving a system of
equations is to proceed by elimination of
variables. An equation is transformed so that
a variable occurs as its left hand side
without occurring in its right hand side. By
substitution one can then eliminate all other
occurrences of this variable in the system. If
the system is solvable, repeated applications
of this procedure will allow one Lo express
the value of a subset W of the variables of
the system as a function of the value of the
subset V-W of the remaining variables. The
system is then solved since to enumerate its
solutions it suffices to assign any value to
the variables in V-W and to compufe the
corresponding values of the variables in W.

For example, in the algebra of example 1.1.1
the system [(x+x)=(1+(x+2), y=(x+2)] is
equivalent to [x=(1+2), y=(x+2)] and
therefore to (x=(1+2), y=(1+{z+2))). In this
latter form the system is solved its
solutions on (x,y,z) are obtained by
considering any assignment of [z} and by
computing the corresponding assignments of
{x,y). However, this elimination of variables
is not always possible as shown in the two

systems [x+y=1] and [x+*x=y+y+y]. To render
elimination always possible one has to move
to classical linear equations by adding the
operations of subtraction and multiplication
by a given rational number. However, these
additions do not change the power of
expressiveness of the eguations. For, on  the
one hand, subtractions can be eliminated by
moving subterms from one side to the other
of an equation and, on the other hand,
multiplictions by given rationals can also be
eliminated: a linear equation with rational
coefficients can be replaced by an equation
with integer coefficients, and kx can by
replaced by x+..+x (k times) and k itself by
O or k+...+k (k times). One can therefore say
that, in the algebra of example 1.1.1, there
exists 2 potentiality for eliminating a subset
of the variables of a solvable system. This
leads us to introduce the following notiom:

Definition: Given a system S, a set of
"eliminable variables” is a subset W of V
such that, for any assignment X of V-W,
there exists a unique assignment ¥ of W such
that XUY is a solution of S.

In the algebra of example 1.1.1 the solvable
system [(x+y)=1, (y+y)=(z+(z+2))} yields
indifferently [x,yl, [y,z) or (x,z) as sets of
eliminable variables. In contrast, in the
algebra of example 1.1.2 the solvable system
[&xy=1) does not have a set of eliminable
variables.

We will see later that in the algebra of
trees, each solvable system of equations
admits at least one set of eliminable
variables; hence the importance of the
following property.

Property | of eliminable variables. in an
algebra whose domain contains at least two
elements, let S1 and S2 be two systems
admitting respectively W1 and W2 for sets of
gliminable variables, Neither of the fotlowing
situations is possible:

(1) Wi=Wz and SollSi1)<SellS2],

(2) Wi<Wz2 and Sol[Si1]=S01[Sz).
(The sign < denotes strict set inclusion.)



The proof of this property is easy and is given
in (Colmerauer 1984).

1.3 Independent Inequations

Let us now examing the problem of deciding
whether or not a system with inequations is
solvable. This problem may be divided into
several simpler subproblems if  the
inequations are independent, in the foilowing
SEnse: '

Definition: Ineguations are said to be
“independent” in an algebra if, for any finite
system S of equations and for any n
inequations si1=t1, .., Se®tn, one has the
following property:

- the giobal system SUlsi=t1,...,Sn*ta)
is solvable if and only if each of the n
subsystems SUls1=t1), .., SUlse=ta] Is
separately solvable.

in the boolean algebra of example 1.1.2, the
global system ([x=y, x=0, y=1} s
unsolvable, whereas the subsystems [x=y,
x=0} and [x=y, y=1) are solvable. Therefore
inequations are not independent in this
algebra. As to the algebra of example 1.1.1
the next property allows us to prove that the
inequations are indeed independent. We will
use this same property to show the
independence of inequations in the algebra of
trees.

Property 11 of eliminable variables: The
following two conditions are sufficient to
establish the independence of ineguations in a
given algebra:

(1) the domain of the algebra is infinite;

(2) each finite solvable system of
equations S1 admits a set Wi of eliminable
variables; in addition if S2 is another system
of this type then Sol[S2kSellS1] implies
that S2 admits a set Wz of eliminable
variables such that Wi<wz (We remind the
reader that < denotes strict set inclusion.)

