PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT, € ICOT, 1934

DATABASE UPDATES IN PURE PROLOG

David Seott Warren

Computer Seience Department
SUNY at Stony Brook
Stony Brook, NY 11704

ABSTRACT

The Prolog assert operator is notoriously nonlogi-
cal. By using assert, & programmer can write very
procedural programs in Prolog, and thereby subvert
one of the major advantages of programming in
Prolog, the declarative nature of the resulting pro-
grams. In this paper we propose a mew Prolog
operator, called assume, which can replace many
uses of assert. The advantage of assume is that it
can be given a declarative semantics. Prolog pro-
grams are first-order statements, and execution of a
Prolog program is deduction in the first-order logic.
In an exactly analogous way, pure Prolog programs
that include sssume are statements in 2 modal
logic, and their exeeution is deduetion in that
modal logie. The computationzl logic that is
developed here can be understood as providing a
theory of extensional updates in a relational data-
base system. This logic provides interesting
insights into the role of certain types of null values
in database systems,
1. INTRODUCTION

The Prolog language is a good programming
system to the extent that it is based on and reflects
first-order logic. Logie developed as a declarative
language., First-order statements deseribe states of
the world, and open formulas define relationships
among objects in the world. Because Prolog is an
implementation of logic, statements in pure Prolog
can be wunderstood declaratively, as stalements
about relationships among program objects. The
function of a Prolog system is to construct objects
standing in the relationships defined by the pro-
gram. In order to understand a program, one does
not need to understand or even think about how
the Prolog system Bnds and constructs these
objects. To understand a pure Prolog program,
there is no need to think about sequential computa-
tion, or the order in which things happen. This
makes pure Prolog programs very easy to under-
stand, and herein lies a power of logic program-
ming,

The standard Prolog example of appending
two lists elearly demonstrates this point.

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

(We use the now-standard DEC-10 syntax for our
examples, in which variables are identifiers with ini-
tial capitals and lists are represented with square
brackets.) Here append is a relationship among
triples of lists; it i true of a triple if the third list is
the concatenation of the first two. The statements
above can easily be seen to be true. The first says
that three lists stand in the append relationship if
the first one is empiy and the other two are the
same list. The second statement says that three
lists are in the append relationship if the first and
last list have the same first element and if the tail
of the first, the second, and the tajl of the third
stand in the append relationship. Append can be
understood as simple statements about relationships
among lists without any reference to how these lists
might be construeted. This means that it takes
much less mental effort to understand pure Prolog
programs. This property of programs follows from
the fact that pure Prolog is a language in which
specifications are directly executable.

As an aside, this argument for the separation
of what a program dees from how it does it holds
most strongly for readers and understanders of pro-
grams. It is certainly true that creaters of pro-
grams must consider execution details in order to
be able to construct efficient programs.

It is the case, however, that most Prolog pro-
grams that are written are not pure, but use the
nonlogical aspects of the Prolog programming
language. Impure programs can only be understood
by reference to the sequence of instructions that the
interpreter executes when interpreting the program.
Thus impure programs are much harder to under-
stand and debug. The nonlogical features have
been added to Prolog in order to make it into &
usable programming language. Programmers seem
to find that using only pure Prolog is too constrain-
ing and too inefficient, The goal of extending Pro-
log should be to increase its fAlexibility and efficiency
without sacrificing its declarative nature.

As a historical example, consider the Prolog
not operator, which is defined as unprovability.
The not operator has a very simple computation
rule (fail if suceeed, succeed if fail) and was added
as a nonlogical feature of Prolog. It was known to
be nonlogical and programs that use it can have
logically stange behavior. This oceurs particularly
it there are free variables in the scope of a mot
operator when it is evaluated. So programs com-
taining not could not be counted on to have a
declarative semanties. However, research of (Clark
1082, Jaffar ot al. 1983) and others has shown that
some programs that contain mot can be given a
declarative semantics. In order for mot to have a
logical semantics, the use of the operator must be
constrained, so that it is not applied to terms with
free wvariables. In addition, the underlying theory
must be extended by predicate completion. In
these circumstances, the Prelog mot operator can
be understood as logical not. Thus programs con-
taining the mot operator, appropriately constrained
and interpreted, do have & declarative nature.

The assert operator in Prolog is noteriously
nonlogical. Assert allows a programmer to change
the set of clauses that make up the program or
database being executed. As & Prolog operator,
assert is often condemned and often used. It
seems necessary for various reasoms, including at
least the following: (a) implementing a general
database updating facility, (b) implementing com-
plex Al systems including perhaps models of aetors’
knowledge and beliefs, and invelving some kind of
truth and/or consistency maintenanee, and (c)
making up for the lack of a suitable garbage collec-
tion facility in the Prolog system. The goal of this
paper is to describe how a logical semantics can be
provided for a restricted form of assert. Achieving
this will allow programs which use assert for certain
database manipulations to be understood declara-
tively.

In the next section, we discusses various
aspects of the Prolog assert operator that make it
nonlogical and thus difficult to understand in the
same way that pure predicates are understood.
Section 3 describes two ways, one characterized as
syntactic and the other as semantic, in which
modal logic might be used to provide a logical
understanding of Prolog programs involving data-
base updates. The approach we take in this paper
is the semantic one. Section 4 introduces our new
operator, assume, describes its operational charac-
teristies, and compares it to Prolog's assert. Sec-
tion 5 discusses some pragmatic issues involved
with assume. Sections 6 and 7 provide a formal
syntax and semanties for pure Prolog programs
including assumes, understood as formulas in &
modal logie. In Section 8 we give a resolution-
besed deduction method for our modal logie.

2435

Finally Section 9 describes a general extension to a
standard Prolog interpreter, and discusses how it
can be used to implement the modal deduetion
method.

2. THE EVILS OF ASSERT

We begin by exploring the ways in which the
assert operator i5 nonlogical, That is, we show
how the semantics of programs that include assert
violate the normal logical semantics of pure Frolog
queries. This can make sueh programs very hard to
understand.

The first and most obvious difference between
pure Prolog clauses and those that involve assert is
the fact that, unlike pure clauses, the meaning of a
clause involving assert depends very much on the
order in which the literals appear in a clause. As a
very simple example consider:

(1) :- assert{p(a)), pla).

(2) :- pla), assert(p(a)).
The meanings of (1) and (2) are clearly different.
Query (1) adds the fact that p is true of a to the
database and then asks il p is true of a. Clearly
(1) always succeeds. Query (2) first asks il p is true
of & If it is not, then this query fails. Changing
only the order of the literals changes drastically the
meaning of the program. The ', which for pure
elauses is conjunetion, is something else when the
clause involves assert.

Another impurity of assert arises from the
faet that it changes the global state even across
backtracking. That is, an asserted clause stays in
the database when the asserting operation is back-
tracked over. This introduces another kind of order
dependence among clauses. As an example use of
assert consider the following:

find(Z) -

process :- find{X}, assert(found(X)), fail.

process :- found(Y), playwith(Y).

= process,
We assume that execution of find will bind the
variable X. This use of assert then collects the
values for which the predicate find is true and
stores them in the dafsbase. Then the second
clause of process retrieves them from the database
and does some further processing. This construc-
tion releases the stack space used by find so that it
is available for use by playwith. Another related
reason for using the persistence of assert to com-
pute values once and collect them in a table is to
avoid recomputation costs in the case that the
results will be used many times,

Another nonlogical aspect of queries including
assert involves the meaning of variables. Consider:

(1) = playwith(p(X])), q(X).

246

(2) :- assert(p(X)), q(X).

Assuming that playwith is a pure predicate, the
variable X in query (1) is understood as being
existentially quantified, and the two oceurrences of
the variable refer to the same object. In query (2),
which has exactly the same structure, the two
occurrences of the variable X mean very different
things. The X in the scope of the assert, which is
free when the assert is executed, is more related to
a universal quantifier: the fact (for-all X p{X)) is
added to the database. That X has nothing what-
soever to do with the X occurring in the next literal
as an argument . Indeed

(8) = assert(p(Y)), ofX).

has semantics identiczl to that of (2). However,
changing the first occurrence of X in query (1) to Y

has a radical effect on its semantics. The point is °

that a variable in the seope of an assert plays a
different role; it is not an object language variable.

The point of this list of aspeets of assert is to
show some of the obstacles to providing assert
with a declarative semantics consistent with the
rest of Prolog. In the following we propose another
operator, called assume, that can take the place of
some uses of assert, in particular those nzes which
implement simple relational database updates. We
will be able to provide a Iogical, declarative seman-
ties for assume that iz consistent with pure Prolog.
It will be instructive to see how the above problems
are treated (or avoided) with assume.

3. LOGICAL THEORY OF UPDATES

The approach we take to providing a logical
semantics for updates is to use a modal logic. We
extend the first-order logic on which Prolog is based
to a modal logie in which reference is made to mul-
tiple possible worlds. The assume operator will
then be a modal operator that is given semanties as
a relation on possible worlds, in a way originally
proposed by Kripke. Execution of a Prolog
program will then become a deduction in the modal
logie.

Historically, modal logic was developed in an
attempt to provide a formal semantics for the
natural language concepts of necessity and possibil-
ity. There developed two approaches to providing
a formal semantics for modal logical languages,
known as the syntactic approach and the semantic
approach. In the syntactic approach (Carnap 1947)
an attempt was made to identify necessity with
provability, a syntactie notion. The corresponding
approach to providing a mesning for assert would
be to view the entire Prolog database as a syntactie
object: a set of axioms. Then assert is understood
as changing the set of axioms. A query evaluation
is understood as a derivation from an explicit (or
implicit) set of axioms. So with this approach, exe-

cuting a Prolog program is understood as proving a
theorem, and programs have an explicit
metalanguage component.

The second approach to providing meaning for
classieal modal logics is the semantic approach, due
to Kripke {Kripke 1950). In this approach the
definition of & model is extended so that a model
includes & set of possible worlds, and an aceessibil-
ity relation among them. A truth value is given to
a modal formula with respect to a model and a pos-
sible world by referring to what worlds are aceessi-
ble from the given world and the truth values of
subformulas in those worlds. With the semantic
approach to assert developed in this paper, pro-
grams with assert are defined as relations on possi-
ble databases. This means that such Prolog pro-
grams can be understood as moving the system
from one database {world} to another. Dynamie
Logic (Harel 1979) similarly uses a Kripke modal
semantics to provide meanings for programming
languages.

The syntactic approach to updates in Prolog
has been explored by Kowalski and Bowen in
(Bowen and Kowalski 1982). Carnap's syntactic
approach to classical modal logie ran into certain
techmical problems (Montague 1063). Kowalski's
and Bowen’s zpproach retains the distinetion
between language and metalanguage and avoids
those problems. This syntactic approach is very
powerful in that it allows extremely general
changes to the set of axioms. Thus it is an
appropriate approach to the general problems of
representing systems of knowledge and belief, that
involve some aspect of truth maintenance. The
power is nol achieved without a cost, however.
Problems involving truth maintenance and belief
systems are notoriously intractable. For the partic-
ular problem of database updates, a syntactie
approach was takem in [Fagin et al. 1083). That
effort clearly shows how difficult it is to dea! with
the added complexity that comes from tryving to
allow absolutely any change to the set of axioms.