The proof of this property is given in
(Colmerauer 1984) and is based on an idea of
Pierre Siegel: to compare the "sizes™ of
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different infinite sets, we render them finite
by intersection with a single and judiciously
chosen finite set.

2 ALGEBRA OF TREES
2.1 Definition

The trees that interest us are formed by
nodes labeled by functional symbols taken
from a set F. The branches which stem from a
node are ordered and their number must be
equal to the arity of the symbol T, the node
iabel. We present two examples of trees on
F=[c,d,u,b}, the symbois ¢ and d being
constants, u a unary functional symbol and b
& binary functional symbol.

h
.fh"'\ PN
b u c b
/N df\h
C d i .u"\
c b
!
d L

MNote that a tree can be infinite. To achieve
a formal definition of trees we must
introduce a scheme for naming the nodes
which express their hierarchy. We use the
common notation of numbering paragraphs,

then subparagraphs and so on:
b i
VRN 7\
i.b 2.u 1t 2.b

N /

i.le 1.2d 2.1.d 21d 22b
£ 2

7N\

221c 22b

2221d \

The numbering allows us to represent the
above trees by the sets:

{b, 1b, 2u, 1.1.c, 1.2.d, 2.1.d}

[b, 1.c, 2b, 2.1.d, 2.2.b,
2.2.1.c, 2.2.2b, 22.2.1, ...)
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This technigue suggests the two foilowing
definitions:

Definition: A “node” u of depth n20 is a
sequence of mn positive integers in,...,in
ending by a functional symbol f, and the
elements of which are separated by periods:
u=i1.——-in.f . If j is a positive integer, then
Jj-u denotes the node j.i1.——.in.f .

Definition: A “tree” a is a set of nodes
satisfying the following conditions:

(1) 1f i1.---.in.f is a node of a and if g
is a functienal symbol other than f, then
I1.==-.In.g is not a node of a. (Intuitively,
two nodes cannot occupy the same position.)

(2) For any integer § and node u, if iu is
a node of a then u is also a node of a.
{Intuitively, each node other than the root has
a father.)

(3) For all n20 if it.——-.in.f is a node of
aand if f is a functional symbel of arity m,
then the set of integers j such that a
contains a node of the form i1.---.in.j.q,
where g is any functional symbol, is the set
(1,...,m). (Intuitively, the number of sons of a
node is the arity of its label.)

The simplest operation on trees consists of
taking n trees ai,...,an, a functional symbol f
of arity n and constructing a new tree
fat...an as follows:

EVEWANSIVZAN

Equipped with this operation, the trees
constitute the algebra which interests us and
which we now define more formally.

Definition: Let F be a set of functional
symbols containing at least one constant and
one binary functional symbo) b. The algebra of
treeson F has:

- as domain, the set of trees on F,

- as set of functionnal symbols, F,

- a5 operation f, associated to each
functional symbel f of arity n20, the
operation which to each sequence of n trees
al,..,an associates the tree a=fal..am
defined by:

a=|[flu
(lulugian) U...U(muluel am,
where el indicates set membership.

The ewistence of at least a constant and a
binary functional symbol ensures that the
domain of the algebra is infinite and alse
allows the coding of any sequence of trees by
a single tree,

2.2, Caracteristic properties

The algebra of trees has two basic
properties referred to as  “unique
decomposition” and "unique solution” of 2
“generating” system. We will qualify these
two properties as characteristic, since, as
we will see in paragraph 2.4, they are
sufficient to prove all other properties of
this algebra.

Definition: A “generating” system is a
system of equations of the form

[x1=ts, x2=t2, _],
in which the xi's are distinct variables, the
ti's are not variables and do not contain
variables other than the xi's.