Our semantic approach to Prolog's assert is
more limited than the syntactic. Since it views
changes to the database as changes to the underly-
ing worlds, we are essentially constrained to modify
the database only by adding (or deleting) facts, as
described below. Even though the semantie
approach is more limited in scope, it is worth pur-
suing for several reasons. First, becanse it is more
limited, it avoids some of the intractable problems
raised in the syntactic approach. Second, in the
area of traditional database theory, it is more
appropriate to understand database updates as
changes to the model rather thap as changes to a
syntactic entity: & sef of axioms. Query processing
is more naturally viewed as data retrieval from a
model, rather than as theorem proving from a set

of axioms. Of course, it can also be understood as
theorem proving (see (Nicolas and Gallaire 1679)).
Indeed, this is the basis of the power of logic and
logic programming as discussed above. Bat, in the
context of traditional databases, it seems more
natural to exploit the model theoretic, declarative,
aspect, Third, there is really mot a competition
between the syntactic and semantic approaches;
they are not mutually exclusive but are, in fact,
complementary. A good understanding of the
semantic approach mey provide insight into how
the syntactic approach should be developed.

4. ASSUME

We introduce the new assume operator by
giving examples and explaining how it differs from,
and is similar to, a restricted form of Prolog's
assert operator.

Assume is a modal operator and 23 such
applies to formulas. It has a different syntactic role
than a predicate symbol does, so it also has a new
syntax. For example:

- assume({emp(john 25k]) @ (true).

Here assume(emp(john,25k)) is a modal opera-
tor. It is applied (@ is the application symbal) to
the pure Prolog conjunetion true. Since assume is
a modal operator and applies to formulas, we give
it & special syntax that displays its modal role.
This speaks to the nonlogical aspect of assert
described above involving order dependencies of
literals involving assert. As noted, with assert,
the ‘' is not conjunction; it is application. With
assume application hes its own symbel: ‘@

Semantically distinet coneepts should have a syn-

tactically distinet forms of expression.

The effect of the above query is to add the fact
emp(john,26k) to the database, ie., the tuple
<john,25k> is inserted into the relation emp.
Then the query true is executed on the new data-
base. Declaratively, this query is understood as
saying that this formula is true if there is a data-
base (world) which differs from the current one by
having the fact emp(john,26k) true and true is
true in that database. We could put any conjunc-
tive query in place of the true, and it would be
evaluated in the new database.

The assume operator is constrained to insert
only faets, and npot rules. Intuitively, this is
because it iz easy to determine of two worlds
whether they differ from each other by a single fact;
it is not so easy to determine whether two worlds
differ from each other by a rule. This is the main
constraint imposed by our semantic approach fo
updates. It may seem that this is a severe limita-
tion, but note that traditional database systems
allow only updates to base relations and, as we will
see below, interesting problems do remain.

247

Unlike assert, facts added by assume are
removed from the database on backtracking. The
feature of assert of being persistent through back-
racking is logically somewhat problernmatical any-
way, and it has been noted that it disconcerts many
noviee Prolog programmers. As an example of
backtracking through assume, consider the follow-
ing:

assume(emp(john,55k)) @ (avsal(X), X < 30k).
(Extra parentheses can be eliminated by assigning
appropriate priorities to the infix symbols,. We
would give the ', infix operator and the ‘&’ infix
operator the same priority and have them associate
to the right.) This query adds the tuple
<john,55k> to the database. Then it computes
the average salary of all employees and checks
whether that number is less than 30k. If not, it
fails back thromgh the assume, and that tuple is
removed [rom the database. This might be an
appropriate query if there is a policy that the aver-
age salary can never equal or exceed 30k. This
query ensures that the tuple < john,65k> will not
be added to the database if it would cause a viola-
tion of this constraint.

Consider the interpretation of variables that
appear in assumed facts. Assumed facts are
allowed to contain variables, but unlike in Prolog's
assert, such variables have an existential interpre-
tation, That is, when a fact containing a free vari-
able is assumed, the new database (world) differs
from the eurrent database (world) by exactly one
tuple. But exactly what tuple that is remains par-
tially unspecified. If a variable in an assumed fact
is bound to a constant value later in the computa-
tion, then that constant value replaces the variable
in the assumed fact; the result is equivalent to
having assumed the closed fact originally. For
example:

{1) - assume(emp{john, X)) @ X = 55k.

(2) == assume(emp(john,55k)) @ true.

have jdentical effects. (1) is understood as claiming
the existence of a world that differs from the
eurrent one in having an emp tuple with first
component john and some unknown second com-
ponent, and that the unknown second component is
equal to 66k in that world. This is equivalent to
(2) which claims the existence of a world that
differs from the current one in having an emp tuple
with first component john and second component
65k, and true is true in that world. We emphasize
the existential nature of the variable; a world
claimed to exist by an assume operator differs
from the current world by at most one tuple
There is no way to assume a fact with a universally
bound variable. Notice that this treatment of vari-
ables in assuomed facts is intuitively consistent

248

with the treatment of variables in pure Prolog pro-
gramms. For example, the literal X=66k could be
put before the assume(emp(john, X)) in the above
example and the semantics would not be changed.
Fure Prolog programmers' intuitions are still
correct.

As as slightly more complicated example, con-
sider the query:
- Ssn=111,
{assume{empdemo(Ssn, john, Addr)} @
(Addr="5 Shady Lane’,
assume(emptax(Ssn,Sal,2)) & (Sal=55k))).

We might issue s query such as this to update the
datazbase to reflect the addition of & newly hired
employee. This query is understood logically as
claiming that there is a world (call it b) accessible
from the current one (eall it 2) by assuming a tuple
in empdemo, and the embedded modal formula is
true there. Le., from world b there is a world (eall
it ¢) accessible by assuming a tuple in emptax.
{The ‘=" are given here in a perhaps unlikely
arrangement just to show variety.) Notice that we
have allowed the argument of the first modal opera-
tor assume(empdemo(Ssn,john,Addr)) to be a
modal conjunctive formula:

{Addr="5 Shady Lane',assume{emptax(Ssn,Sal,2)} @
Sal=565k)

It is a conjunction of literals, one of which is an
assume. We will constrain any conjunction of
literals to contain at most ome modal subformula.
This is to ensure that the resulting database is
uniquely determined. For the query above, the
resulting database iz clearly the one with the two
new tuples in it, Consider what would happen were
we to allow a query such as:
- (essume(empdemeo{111,john,'s Shady Lane’)) @
true) ,

(assume(emptax(Ssn,55k,2)) @ true).
This query includes two parallel modal subformu-
las: it is true if there exists a database different
from the current one by including an empdemo
tuple and if there is another world different from
the current one by including an emptax tuple.
This query claims the existence of two different
worlds, and it is not clear in which processing
should continue. While it is tempting to try use
such formulas to develop a theory of alternative
databases, this turns out not to be the way to
include such nondeterminism. While such ‘branch-
ing' queries might be acommodated in the main
query, we want to allow modal operators to be
defined by rules. Therefore, we exclude such for-
mulas and permit only a linear nesting of modal
operators.

To this point we have only considered uses of
the assume operator in the main query. The use

of assume would be extremely limited were we not
able to define rules using mssume operators. Such
rules are required in order to construet complex
operators that act on and change multiple relations
in the database. Note that a rule whose antecedent
contains an assume operator defines another modal
operator, not a predicate. The meaning of a sym-
bol appearing in the consequent of such a rule is a
relation om possible worlds and is & user-defined
modal operator. Thus the syntactic (and semantic)
role of such a symbol is similar to that of assume
itsell; it is applied to a conjunction using the ‘@
Also, since rules that define modal operstors are
semantically distinet from normal Prolog rules,
which define pure predicates, there is a different
syntax for them. Instead of the -’ sign, a ‘«' sign
is used for defining modal operators.

As a simple example consider:
hire(Empname,Ssn, Addr,Sal,Deds) «—
not{empdemo(Ssn,E,A)),
{assume{empdemo(Ssn,Empname Addr)) @
(assume(emptax(Ssn,Sal, Deds)) @ true)).

This modal rule defines hire as a modal operator.
Operationally hire can be understood as an opers-
for that takes a sequence of values describing a new
employee, and checks to see whether the employee
is already in the database. If so, it fails. Otherwise
it inserts the appropriate tuples in the employee
demographic relation and the employee tax rela-
tion. Declaratively it ean be understood as defining
hire to be a (parameterized) binary relation on
worlds. This relation is defined by the semantics of
the modal formula that makes up the antecedent of
the rule. That formula says that the eurrent world,
say wl, does not have a tuple in emp with the
given identifying number (Ssn), and from wl there
is a world, say w2, accessible through an assume,
and from w2, there is another world, say w3, acces-
sible through another assume. So the (linear)
modal formula ean be given a modal sernantics as
the relation on worlds defined as all possible such
<wl,w3> pairs. The modal rule states that the
meaning of the modal operator hire is a superset of
this relation. So given this rule, the following
query:

- hire(john,111,'5 Shady Lane',55k,2) @ true.

adds two new tuples to the database, if John really
s a new employee.

It is sometimes desirable to have nondeter-
ministic updates. This is achieved by using more
than one rule to define 2 modal operator. Consider
the situation in which students are enrolled into a
tourse which has several sections, and each section
has an enrollment cap.

enrl{Nm,s1) + assume{sl{Nm))@size{s1,N),N < 30.

. enrl(Nm,s2} — assume(s2(Nm))@isize(s2,N),N<25.

enrl{Nm,s3) + assume(s3({Nin))@size(s3,N),N<28.

This s a very simple approach which defines a
modal operator enmrl to enroll & student in a section
that hes openings. Standard Prolog backtracking
first tries to enrcll a student in section sl, succeed-
ing if the enrollment cap is not exceeded; if sl is
full, it tries 52, and then finally 3. This algorithm
makes the change to the relation and then checks
to see if the result is consistent. An optimizer
might transform this query into one which does the
check first, However, there might well be cases in
which it is simpler to make the change and then do
a complex check for consistency.

One might easily add a operator that calls this
one that takes a list of preferences and tries them
in the indicated order:

enrollprel{Name, Prefs) +
member(See,Prefs), enrl{Name, Sec)@true.