Characteristic properties: The algebra of
trees, of domain D and of set of functional
symbols F, has the following two properties:

- "unique decomposition™: for any element a
of D, there exists one and only ane sequence
(eventually empty) ai..an of elements of D
and one and only one element f of F with arity
n such that a=fai...an; the seguence ai...an
is called "sequence of sons” of a;

- "unigue solution”: each generating system,
involving a subset W of variables, admits one
and only one solution on W.

These properties are proved in (Colmerauer
1984). The first is obvious. The second is
proved by exhibiting formulas which
recursively define the set of nodes of depth n



which make up the trees of the solution.

2.3 Subtrees

The formulation of the property of unigue
decormposition leads to the notion of sequence
of sons which in turn allows us to introduce
the notion of “subtrees”,

Definition: The set E of “subtrees” of a given
tree a is the subset of trees obtained by the
infinite union E = EoUE1L... where Ei, the set
of “subtrees of level” i of a, is defined by:

- Eo = [a], '

- Ei#1 is the set of b's such that there
exists an element of Ei whose seguence of
sons has the tree b as element.

The two preceding examples of trees have
for set of subtrees:

{n, b . d)
FANVAS
N
(b, b , d}
E/\h f\h
/ AN
d c b

it should bhe noted that even the infinite
tree has a finite set of subtrees. It is
therefore a “rational” tree;

Definition: A “rational” tree is 3 tree whose
set of subtrees is finite.

Rational trees can always be represented by
a finite diagram: it suffices to merge all the
nodes from which the same subtrees stem. In
the case of our examples we get:

a1

AR
N ¥

By not merging all the nodes of the second
tree one can also obtain:

Therefore one has to be aware that the
same tree may be represented by different

diagrams.
Finally, 1t is interesting to present a
non-rational tree and its corresponding

infinite dlagram obtained after all possibie
merges of nodes.

N L
Ay
A O

C b u

/\ \

Ly Bt =Sl

O DT

Note that the set E of subtrees of a given
tree a, is always enumerable since it is
obtained by enumerable unions of finite sets.
One can therefore express E as E={a1,az2,...}.
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Since the total set V of variables is infinite
but enumerabie, one can associate a distinct
variable x1 to each subtree ai. Let W be the
set of these xi's. The decomposition property
implies that to each ai corresponds one and
only one equality of the form ai=fia1...ani, to
which corresponds the equation Xi=fix1...Msi.
The =et of these equations forms therefore a
generating system which, according to the
property of unigue solution, admits on W the
unigue solution (x1:=a1, x2:=a2, ...]. We thus
conclude that:

Property of associated system: For any
tree ar there exists, modulo the name of the
variables, one and onlty one generaling system
S:

-which has the form S =
[x1=t1,x2=t2,..], the ti's containing one and
only one occurrence of a functional symbol,

- and which is such that, on [x1,%2,...],
the only solution of S is the assignment
(x1;=a1, x2:=a2, ...}, where the ai's are all
distinct and form the set of subtrees of ar.

The three trees which we considered for
example yleld the following systems:

[x1=bx2x3, Xx2=bx4X5, X3=UXS, X4=C, ¥5=d}
[x1=bx3x2, x2=bx4x1, X3=C, X4=d)

[x1=bx2x3, x2=C, X3=bX4XS, X4=uxz,
X5=bX6X7, X6=UX4, X7~bx6x9, ...}

2.4. Isomorphic Algebras

We defined the noticn of subtree by means
of the property of unique decomposition, and
we proved the property of associated system
using only the notion of subtree and the
property of wunique decomposition and
solution. This property of associated system
is thus valid in all algebras having the other
two properties. This founds the following
isomorphisms, the proof of which is given in
(Colmerauer 1984):

Property of isomorphism: Let A and B be
two algebras having domain DA and De and

having the same set F of functional symbols.
If these two algebras have the characteristic
property of the algebra of trees, then these
algebras are isomorphic, i.e. there exists a
mapping g from DA inte D8 and a mapping h
from DB into Da which satisfy the twe
conditions:

(1) a = higlall and b = gihlbll, for each
element a of Da and for each element b of Ds,

(2) gifar...an) = [(glai]..glan]} and
hifbr..ba] = f(hib1l..ghlbsl), for each f
belonging to F and with arity n21, for each
sequence at,...,aa of elements of DA and for
gach sequence b,...,ba of elements of De.

Given this isomorphism we could have
defined the algebra of trees as “the" algebra
having the properties of unique decomposition
and unigue soiution. In the rest of this paper
we can therefore ignore that trees are made
from nodes and base our reasoning on these
two properties of unigue decomposition and
unique solution.

3 SOLVING EQUATIONS ON TREES
3.1 Reduced system

Let us first introduce three specific types
of systems of equations and the concept of
“representative”:

Definition: An “endless™ system is a system
of equations in which every term which
occurs as the right hand side of an equation
also occurs as the left hand side of an
equation.

Definition: A “reduced” system is a finite
system of equations having the following two
properties :

{1) the left hand sides of its eguations
are distinct variables,

(2) it does not contain an endless
subsystem.

Definition: The notion of "representative” is
defined exclusively for a system S in which
left hand sides of equations are distinct and
which does not contain an endless subsystem.



To each term t is associated a term written
replt,S) called the “representative” of t in
S and defined by:

- replt,S] = replt’,s], if S contains an
equation of the form t=t",

- replt,5] = t, otherwise.

Definition: A "decomposed” system is a
finite system of equations 5 having the
following five properties:

(1) the left hand sides of its equations
are distinct;

(2) it does not contain a&n endless
subsystem;

{3) it does not contain any equation of the
form t=x in which ¥ is a variable and t is not
awvariable;

(4) it does not contain any equation of the
form fS1..Sm=g1..ta where f and g are
distinct functional symbols and where m and
n may be zero;

(3) the presence in S of any equation of
the form fsi..sa=ft1...tn, with n21, implies
that for each i=1,...,n, replsi,Sl=replti,S1

Let us reconsider the set of wvariables
V=[x,y,2,...] and the set of functional
symbols F=([c,d,u,b] where ¢ and d are
constants, u is a unary functional symbol and
b a binary functional symbol. The systems
(x=x}, [x=y, y=uz, uz=x) and [c=uc,
uc=uuc, uuc=uuuc, ...} are endless systems.
The system ([x=y, y=bxz) is a reduced
system and the system [x=y, y=bxz,
ux=ubxz) is a decomposed system.

Reduced systems are the most interesting
ones. They have the following fundamental
property, the proof of which is given in
(Coimerauer 1984):

Property | of reduced systems: Each
reduced system admits as a set of eliminable
variables the set of the left hand sides of its
equations.

Therefore, let S be a reduced system
involving the subset of variables W and let
W be the set of variables occurring as left
hand sides of its equations. Such a system is
already solved: according to the definition of
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a set of eliminable variables, the set of its
solutions on W is obtained by considering
each assignment X of W-W" and completing it
by the only assignment Y of W such that XUy
be a sofution of S on W.

Let us now go on to decomposable systems.
These systems always contain one largest
reduced subsystem constituted by the
equations whose left hand sides are
variables. This reduced system has the
following advantageous property:

Property of decomposable systems: Each
decomposable system is equivalent to the
largest reduced subsystem it contains.

Although it initially may appear easy, the
proof of this property is far from being
trivial. It is given in (Colmerauer 1984).

3.2 Reduction algorithm

To solve a system of equations 5 in the
algebra of trees, we will subject it to a
series of transformations. These will produce
a final system, equivalent to the initial
system, and whese form will allow, either to
conclude that the initial system is
unsolvable, or to render all its solutions
vigible. in this last case the form of the final
system will be that of a reduced system.

Each transformation will be justified by
two properties which are direct consequences
of the property of unique decomposition of
trees:

Properties of an equation: If f and g are
distinct functional symbols of arity m and n
respectively and if the si's and ti's are
arbitrary terms then :

- the systems (fsi..Sm=fti..tm} and
(s1=t1,...,Sn=tm} are equivalent,

- the system [fsi.Sm=gti.ta} is
unsolvable.