5. PRAGMATICS

Recall that all assumed tuples are removed
from the database on backtracking. This raises the
question of how any detabase change can become
permanent. Many Prolog systems, given a query,
find a successful path through it and display the
resulting varizble bindings for the user. The user
theo has the option of either accepting the answer
.and telling the system not to search for any other
answers (entering & cut), or telling the system to
search for more answers (entering a fail). Entering
a cut discards backtracking points and can be
thought of as making it impossible for the system
to backtrack. This is precisely what is needed in
order to make changes database permanent: the
elimination of the possibility of backtracking. In
this respecl, a Prolog cut corresponds to the data-
base notion of ‘commit’; it is the point at which the
changes made to the database become permanent
because it can no longer be removed by backtrack-
ing. Thus an assnmed tople can be considered as
being permanently entered in the database when
the user responds with a ‘cut’ to the answer pro-
duced by the Prolog system.

Consider now the situation in which an
assumed tuple still contains free variables at the
time of the commit. This would eause there to be
existential varizbles in the permanent Prolog data-
base. This, in principle, canses no logieal problems,
Such variables must be treated similarly to those in
assumed facts before a commit. The Prolog
system must be extended to allow such free vari-
ables to oceur on permanently stored databases.
This essentially involves an implementation of
Prolog's runtime management of variables and their
bindings on the permanent database.

These existential variahles in facts in the data-

base act as o kind of ‘null values'. They stand for
values that exist, but are at the current time unk-

249

nown. They can be filled in by later queries, which
bind those variables. Consider the example:

== hire(john,111,'s Shady Lane’,Sal,2)@(true,!).

This adds a tuple with an undefined value for
Jobn's salary to the emptax relation. The cut (1)
makes this a permanent change to the database,
Then perhaps the personnel department wants to
Il in John's salary with 55k. They can enter the
following query:

= emptax{111,8alDed), Sal=55k, !

This will matech John's tuple and will bind his
salary field to 55k. The cut makes the change per-
manent, Mote, however, that if this iz allowed,
then a pure logieal query, as this one is, can change
the database. Clearly this iz not always what is
desired. Were this 2llowed the system would let a
null value salislfy amy query concerning it. Logi
cally, there is no problem; logically the system is
saying that the above query is true if John's salary
is 55k This is a conditional response to the query
az we will see when we look in detail at the formal
semantics for mssume. Pragmatically, we might
constrain the system so that only authorized users
could cause changes to become permanent. Other
users would be told that they are trying to bind the
value of & null value in the database and would not
be allowed to change it. Note that it is also possi-
ble for & query to equate two free variables in the
database (cf. the chase, as deseribed e.g. in (Maier
1983)).

6. FORMAL MODAL SYNTAX

We give here a formal definition of the syntax
of Prolog programs including assume as a modal
operator.

Symbols: There are countably many variables
sy There is a set of function symbols of vari-
ous arities, a set of predicate symbols of various ari-
ties, and a set of operator symbols of various ari-
ties. All these sets are disjoint. The zerc-ary fune-
tion symbols are called constants.

Terms: A variable is a term. A constant is a
term. If f is an n-ary funetion symbol (n > 1) and
tyly, . .. &, are terms, then f(f;ty, ..., 0,)isa
term.

Atomic Formulas: If p = an p-ary predicate
symbol and #,4, ..., are terms, then
pli;tg, . .-, 8;) is an atomic formula. If m is zero,
the parentheses are deleted.

Conjunctive Formulas: If py,pg, ...,p, (0 =
1) are atomic formulas, then p,p,, ...,p, is a
conjunctive formula. Note, an atomic formula is a
conjunctive formula.

250

Modal Formulas: If o is an p-ary operator sym-
b'L'II, !1,‘2, p - [Il 2 l] are terms, and 5 5 2
conjunctive formula or & modal conjunctive for-
mula, then oty ... ,4)8(s) is & modal for-
mula. For zero-zry o, ofi(s) is 2 modal formula.

Modal Conjunctive Formulas: A modal for-
mula is 2 modal conjunctive formula. If p is a con-
junctive formula and ¢ is a modal formula, then
¢.¢ is & modal conjunctive formula. Note, a modal
conjunctive formula is a conjunction of formulas
exactly one of which is 2 modal formula.

Clauses: If p iz an atomic formula then p. is 2
clause. If p is an atomic formula and r is a con-
junctive formula, then p:-r. is a clause,

Modal Clauses: If o i= an n-ary operator sym-
bol, #,ts, - . . , &, are terms, and u is a conjunctive
modal formula, then oft;lg, ..., f)+—u is a
modal elause. If n is zero, the parentheses are

deleted.
The examples given in the earlier sections

exhibit this syntax. The one exception is the way
the mssume was written. We used a shorthand
above. We actually need a different assume opera-
tor for each relation to which tuples are to be
added. For example, instead of writing
assurne{emptax(111,55k,2)) @ true
we would write
assume_emptax(111,55k,2) @ true
where assume_emptax is a 3-ary modal operator.
Operationally one may think of this as forcing the
obvious requirement that the predicate name be
known before an insert can be performed. II the
earlier syntax is preferred by a Prolog programmer,
the definitions similar to those suggested in (War-
ren 1982) could be used.

7. FORMAL MODAL SEMANTICS

A modal structure 5 for Modal Prolog is a 3-
tuple <D, W,F >, where I is a set of individuals,
W iz a =et of worlds, and F is an interpretation
function as follows:

(1) For an p-ary function symbol f, F(f):D"-D,
i.e., F(f) is an n-ary function on 0.

(2) For an n-ary predicate symbol p,
F(p)C WX D®, ie, F(p) determines, for each
w, an n-ary predicate on D.