Mote that neither of these properties is
true in the majority of classical algebras: in
arithmetic (example 1.1.1)} the systems
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((x+1)=(0+y)} and [x=0,1=y] are not
equivalent and the system ([(e+1)=0] is
solvable,

We are now ready to propose and justify an
algorithm which aliows, whenever possible,
the transformation of a finite system into an
equivalent reduced system.

Reduction algorithm: It is proposed to
“reduce” a finite system of the form SUT,
where 5 is already reduced and where T is
the set of equations occuring in a finite
sequence Z of equations. The pair <S,Z» is
repeatedly medified using the “basic
operation” which is defined below. If in the
way, a basic operation is not executed
normally then the initial system SUT is
unsolvable. Otherwise the final result iz a
pair of the form <S',(}>. The subset of §°,
constituted from the equations whose left
hand sides are variables, is then a reduced
system equivalent to the initial system SUT
and contains the original system S,

Basic operation: Choose in Z any occurrence
of an equation s'=t' and remove it. Let
s=repls’,5] and t=repft’,5) If s=t the
operation terminates, otherwise there are 3
cases:

- at least one of the terms s and t is a
variable; in this case add to S one of the
equations g=t or t=s, provided that the left
hand side of the added equation is a variable;

- the terms s and t are respectively of
the form fst...8n and fti...ta, with m21; in
this case add to S one of the equations s=t
or t=s and insert, anywhere in Z, the
sequence of equations s1=t1,...,80=tn;

- the terms s and t are respectively of the
form fs1...sm and gt1...ta, where f and g are
distinct functional symbols, with mx1 and
nxl; in this case alone, we consider the
execution of the basic operation to be
abnormat.

The following three arguments provide a
proof of the correctness of the algorithm.

First, we must prove that the algorithm is
well defined, fe that the notion of

representative has always a meaning in S:

The initial system is reduced. The left hand
sides of its equations are therefore distinct
and the system does not contain an endless
subsystem. The changes in S are made by
successive additions of new equations both
sides of which are different from the left
hand sides of the already existing equations.
The left hand sides of the equations of S
remain therefore distinct and an endless
subsystem cannot be generated.

Secondly, we must prove that the algorithm
always terminates:

Each bDasic operation modifies the pair
<5,Z», either by increasing S or by
maintaining the previous S but by decreasing
the length of the sequence Z. The system S
cannot be increased indefinitely because the
left hand sides of its equations are distinct
and are terms occurring somewhere in the
initial pair <5,Z». If the algorithm does not
terminate abnormally, there will always be a
phase after which S will not increase and Z
will decrease until it becomes empty.

Finally, we must prove that the algorithm
produces the result announced:

Let T be the set of eguations which are
present in the current sequence Z. According
to the properties of an equation, each basic
operation transforms SUT inte an equivalent
system and if the operation executes
abnormally, the initial system is unsolvable.
Moreover, due to its initial form and to the
nature of the basic operations, the current
pair <5,Z» always has the following property:
the presence in S of a an equation of the form
fsi..se=ft1...ta, with n21, implies that for
each i=1,..,n, if one sets si"=replsi,5] and
ti'=replti,Sl, either si'=ti’, or one of the two
equations si'=ti’ or ti"=si" occurs in Z. It
follows that in the final pair <5',()> the
system S Is decomposed and eguivalent to
the initial system SUT. Therefore, according
to the property of decomposed systems
(paragraph 3.1), S has the properties
announced.



The general idea of this algorithm, and in
particular the notien of "representative”, is
due to Gérard Huet (Huet 1976). The same
algorithm, formulated in the context of the
unification of extended terms (which may be
infinite) can be found in (Fages 1983).

Example 3.2.1

Let us terminate the reduction of the
system represented by the pair:

<lx=uux,y=uuuy}, (x=y),

where x,y are variables and u is a unary
functional symbol. We obtain successively:

<[x=uux,y=uuuy}, (x=y),

<[x=uux,y=uuuy)Ufuux=uuuyl,
(ux=uuy)>,

<[x=uux,y=uuuy JU{uux=-uuuy,ux=uuy],
{x=uy)>,

<[x=uux,y=uuuy)U
(uux=uuuy,ux=uuy,uuuy=uy], (uuy=y)>,

<[x=uux,y=uuuy}u
(uux=uuuy,ux=uuy,uuuy=uy,uuy=-uy),
(uy=y),

<[x=uux,y=uuuy)U

(uux=uuuy,ux=uuy,uuuy=uy,uuy-uy]},
0>,

and thus finally:
[x=uux,y=uuuy].

It is Interesting to depict in graphic form
these different steps. We associate to each
term t, occuring anywhere (even inside a
term) in the initial pair <5,2>, a unique point
ptitl On these points we trace a structure
representing these terms. Each equation s=t
of the system S is materialised by the arrow
ptisl-»ptit] Similarly each equation s=t of
the sequence Z is materialized by the line

a5

ptisl--ptit] The six steps of the reduction
of our previous example are thus represented

by:
u u u—3u
I |
U u T p—
[ |
] l'.ll X ou
(1 \g (2) \!ll
1 17
U=3u u—u
| i(l
u—T x( wu
{3 u {4) !ll
i1 11
u=>ru u—ru
| 1)
X T X ||1
(5) y (8) y

In the process of reduction of the pair
€5,2> there exist two degrees of freedom:
the first degree is the possibility of adding
to the system either the equation s=t or the
equation t=s; the second degree is the
possibility of selecting arbitrarily the next
equation in Z to be processed.

The use of the first degree of freedom leads
to the computation of 16 final different pairs
when starting from the pair:

<[x=uux,y=uuuy], (x=y)>.
If we agree that the bidirectionnal arrow <=»
raplaces indifferently the arrow =3 or the
arrow €=, these 16 pairs can be represented
by the B following drawings:
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By exploiting the second degree of freedom
one can generate indifferently one of the 3
reduced systems:

[x=uux, y=uuuy),
[x=y, y=uuuy],
[x=uux, y=x],
when starting from the pair:
<[], (x=y,x=uux,y=uuuy)>.

It is interesting to estimate the speed of
our reduction aigorithm. We get the following
result:

Property of linearity: Consider the
reduction of a system of equations
represented by the pair <5,Z», and let n be
the total number of occurences of symbols in

<3,Z». The reduction algorithm terminates
after performing at most m basic operations.

The proof of this property is as follows. Let
m be the total number of executed basic
operations. We have:

(1) m<p+ lengthl7]
where p is the total number of equations
which will be inserted in the system S and
length{Z]) is the length of Z. According to
the definftion of the basic operations, p is
also the number of equations which will be
added to 5 and whose left hand sides have
non-zero depth. These left hand sides are all
distinct and are terms already occurring
somewhere (even in a term) in the initial pair
<5,Z>. The tofal number of occurences of
terms in <S,Z» is n and, since each equation
contains at least two occurrences of terms of
depth zero, we have :

(2) p < n - 2(cardIS]+lengthiZ7]).
From (1) and (2) it follows that :

(3) m < n - 2cardIS] - lengthiZ],
and thus:

{(4) m < n.

Note however that this property does not
prove that our algorithm is linear with
respect to the size of data it processes.
Actually the processing time of a basic
operation increases gradually as execution
progresses.

Finally the very existence of this algorithm
allows us to conclude this section with an
important result:

Property 1l of reduced systems: A finite
system of equations S1 is soivable if and only
if there exists a reduced system T1 which is
equivalent to 31; moreover, if 51 is solvable,
and if 32 fs another finite and solvable
system of equations, then Sol[Sz1<Sol[S1] if
and only if, from all reduced systems Tz
equivatent to 52, there i= one such that
Ti<Tz

We remind the reader that we use the sign <
for strict set inclusion. The first "if” and the
first "only if” part of property |l are obvious.
The second "if" part is proven by combinir



the property | of reduced systems (paragraph
3.1) and the property | of eliminable variables
(paragraph 1.2). The second “only if" part is
proven by applying the reduction algorithm to
the pair «Tt,Z2>, where Z2 is a sequence of
equations representing 52