{3) For an n-ary operator symbol o,
F(e)CWx WxD", ie, Flo) determines, for
each n-tuple of mdmduals Irc-m D, a binary
relation on W.

Given & strueture 5, 2 variable assignment v is
a function from variables into . We give here the
definitions for the interpretation () of a term in a
structure given a variable assignment v, the truth

(L) of & formula in a structure given a world and
a variable assignment, and the truth (I) of 2 clause.
The structure S is asuumed to be understood.

Terms: If 7, is a variable, then [,(z,) is v(z,).

-’;{ir”hiﬂr LRI tn” is F{!.Hfl{tl]l‘rl{E‘J}l'--:ft“l]]'
For constant ¢, I(¢)is F(e).

Atomic Formulas: [, ,(p(t,fs, ..., L)) is true
if

-'l"-:H.F,,I,[:f]},f,[fg],-.-,f,“‘]} € F[F}

Conjunctive Formulas: [, ,(p,pg -- -, Py B8

true if 7, . (p;) is true for i=1,..,n.

Clauses: [(p.) is true if for every variable assign-
ment v and every werld w, I, ,(p) is true
I{p:-r.) is true if for every varizble assignment v
and every world w, if I, .(r) is true, then I ,(p)is
also troe.

Note that the under these definitions the
interpretation of a term does not depend on the
world in which it is evaluated. This is because a
funetion symbol has the same interpretation in
every possible world of a structure. Note also that
a clause does not depend on the world in which it is
interpreted. It holds in a structure if it holds in
every world in the structure.

We now give the definitions for the interpreta-
tions of formulas conteining modal operators. We
define two interpretations for both modal formulas
and modal conjunctive formulas. For a modal for-
mula , I, ,(v) is a truth value, and ['(u) is a
binary relation on W.

Modal Formulas: [, (o[}t ..., 0)@(s)) is
true if there is a # such that {mw’ > £
I (elt) by . . - 6)0 (2])

For & a ncrnjuna!ive formula, <ww > €
I {ﬂ‘“',tg, =1 n}lﬁ{"” 1”

<w,w L(t,),1,(ta),-..L(£,)> € F(o), and I, y (2)
is true.

For 5 a2 modal mnjunﬁtlve I'r:avrmulmr <wy > €

<o .w' > € I,'{a]

Modal Conjunctive Formulas: [.(p,q) is
true if [, ,(p) is true and I, ,(g) is true, <w,uf >
€ I,'(p,q) if I, o(p) is true and <w,o > € L' ().

Modal Clauses: [(o(f,fs, ...,)+~n) is true
if for every variable assignment v, Lwv(u) C
fv(o(tyty, . . ., £,)0(true))

A model for a set of clauses is 2 modal strue-
ture in which for each clause r, I(r) is true. Since
the only way to constrzin modzl operators is by
using modal clauses, there must be some predefined
operators in order to be able to define any nom-

trivial operators at all. Thus we introduce the fol-
lowing logical modal operators, Given a medal
structure <0, W F >, for each n-ary predicate p,
there is an n-ary operator assume_p.

For apa,, ...,8, € D,<w,wy00a, ...,0,>
€ Flassume_p) iff

(1) for every predicate ¢ other than g,

for all <bybs, ..., 0, > € D,

{whﬁllbzr---rﬁu > E F{f} iff

{wg,rﬁhﬁm...,ﬁ'} = F[q}.

(2) for all <bybg, ..., b, > € D" such that
<hibyy ..oy by >F<apty, ..., 0.>,

{wl:bl:bil'":bs} =] F[P} iff

{:ﬂilbhbir"'lbﬂ.} [F{P}-

(3) <wgapay, -..,a,> € F(p).

This definition just formalizes our intuitions
that two worlds are assume_p(t) related if they
agree cn all predicates other than p, agree on p for
all tuples other than t, and p in the second world
contains t.

8. FORMAL DEDUCTION

We mnow briefly diseuss a resolution-based
deduction method for this modal logic. The
method takes a set of clauses, a set of modal
¢lauses, and a modal conjunctive formula, called
the goal. It determines whether there exisis a
maodal strueture that satisfies the clauses, the modal
tlauses, and the negation of the goal. (The nega-
tion of a formula i5 defined in the standard way:
the negation of a formula is true in 2 world of a
structure iff the formula is false in that world.)
Thus it ean be used as a refutation proof procedure,

The method described here is & simple exten-
sion of resolution and looks very much like the SL-
reaolotion on which Prolog is based. This i
intentional; the zim is to provide a formal logieal
semantics for the operation of a Prolog program
that includes a limited form of assert.

The method is nondeterministie, It works on

the goal formula and maintains a set of assumed
literals. The deduction succeeds when the goal has
been reduced to empty:
(1) Case 1: The goal formula is a conjunstive modal
formuls whose first symbol is a predicate symbol,
then nondeterministically choose (2) or (b): (a)
Choose any clause (changing bound wvariables if
necessary) whose head unifies with that first literal,
Add the antecedent of the unifying clause as a
prefix to the goal, and apply the unifying substitu-
tion to the entire goal, and the set of assumed
literals. (b) Choose any assumed fact (without
changing bound variables) which unifies with that
first literal of the goal. Remove the matching
literal from the goal formula. Apply the unifying
substitution to the entire goal formula and te the
sel of assumed literals.