4 SOLVING EQUATIONS
AND
INEQUATIONS ON TREES

4.1 Simplified System

We are now interested in & decision
procedure for establishing weither a system
which contains inequations ig solvable. This
problem can be subdivided intc several
subproblems because of what follows:

Independance property of inequations: In
the algebra of trees the ineguations are
independent, 1.e. for every finite system of
eguations and for &ll n inequations s1=t1, .,
Sn*tn:

- the global system SU[si1=t1,...,S0%tn)
is solvable if and only if each of the n
subsystems SU[s1=ts), .., SUlsn=tn} s
separately solvable.

This is a direct consequence of the property
Il of eliminable variables (paragraph 3.3), of
the fact that the set of trees is infinite, and
of the properties | and || of reduced systems
(paragraphs 3.1 and 3.2). We can therefore
limit ourselves to a system containing only
one inequation.

In formulating the next result, the binary
functional symbol b is used to code each
non-empty sequence of terms ts,...ta by the
term  b.bta._.t1  which contains n
occurrences of b.

Properties of an inequation: Let 5 be a
reduced system and s=t an inequation. The
system SU[s#t] is solvable if and only if one
of the two following cases occurs:

(1) the system SU{s=t] is unsolvable: the
system SU[s=t) is then equivalent to the
system 5;
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{2) the system SU[s=t} is solvable and
admits a reduced system of the form SUT,
with T non empty and disjoint from S: if one
sets T = [yr=t1, .., yn=tal, the system
SUls=t} is then equivalent to-
SU(b..byn...y1#b..btn...t1].

Let us now introduce the notion of a
"simplified” system, which is an extension of
that of a reduced system

pefinition: A "simplified” system is a finite
system having the two following properties :

{1} the set of its equations forms a
reduced system 5;

{2) each of its inequations is of the form
b..bsn...s1=b..bta.__t1, with nx1, the si's and
the ti's being any term, but for $1 which must
be a variable not occurring as left hand side
of an equation in 'S, and but for t1 which must
be such that the system SU[s1=t1) does not
contain an endless system.

By  noticing that the system
SU(b..bSn...s1=b. bta...t1] is solvable when
the system SU(si=ti} is solvable, we are
Jed to the following foreseeable result:

Property of simplified systems: All
simplified systems are solvable.

4.2 Simplification Algorithm

Te solve a system with ineguations it
suffices to put it in 2 simplified form. For
this purpose we propose the following
algorithm:

Simplification algorithm: We wish to
simplify a system of the form
(SeUSi)U(TeUTi), where the system SelUSi is
already simplified and where TeUTi is the
complete set of eguations and inequations
occurring in a finite sequence Ze of equations
and a finite sequence Zi of inequations. The
indices = and i are systematically used to
specify respectively equation parts and
inequation parts. The algorithm consists of
transforming the pair <SeUSi(Ze,Zi)> in
three steps:
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{1) We process first the equations by
applying the reduction algorithm to the pair
<Se,Ze>. We obtain a reduced system Se” If
this reduced system Se' does not exist, the
initial system (SeUSiJU(TeUTi) is unsolvabie
and the algorithm terminates. Otherwise the
pair €S«'USi,Zi> remains to be processed.

{(2) We remove from the set Si  all
inequations s=#t such that the system
Se'U[s=t] is not in a simplified form, and we
insert them anywhere in the sequence Zi. Let
Si' and Zi" be the new resulting set and the
new resuiting sequence. The pair <5a'USi",Zi">
remains to be processed.

(3) We consider the pair <5¢'USH",Zi"> and
repeatedly modify it by the "basic operation”
which is defined below. If a basic operation
executes abnormally the initial system
{SeUSi)U(TeUTi) is unsolvabie. Otherwise we
obtain a final pair of the form <Se'USi™, ()2,
The system Se'USi" then constitutes a
simplified system equivalent to the initial
system (SeUSi)U(TeUTi).

Basic operation: Remove an occurrence of
an inequation s=t from the sequence Zi" and
apply the reduction algorithm on the pair
<Se',(s=t)>. Three cases are possible :

(1) the reduction algorithm fails to
produce a reduced system: in this case the
operation terminates;

(2) the reduced system generated is of
the form Se'UT with T disjoint from 5" and
of the form T = {y1=t1, ..., ya=tn] with n21:
in this case we add to the set 5i" the
inequation b..bya...y 1=b..btn...L1;

(3) the reduced system generated is Se"
in this case alone we consider the execution
of the basic operation to be abnormal,

The algorithm always terminates, since it
consists of applying at most 1+m+n times
the reduction algorithm, m and n being
respectively the cardinality of the set Si and
the length of the sequence Zi. In addition, the
various manipulations involved are justified
by the properties of an inequation (paragraph
4.1). Thus the correctness of the algorithm is
proven.

Example 4.2.1

Let us finish the simplification of the
system represented by the pair:

<[x=uy}U{z=d,bzy=bcc]), (y=bzy,y=z)>,

where x,y,z are variables, u is a unary
functional symbol and b is the standard
binary functional symbol.

First step: We process the equations. To
that end we apply the reduction algorithm to:
<Ix=uy]}, (y=bzy)»
obtaining the reduced system:
[x=uy, y=bzy].
The pair
<[x=uy,y=bzylU(z=d,bzy=bcc], (y=z)>
now remains to be processed,

Second step: We single out the inequations
which need reprocessing. The insquation
bzy=bcc is moved to the right. The pair

<[x=uy,y=bzy)U[z=d], (bzy=bcc,y=z)>
remains to be processed.

Third step: We process consecutively the

two ineguations occurring on the right. We

start by applying the reduction algorithm to:
<[x=uy,y=bzy], (bzy=bcc)>,

which yields successively:
<[x=uy,y=bzylUlbzy=bcc], (z=c,y=c)>,
<[x=uy,y=bzyJU{bzy=bcc,z=c], (y=c)>,

and terminates abnormally. The first

ineguation is thus deleted. The following pair

remains to be simplified:
<[x=uy,y=bzylU[z=d], (y=z)>.

The reduction aigorithm is applied to:
¢[x=wy,y=bzyl, (y=z)>,

ylelding the reduced system:
(x=uy,y=bzy,z=bzy).

The final pair is therefore:
¢{x=uy,y=bzylUlz=d,z=bzy], (>,

and the final result is thus the simplified

system:

[x=uy,y=bzylU(z=d,z=bzy).

Example 4.2.2



Assume we wish to continue the
simplification of the system represented by
the pair:

<[x=ux,y=uuy], (x=y),

We can proceed directly to the third step and

apply the reduction algorithm to:
¢[x=ux,y=uuy}, (x=yb.

We successively obtain:
<[x=ux,y=uuylU(ux=uuy), (x=uy)>,
<[x=ux,y=uuy]U{ux=uuy,uuy=uy],
(uy=y)»,
<[x=ux,y=uuylU(ux=uuy,uuy=uy), (),

yielding the reduced system:
{x=ux,y=uuy).

Therefore the system we proposed to
simplify was unsolvabie.

Let us mention a technical point which is of
impertance  when implementing  the
simplification algorithm. In the second step,
consisting of singling out the inequations
b..bXn...X1%b..btn...t1 to be reprocessed,
there is a method for ensuring that the
system Se'Ulx1=t1] never containg zn
endless system. It suffices to order the
varigbles once and for all; then each time it
is possible in the reduction algorithm to add
the equation x=y or y=x to the system S of
the pair ¢5,Z>, we choose x=y if x¢y and y=x
if y<x. Under these conditions, the only
inequations b.bxn._x1=b bta._t1 to be
reprocessed are those in which the variable
X1 occurs as the left hand side of an equation
of the system Se’.

We will end this presentation by mentioning
that as early as 1971, Philippe Roussel did
some work on the treatment of the inequality
* in the context of automatic theorem
proving (Rousse! 1972),
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