251

(2) Case 2: The goal formula is a modal formula;
then choose (a) or (b): (a) Choose a modal clause
that unifies {changing bound variables if necessary)

.with the modal operator (and its arguments) that is

the main operator of the goal. Construct the new
goal by taking the antecedent of the modal clause,
and changing the inner-most conjunctive formula
into a modal conjunctive formula by conjoining the
formula to which the matched operator was applied
in the goal. Apply the unifying substitution to the
resulting goal and the set of assumed literals. (b) If
the mair modal operator of goal formula is a
assume-p(t) then add p(t) to the set of assumed
literals.

As a very simple example consider an execu-
tion of a query in a databsse including a modal
clause:
hire(Empnarmne,Ssn,Addr,Sal, Deds) «—

assume_empdemo(Sen, Empname, Addr)i
(assume_emptax(Ssn,Sal Deds}E5al < 50k).

:- hire(john,111,'5 Shady Lane' 30k Deds)@
(Deds == 2).

We trace a deduction of the null clanse:

Goal: hire(john,111,'5 Shady Lane’ 30k, Deds)@
(Dreds == 2)

Assumed Lits: none

- Goal: assume_empdemo(111,john,'s Shady Lane')@

(assume_emptax(111,30k,Deds)@
{30k <50k Deds = 2))
Assumed Lits: none

Goal: assume_emptax(111,30k Deds)&
{30k < 50k, Deds = 2)
Assumed: empdemo(111,john,'s Shady Lane’)

Goal: 30k < 50k, Deds == 2
Assumed: empdemo(111,john,'s Shady Lane')
emptax(111,30k Deds)

Goal: Deds = 2
Assumed: empdemo{111,john,'s Shady Lane')
emptax(111,30k,Deds)

Goal:
Assumed: empdemo(111,john,'s Shady Lane’)
emptax(111,30k,2)

It is not difficult to show that this refutation
procedure is sound. Let L' and G' be the new
assumed literals and the new goal derived from L
and 7 by one step of this modal resclution. Let A
be the set of clauses. The main step is to show
that if there exist a structure S, a world w, and 2
variable assignment v such that (a) for each r in
A, I{r) is true, (b) for each a in [, I, s(a) is true,
and (e} £, ,(—=C) is true, then there exist +/ and o

252

of 5 such that for each & in L', Jy o (@) is true,
and Iy » (=G} is true. (For this we assume the
initial sef of assumed literal contains just the literal
true.) From this it follows that if there exists a
structure, world and variable assignment satisfying
the initial axioms and the negation of the goal,
then there exists a structure, world and variable
assignment satisfying the negation of any derived
goal. If we can derive the empty clause as a goal,
then there must be no strueture and world
satisfying the axioms and the negation of the initial
goal. Thus every structure satisfying the axioms
satisfies the initial goal and we have a refutation
proof procedure.

2. CONDITIONAL PROOFS

In this section we explore how a standard Pro-
log system can be used to execute the modal dedue-
tion method described previously. We first give a
simple generalization of the standard Prolog execu-
tion algorithm. This generalization allows Prolog
to eonstruet conditionzl proofs and has has been
proposed by several researchers in various guises for
the solution of various problems. We briefly point
out these uses and suggest how the same generaliza-
tion can be used to implement our modal deduetion
method.

The following minor modifieation of Prolog's
standard resolution algorithm allows Prolog to con-
struct conditional proofs. Normally Prolog main-
tains a list of goals yet to be satisfed, We add
another list of literals for Prolog to maintain, ealled
the list of assumptions. We extend Prolog's evalua-
tion strategy in two simple waya:

(1) At various points (o be specified by a control
strategy) instead of resolving the next subgoal
against the heads of the eclauses, Prolog may
instead simply move the subgoal to the list of
assumptions. The intuition is that this will be an
assumption; the following proof is valid if indeed
this subgoal is true. Also Prolog at any point,
instead of choosing the next subgoal to resolve on,
may choose a literal from the list of assumptions to
prefix to the list of remaining goals, and thus use it
as the next subgoal.

(2) When trying to reduce a subgoal, in addition to
trying to unily all heads of clauses, the system also
tries to unify with literals on the list of assump-
tions. If it succeeds, the subgoal is satisfied, and
the unifying substitution is applied to the assump-
tions and to the remaining goal list. The intuition
is that this is an assumption that has been made in
the course of the proof and we can use the assump-
tion again.

Of course, any proposal for using this generali-
zation of Prolog's control strategy must fully
specify when subgoals are moved to the kst of
assumptions and when they are moved back.

This can be understood as an implementation
of a resolufion method that has three main sets of
literals: the clanses C, the assumptions list A, and
the goal list G. The assumptions list can be
thought of 25 a list of literals that came to the head
of the goal list but instead of resolving them away,
they have been delayed. So logically they are still

" literals on the goal list. Normally we think of horn

¢lause resclution as manipulating a set of clauses
C,—G where C iz the set of horn clauses with one
positive literal, and -G is the goal clauze consisting
of all negative literals. This new resolution
modified to include assumptions can be thought of
as manipulating a set of clauses G, -A or =G,
where A or -G is a single horn clause consisting
of the sssumptions and the remaining goals. The
“point of activity” of the linear resolution theorem
prover is at the first literal of =G.

There have been several suggestions of ways to
use a Prolog system modified to meintain a set of
assumptions. If these assumptions are evaluated
later in the execution of the Prolog program, this
this is a way of changing Prolog's strict left-to-
right, top-down ordering of evaluation of goals.
The major issue is what goals have their evaluation
delayed and why. Examples of such proposals
include the following. (1) (Kornfeld 1983) proposes
an omega operator for delaying the evaluation of
certain unifications until enough variables have
been bound. He does not use one assumption list
but associates his delayed subgoals with variables
that they involve. From the point of view proposed
here, this could be thought of as a way of indexing
the literals on the assumption list. (2) (Vassiliou et
al. 1983) and (Yokota et al. 1984) suggest using an
assumptions list to delay the evaluation of literals
that would involve retrieval from large database
relations stored on disk. They propose collecting
together all the assumptions lists from every sue-
cessful path through the Prolog program, and giv-
ing that union as a query to a relational database
query processor. That query can then be optimized
and evaluated, producing the answer to the original
Prolog query. (3) (Hsiang and Srivas 1984) propose
using an assumptions list to delay the evaluation of
certain recursive goals, allowing them to produce a
set of implications that need to be proved to estab-
lish the original Prolog query. They then use other
methods to prove these implications and thus are
able to use Prolog to help prove induetive proper-
ties of data structures,

The basic function the assumptions list serves
is to allow Prolog to be a problem reducer, instead
of a problem solver. Extended to inelude an
assumptions list, Prolog will produce, as an answer
to a query, a list of variable bindings and an
assumptions list. This can be understood as being
a conditional answer: the variable values are an

answer to the query if all of the assumptions are
true. In all cases above, the system then continues
on to try to prove the conditions so that the final
answer produced by the system has no hedges.
Note that another type of theorem prover might be
invoked to attempt to prove the assumptions list,

Consider now how the assumptions list is used
in our case, for the implementation of database
inserts. We can view an assume operation as
being an explicit direction to the Prolog system to
continue on the assumption that the given fact is
true, i.e. to move the subgoal to the assumptions
list. The eommit (cut) tells the system to go ahead
and change the database so that the assumptions
are made to be true. Thus after the commit is
done, the answer is no longer conditional; the data-
base has been changed to include what had previ-
ously been conditions; we turn ocur conditional
answer into an absolute answer by msking the con-
ditions true "'by fiat",

10. SUMMARY AND FUTURE WORK

We have proposed the addition of & new opera-
tor, assume, to Prolog to take the place of uses of
assert that maintain relational databases. We
have argued that programs with assume retain a
declarative semantics, and we provided a modal
logic to define formally that semantics. We then
gave n simple extension to Prolog's SL resolution
proof method and showed how it could be under-
stood as a question-answering theorem proving
method for the modal logic. We saw how the
method of conditional proofs for Prolog, which is
useful in many other contexts, can be used to
implement the modal refutation procedure.

Much remains to be explored. It is important
to show some sort of completencss property for the
modal resolution proof method. Also with this for-
mal semantic notion of the semantics of updates,
we can now explore a formal theory of aptimization
of database queries with updates. We also wish to
understand in more detail the vse of cut as commit,
and how it can be more generally applied. This is
related to the concepts of nested trapsactions and
nested commit (Moss 1081).

REFERENCES

Bowen, K. A., and Kowalski R. A., Amalgamating
Language and Metalanguage in Logic Program-
ming, in Logic Programming, K. L. Clark and 8.
-A. Taernlund, (eds.), Academic Press, New York,
NY, 1932, 153-172. _

Carnap R., Meaning and Necessity, University of
Chicago Press, Chicago, 1047.

Clark K. L., Negation as Failure, in Logic end
Databases 1. Minker and H. Gallaire (eds.),
Academic Press, New York, NY, 1082, 203-324,

253

Fagin R., Ullman J. D., and Vardi M., On the
Semantics of Updates in Databases, Proe. Prinei-
ples of Database Systems, Atlanta, Mareh 1083,
352-365.

Harel D., First-Order Dynamic Logic, Springer-
Verlag, Berlin-Heidelberg-New York, 1979,

Hsiang J., and Srivas M. K., On Proving First-
Order Inductive Properties in Horn Clauses, Techn-
ical Report, SUNY Stony Brook, 1984,

Jaffar, J., Lassez, J. L., and Lloyd, J., Complete-
ness of the Negation as Failure Rule, Proceedings of
IJCAIL August 1983, 500-506.

Kornfeld, W. A., Equality for Prolog, Proceedings
of INCAJ, August 1083, 514-519.

Kripke 8., A Completeness Theorem in Modal
Logie, Journal of Symbolie Logie, 24, (1950), 1-14.
Maier, D., The Theory of Relational Dalabases,
Computer Science Press, 1983,

Mentague, R., Syatactical Treatments of Modality,
with Corollaries on Reflexion Principles and Finite
Axiomatizability, in Formal Philosophy: Selected
Papers of Richard Montague, 1063, 286-302.

Moss, J., Nested Transactions: An Approach to
Reliable Distributed Computing, MIT Technieal
Report 260, 1081.

Micolas, J. M., and Gallaire H., Data Base: Theory
va, Interpretation, in Legie and Dale Bases, H.
Gallaire and J. Minker, (eds.), 1679,

Vassilion, Y., Clifferd, J., and Jarke, M., Access to
Specific Declarative Knowledge by Expert Systems:
The Impaet of Logie Programming, Technical
Report, WYU School of Business, 1683,

Warren, D. H. D., Higher-order Extensionsz to
PROLOG: Are They Needed?, Machine Intelligence
10, 1982, 441-454.

Yokota, H., Kunifuji, S., Kakuota, T., Miyazaki, N.,
Shibayema, S., and Murakami K., An Enhanced
Inference Mechanism for Gencrating Helational
Algebra Queries, Proceedings of the Third Sympo-
sium on Principles of Dalabase Systems, April 1984,
220238,

